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A new computational technique for modeling dislocation interactions with shearable and non-shearable
precipitates within the line dislocation dynamics framework is presented. While shearable precipitates
are modeled by defining a resistance function, non-shearable ones are modeled by drawing a comparison
between the two well-known Orowan and Frank–Read mechanisms. The precipitates are modeled
directly within the dislocation dynamics analysis without the need for any additional numerical methods.
Due to low computational cost the method is appropriate for simulation of a high dislocation density
interacting with large number of precipitates considering different types and various sizes and resis-
tances. It is also efficient for coupling dislocation dynamics with finite element method in multi-scale
frameworks since it does not require the mesh to be consistent with the precipitates geometry.
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1. Introduction

Computational approaches to study dislocation–precipitate
interaction, commenced from 60s, have provided more insight in
understanding plasticity of metals and alloys [1]. A comprehensive
review of classical simulation methods can be found in [2]. Since
the advent of the dislocation dynamics (DD), which is a computa-
tional framework to analyze dislocation motions and their related
phenomena at micron scale [3–7], some attempts have been made
to study dislocation interactions with precipitates and boundaries
within the dislocation dynamics analysis [8–10]. For a comprehen-
sive review of advances in dislocation dynamics modeling, see [11].

Modeling precipitates in dislocation dynamics analysis was
generally limited to specific assumptions for the stress fields
arising from precipitates. In some studies, precipitates were intro-
duced as spherical stress fields [12–18], while some others evalu-
ated the stress field due to matrix and precipitate shear modulus
difference by applying the superposition principle, in which the
problem was disintegrated into two problems: an infinite domain
containing dislocations and a correction problem for considering
the elastic field of precipitate and treating the boundary condi-
tions. As a result, an extra numerical method, such as FEM or
BEM, was required for analysis of the second part [19–21]. The
stress fields due to lattice misfit at internal boundaries were taken
into account in a few studies or by coupling DD with FEM [12,22]
or with the fast Fourier transform (FFT) [23].

The abovementioned approaches suffer from one or several
flaws in terms of physics or disadvantages with reference to com-
putational cost or both. First, the effect of misfit dislocations was
not considered in some methodologies, though it had a significant
role in dislocation–precipitate interaction. For instance, a disloca-
tion could pass a precipitate with the similar shear modulus of
matrix without any interactions. This was in contrast with real
problems where dislocations might stop behind the precipitate
or hardly pass through it because of misfit dislocations at the
coherent precipitate–metal matrix interface. Second, due to the
high stress gradient near precipitates, considerable time was
required to obtain a converged solution for the dislocation motion
near precipitates. Third, even after forming the Orowan loops, the
associated nodes still remained in the mobility equations, increas-
ing the computational effort required to solve the mobility equa-
tions at each time step. Finally, an extra numerical method such
as FEM, BEM or FFT was required to analyze the stress field of a
precipitate. In a number of studies [12–18], the extra numerical
method was avoided by defining precipitates as spherical stress
fields; however, the first three disadvantages remained unsolved.

In the present study, a computational technique is proposed to
model precipitates with various sizes and resistances within the
line dislocation dynamics analysis which eliminates the mentioned
drawbacks. The developed method is also efficient for modeling
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precipitates in a combined FEM-DD framework to address plastic
deformations in small scales. Implementation of this technique in
FEM-DD framework allows for the independency of mesh genera-
tion from the precipitates geometry, which simplifies the solution
of large systems with random distribution of precipitates by adopt-
ing very simple mesh generations, less degrees of freedom (DOFs)
and low computational costs.
2. Modeling approach

In this study, a modified version of line dislocation dynamics
(DD) simulation code, DDLab, is adopted to model dislocation
motions [24]. In dislocation dynamics simulations, a dislocation
curve is discretized into straight segments defined by two end
nodes. The mobility function M relates the vector of nodal forces
fi to the nodal velocities vi,

vi ¼ Mðf iÞ ð1Þ
The velocity of the node i, vi, also relies on the forces acting on

the other nodes. The dislocation segment orientation and material
properties are the main influential factors on the mobility function.
In the dislocation dynamics procedure, the nodal velocity is calcu-
lated by solving the mobility equations and the dislocation motion
is computed via topological considerations [25].

