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Abstract. A new approach based on the concepts of the discrete element method coupled with 
adaptive remeshing techniques is presented for impact resistance of composites. The method is 
capable of analysing progressive fracture and fragmentation behaviour as well as potential post 
cracking interactions caused by the newly created crack sides and segments. Anisotropic Hoffman 
based models are used for predicting the imminence of a material crack or interlaminar 
delamination. Bilinear softening models incorporating both modes I and II are also adopted to 
ensure mesh independency of results. A local remeshing technique is adopted every time a new 
crack is formed, while an overall remeshing is performed anytime a certain criterion of error 
estimation is violated. The special local remeshing technique is designed to model geometrically an 
individual crack by splitting the element, separating the failed node, creating new nodes and 
dividing the neighbouring elements to preserve the compatibility conditions. 
 
 
Introduction 
 
The phenomenon of failure by catastrophic crack propagation poses problems in all applications. 
Therefore, development of reliable models for determining the failure behaviour of advanced 
materials, such as composites, is vitally important. One of the most considerable problems in 
designing composite structures is their vulnerability to transverse impact, which can cause 
significant internal damage in terms of delamination, matrix cracking and fragmentation. In early 
simulations, continuum elasticity was frequently used to formulate the governing equations [1-2]. 
The main disadvantage of these schemes was their restriction to laminates with simple geometries 
 [3]. More realistic models were introduced by development of contact interaction algorithms [4-6].  
 
By introducing interface elements based on fracture mechanics, numerical simulation of crack 
initiation and propagation by finite elements has become more rational and popular in recent studies 
[7, 8]. Nevertheless, finite element techniques, which are rooted in the concepts of continuum 
mechanics, are not suited to general fracture propagation and fragmentation problems. In contrast, 
the discrete element method (DEM), which is basically a finite element method coupled with the 
concepts of contact mechanics, is specifically designed to solve problems that exhibit strong 
discontinuities in material and geometric behaviour.  
 
 

Combined FE/DE Modelling of Composites 
 
A contact based methodology is employed for modelling and controlling of plies 
bonding/debonding. The interlaminar behaviours in the post delamination phase, such as slipping 
and crack faces interactions, are also considered by contact mechanics mechanisms. In addition to 



3D contact models, a 3D anisotropic bonding model with strain softening behaviour has also been 
developed and implemented to investigate interlaminar crack propagation (delamination). 
  
 

The potentially susceptible damage region of composite is modelled using discrete element mesh 
and the rest of the specimen is modelled with coarser solid elements to reduce the analysis time 
(Fig. 1(a)). Each discrete element is discretized by a finite element mesh; finer mesh for the plies 
closer to the impact region and coarser mesh for the furthest ones. The interlaminar characteristics 
of plies such as debonding, impenetrability, friction and sliding determine connection (bonding) 
states of the adjacent discrete elements (Fig. 1(b)). Discrete element system and finite element mesh 
of the rest of the shell are connected together by transition interface, preventing debonding under all 
stress conditions. Non-linear material properties (using the Hoffman anisotropic yield criterion) and 
geometric nonlinearities (large deformation) are also considered in the FE formulation  [9]. 
 
Contact Constitutive Relationship 
 
A bilinear strain-softening model [10] together with the penalty method to impose impenetrability 
and frictional contact are employed. A contact gap vector can be described as 

 
[ ]T , TNg gg =  (1)

where Ng  is the normal distance between contactor node and contact segment. Tg  is a tangential 
vector whose size is equal to the distance between the projection of the contact node in the current 
configuration  and the initial configuration.  
 
Combining the bilinear strain-softening model with the penalty method leads to constitutive 
interfacial relationship in pure modes I and II (Fig. 2), where Tg  is the magnitude of vector Tg , 

Nσ  and Tσ  are the threshold tensile and shear strength of the binder between plies while Ng 0  and 
Tg 0  are the related displacements. Ng max  and Tg max  are the maximum allowable normal and tangential 

displacements of the interface without debonding. IcG  and IIcG  are assumed to be material 
constants of fracture energy release rate for modes I and II defined by  [3] 
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 and Nσ  and Tσ  can be obtained by experiments, and 

Figure 1: Composite specimen: (a) discrete/finite element mesh, (b) interfacial regions. 
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Figure 2: Normal and tangential contact stress—gap vector magnitude diagram: (a) pure normal 
mode, (b) pure tangential mode in adhesion phase, (c) pure tangential mode in friction phase 
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where μ  is the Coulomb coefficient of dry friction and •  denotes the Macaulay function, that is 
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Figure 2 shows the stress-displacement relationship in pure modes I and II. Here, the extenet of 
delamination damage, κ , introduced by  [10], has been employed: 
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According to this model, delamination will initiate as soon as κ  exceeds zero. The combination of 
this model and the penalty method leads to the constitutive relationship between interfacial stresses 
and their related displacements, that is 

 
[ ] gDσ cT

21
c ,, == TTN σσσ    , [ ])(,)(,)(Diag cccc gggD TTN DDD=  (7), (8)

Defining three parameters )(κNS , )(κTS  and *
Tug  as 

results in ( Nα  and Tα  are the penalty parameters): 
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Error Estimation and Transfer Techniques 
A Zienkiewicz-Zhu error estimator [12] is used to anticipate the error distribution throughout the 
damaged composite model. At any time when the overall error violates a certain criterion, global 
remeshing is performed. One of the main concerns is to adopt a reliable technique for transferring 
the state variables and history data from the old mesh to the new one. For a comprehensive 
discussion on error estimation and choosing new element size see Peric[13]. 