When a dislocation encounters a precipitate, it bends so the
related shear stress which the dislocation exerts on a precipitate
increases. If this stress reaches a critical value, the dislocation goes
on the verge of passing the precipitate. At this point, the disloca-
tion can pass the precipitate by two mechanisms relying on the
precipitate resistance, sobs, which is defined as the minimum
required shear stress to cut a precipitate. First, the dislocation
rounds the precipitate (the Orowan mechanism) unless the arising
stress from the dislocation bending overcomes the precipitate
resistance. Second, the dislocation cuts through the precipitates if
the precipitate resistance is lower than the induced stress due to
the dislocation bending. It is worth emphasizing that the applied
stress to the dislocation must be large enough to bend the disloca-
tion to a critical state in order to pass a precipitate.

To model the first mechanism (non-shearable precipitates), it is
considered that a dislocation node which locates closer than a
specific distance to a precipitate gets locked, as depicted in Fig. 1.
By this approach, the main problem of dislocation–precipitate
interaction is transformed into the Frank–Read mechanism, since
the dislocation line pinned between two precipitates behaves sim-
ilar to a Frank–Read source. The critical resolved shear stress
(CRSS) obtained from the Frank–Read and the Orowanmechanisms
depends on the maximum dislocation line curvature and the
material properties. Therefore, for an identical material, the two
mechanisms predict the equal CRSS for a given dislocation line
curvature. Assuming a constant curvature along the bowing dislo-
cation line results in snuc = lb/Lf, where l is the shear modulus, b is
Fig. 1. Nodes which are positioned closer than a specific distance to the precipitate get
dislocation line between two precipitates with the internal distance L acts as a Frank–Rea
of the precipitate.
the magnitude of the Burgers vector and Lf is the length of the ini-
tial dislocation line. If the anisotropic line tension is considered,
the dislocation line at the critical state will have an oval shape
[26]. The critical stress is expressed in a general form snuc = blb/
Lf by adopting the concept of self-stress [27] to investigate the
bowing of dislocation line [28]. The constant b depends on the
Poisson’s ratio, the dislocation core radius and the dislocation line
properties.

For the critical stress of two mechanisms to be equal, it is
assumed that a dislocation rounds a precipitate with a modeling
diameter D1, which is not equal to the precipitate diameter D.
Having equivalent Frank–Read nucleation stress and Orowan stress
sOrowan ¼ lb lnð�D=r0Þ=ð2pLÞ, the modeling diameter of a precipitate
can now be determined (see Fig. 1):

Lf ¼ Lþ D� D1 ð2Þ
D1 ¼ Lþ D� 2pLb ln �D=r0
� �� ��1 ð3Þ

where L is the internal distance between the two precipitates, r0 is

the core radius of dislocation and �D ¼ D�1 þ L�1
� ��1

.

The maximum stress that a dislocation can exert on a precipi-
tate occurs when the dislocation radius of curvature equals the
modeling radius, smax = lb/D1. Whenever the precipitate resistance
reaches to this magnitude (i.e. sobs = smax), the dislocation stops
behind the precipitate completely, representing the Orowan
regime. If the precipitate resistance is lower than the maximum
stress (i.e. sobs < smax), the dislocation can pass the precipitate by
exerting a lower level of stress to the precipitate, which generates
a radius of curvature larger than the modeling radius.

To keep up with the second mechanism (i.e. shearable precipi-
tates), the precipitate resistance scale, R = sobs/smax, is defined;
which is set to 1 for a non-shearable precipitate and 0 when no
precipitate exists. When the distance of a node from the center
of a precipitate is less than the modeling radius, the node gets
locked in the dislocation dynamics procedure. At each step, the
local shear stress, which is related to the local curvature at this
point, is compared with the precipitate resistance. If the related
local shear stress exceeds the precipitate resistance, the node is
released.

The precipitate resistance arises from several factors including
the matrix and precipitate shear modulus difference, misfit
dislocations and strains and the dislocation core energy change
due to the difference between crystalline structures of matrix
and precipitates. While the first factor is usually considered in
modeling precipitates in dislocation dynamics, the second and
third ones have a controlling effect. Small scale analyses are
required to determine the precipitate resistance in a matrix. Some
attempts have been made to introduce the critical resolved shear
stress, sc, as a function of shear modulus difference between the
locked. The circles and crosses represent the free and locked nodes, respectively. A
d source with length Lf.w is the angle between the dislocation tangents at both sides
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matrix and precipitates [20,29]. The results of these analyses can
be utilized in the present technique to determine R.

Writing the equilibrium at the critical state,

scLf ¼ sobsD1 ð4Þ

and substituting sobs = Rsmax and smax = lb/D1 results in

R ¼ sc=s0 ð5Þ

where s0 = lb/Lf. According to [20,29], R is a function of n = lp/lm

and g = rp/b where lp and lm are precipitate and matrix shear mod-
ulus, respectively and rp is the precipitate radius. For large values of
n, R slightly depends on L. Section 3.1 presents the way R is calcu-
lated for a specific problem [20].

The key concept in handling the physics of dislocation–precipi-
tate interaction is to redefine critical stress required for moving a
dislocation through a distribution of precipitates. In order to verify
this methodology, the ratio of the CRSS considering the anisotropic
line tension to the CRSS assuming the isotropic line tension, s�c , and
the breaking angle w for various precipitates resistances are calcu-
lated by dislocation dynamics simulations and compared with the
benchmark results [30–32] in Fig. 2, which clearly shows a good
agreement. Two crystalline structures are considered; (1) an FCC
Cu crystal with the shear modulus of G = 63.2 GPa and the Pois-
son’s ratio of t = 0.305, (2) a BCC Fe crystal with the shear modulus
of G = 81 GPa and the Poisson’s ratio of t = 0.29. The Burgers vector
in the Cu crystal is considered as b ¼ 0:181 0:181 0½ � nm with
the glide plane of �1 1 1

� �
and for the Fe crystal, the Burgers vector

and the glide plane are b ¼ 0:143 0:143 0:143½ � nm and �1 0 1
� �

,
respectively.

There is a difference between the theoretical values and those
generated by the reference computer simulations for small values
ofwc [2]. It arises from the fact that due to the assumption of a con-
stant line tension along the dislocation, its geometry has to be a
circular shape. However, on the release point the dislocation line
becomes semicircular between the two precipitates. In the present
simulations, the anisotropic line tension and the possible Orowan
loop around a single precipitate is considered. Setting b = 1 in Eq.
(3), the simulation results converge to the theoretical values of
the isotropic line tension assumption. For b = 0.75 [31,32], the
results converge to the benchmark studies based on the assump-
tion of anisotropic line tension.
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Fig. 2. The critical stress versus the bypass angle. Comparison of the present results
with the reference results [2,30–32].
The present methodology is also capable of handling shearable
to non-shearable transition of precipitates as the diameter of the
precipitates increases. By increasing the diameter of a precipitate,
the local curvature of the dislocation line adjacent to the precipi-
tate decreases. Consequently, the maximum shear stress that the
dislocation line applies to the precipitate decreases (smax = lb/
D1). If the diameter of the precipitate reaches to a certain value,
Dc

1, the resulting shear stress due to dislocation line curvature near
the precipitate is not large enough to cut the precipitate. Therefore,
the dislocation line overpasses the precipitate. Substituting sobs =
Rsmax and smax = lb/D1 in the equilibrium equation at the critical
state leads to,

R ¼ sobsD1

lb
ð6Þ

which shows that R increases by increasing the diameter of the pre-
cipitate. The critical diameter of precipitate, Dc