In elastic-plastic problems, there exist two basic types of variables to be transferred, i.e., nodal 
values such as displacements and velocity, and quantities associated with the quadrature points such 
as  internal energy density, equivalent plastic strain, and the plastic strain tensor. Here, the 
methodology proposed by Peric [13] and Dutko [14] is adopted, where two separate but compatible 
transfer operators, namely 1τ and 2τ , are defined for the Gauss point and nodal variables, 
respectively.  

For simplicity of notation, the state array ),(ˆ),(~),( nhnhnh ΛΛ=Λ U  is defined, which contains all 
nodal, ),(ˆ nhΛ , and Gauss point, ),(~ nhΛ , information at a given time step nt  and mesh h. When the 
estimated error of the solution ),( nhΛ  violates a prescribed criterion at time t, a new mesh, h+1, is 
generated and a new solution )1,1( ++Λ nh  is computed.  

 

The transfer operator 1τ  

The process comprises three distinct steps, i.e., projection of the Gauss point variables to nodes, 
transfer of the nodal values from the old to the new mesh and projection of the corresponding nodal 
quantities to new quadrature points. 
 

 

a) Projection of variables to nodes b) Transfer from old to new mesh c) Nodes to Gauss point interpolation 

 

Figure 3– Transferring Gauss point variables from old to the new mesh. 



 

(a) Projecting Gauss point variables to nodes 
The transfer of Gauss point variables to nodes is performed using the well-known 
projection/smoothing technique, largely used for error estimates and based on Zienkiewicz and 
Zhu’s [12] approach. Fig. 3(a) illustrates the operation for constant strain triangles, where the 
subscripts N and G indicate nodal and Gauss point variables, respectively. 

(b) Transferring the nodal projection to the new mesh 
The second step (Fig. 3(b)) is the most complex, in which the projection/smoothed components of 
the state array, ),,(~ Nnh∗Λ , are transferred from old mesh h to the new mesh h+1. The process can 
be subdivided into three stages. In the first stage, for every node A of the new mesh h+1 with 
coordinates A,n

1h x+ , a background element, eh Ω , is found in the old mesh for which eh
A,n

1h x Ω∈+ . 

The second stage constitutes the evaluation of the local coordinates, ),( A
h

A
h ηξ , of the node A of 

the new mesh within the background element by solving 
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where  r is the number of nodes of element and N is the interpolation function. In the third stage, the 
state variables ),,1(~ Nnh +Λ  are mapped from nodes B of the old mesh to nodes A of the new mesh 
h+1 by using the interpolation function ),(N A

h
A

h
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(c) Interpolating Gauss point variable in the new mesh 
In the final step, which is illustrated in Fig. 3(c), Gauss point variables ),,1(~ Gnh +Λ  of the new 
mesh are obtained by using the interpolation function of the element )e(1h Ω+  as 
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in which ),( G
1h

G
1h ηξ ++  are the Gauss point coordinates. 

The transfer operator 2τ            

The present task reproduces the mapping of the nodal values operation as 
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Numerical Simulations of Buckling of a Delaminated Composite Panel 
 
A [020] composite panel with an initial interlaminar crack between the 04/016 layers is subjected to 
compressive loading as depicted in Fig. 4. The loading incrementally increases until the local and 
global buckling modes occur in 04 and 016 layers, respectively. Fig. 5 shows the predicted local and 
global buckling modes. According to Fig. 5, local buckling commenced at load 1410 (lbf/in) and 
global buckling occurred at load 7130 (lbf/in), comparable to the results reported by Progini [15] at 
1312 (lbf/in) and 7821 (lbf/in), respectively. 



 

 
 

 

Material Properties of Composite Panel 

Exx= 20200 ksi  Eyy=1410 ksi 
Ezz=1410     ksi  Gxy=810 ksi 
Gyz=546      ksi  νxy=0.29 
νxz=0.29 νyz=0.29 
 XT=220 ksi XC=231 ksi 
 YT=6.46 ksi YC=36.7 ksi 
S = 15.5 ksi  GIC=0.5 lbf/in  
GIIC=0.5 lbf/in                                     

Figure 4. Geometry and properties of a composite panel with an initial interlaminar crack. 
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Figure 5. Local and global buckling modes. 
 
High Velocity Impact on a Composite Plate 
 
An experimental composite specimen [16], which is simply supported on its edges, is subjected to a 
triangular load profile applied from 0 to 5 secμ  with a peak force of 5kN(Fig. 6). More than 30000 
unstructured pentahedral elements and 25000 nodes were initially used for adaptive fracture 
modelling of the plate. The fracture and delamination patterns of the plate at sec0245.0 mt =  are 
illustrated in Fig. 7. The shaded areas represent the failed region at different layers. The specimen is 
simply supported on its edges. 
 

 

Model size m00444.01524.01524.0 ××=  
Ply region [ ]nnnnn 45,45,45,45,45 +−+−+=  

MPa3E4.152=xxE  MPa3E7.10=yyE  
35.0=ν  3mkg35.0=ρ  

MPa2772=tX  MPa3100=cX  
MPa3.79=tY  MPa0.231=cY  
MPa8.132=S   

Figure 6: FE/DE mesh of the composite specimen 

 



 

Figure 7: Fracture and delamination patterns from top to bottom layers/interfaces of the model. 

 

 

 

 

 



Conclusions 
 
A combined adaptive finite/discrete element method has been successfully developed for 3D 
damage analysis of composites. The initiation and propagation of cracks have been considered by 
using a bilinear strain-softening model. The penalty method has been employed to impose 
impenetrability and post-debonding behaviours of plies as well as post-cracking of individual 
layers. Numerical tests have been used to assess the performance of the method, showing the power 
of the algorithm for numerical simulation of impact loading on composite structures. The method is 
expected to perform well for similar applications which exhibit progressive fracturing. 
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