1, can be calculated by
equating R to unity, meaning that the Orowan loop forms around
the precipitate,

Dc
1 ¼ lb

sobs
ð7Þ

If movements of dislocations continue, many dislocation lines
may encounter a precipitate and lead to form numerous Orowan
loops around a non-shearable precipitate. Consequently, the flow
stress increases due to two major reasons. First, forming each Oro-
wan loop increases the back stress which arises from the precipi-
tate and loops. Second, the accumulated Orowan loops decrease
the length of the Frank–Read source forming between two precip-
itates, known as the source shortening effect [33,34].

The present technique can be extended to handle further Oro-
wan loops around a precipitate by a similar approach used to
model the first one. To calculate the diameter of the n-th loop, Dn

can be determined from

scjD¼Dn
¼ scjD¼D1

þ snh; ð8Þ
snh is the amount of increase in hardening stress due to forming n
loops around a precipitate [19,35],

snh ¼ ncblm 1� t
2ð1� tÞ

� 	
D2

4 Lþ Dð Þ3
ð9Þ

where c is a geometrical parameter. Substituting Eq. (9) in (8) and
considering scr = blb/(L � Dn),

Dn ¼ Lþ D

� cðn� 1Þ 1� t
2ð1� tÞ

� 	
D2

4ðLþ DÞ3
þ 1
Lþ D� D1

" #�1

ð10Þ

For infinite loops, Dn approaches to L + D, which means that the
modeling precipitate diameter becomes equal to center-to-center
distance of precipitates.

The mentioned disadvantages of former methods are clearly
eliminated by the present modeling approach. First, the effect of
misfit dislocations can be indirectly considered in the precipitate
resistance. Second, the converged solutions around precipitates
are obtained faster since this methodology does not involve any
high stress gradient near precipitates. Third, the locking nodes,
which are positioned inside the modeling radius, are omitted from
the mobility equations. Therefore, the number of mobility equa-
tions and computational costs are decreased. It should be noted
that although the locked nodes are omitted from the mobility
equations, their associated stress fields are considered. Finally,
both types of precipitates are modeled directly within the line dis-
location dynamics analysis without requiring any additional
numerical methods.
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3. Results and discussion

Three different problems of dislocation–precipitate interaction
are simulated by utilizing the present method to show its accuracy
and efficiency. In Section 3.1, the effect of precipitate to matrix
shear modulus ratio on strength is studied in an Fe crystal and
the hardening stress due to forming further Orowan loops around
precipitates is investigated in Section 3.2. Finally, the analysis of
plastic deformation in a micro cuboid, which contains a density
of dislocations with various precipitate sizes, is performed in a cou-
pled FEM-DD framework in Section 3.3.

3.1. The effect of precipitate to matrix shear modulus ratio on strength

The effect of precipitate to matrix shear modulus ratio on the
strength of an Fe crystal is investigated. The properties of the Fe
crystal are similar to the former section. In this simulation R is
determined on the basis of precipitate to matrix shear modulus
ratio. The presented results for this problem [20] are fitted by
the following function,

Rðn;gÞ ¼
ðn� 1Þða1g� a2Þ n 6 1
1þ 1

a3n
2þa4n

2g2þa5n
2þa6

n > 1

(
ð11Þ

which is valid under some special conditions. First, it must be equal
to zero when n = 1, since there is no additional resistance to disloca-
tion glide. In addition, as n or g approaches to infinity, R must
approach to 1, which represents a non-shearable precipitate. There-
fore, a resistance function is generally similar to Eq. (11); however,
the coefficients a1–a5 are adjustable for different problems. The
coefficients of the resistance function, Eq. (11), for the considered
problem are calculated by curve fitting of the results by [20] and
they are presented in Table 1. The corresponding resistance func-
tion is plotted in Fig. 3.

Although the locking distance is not explicitly derived from the
image stress due to matrix and precipitate shear modulus differ-
ence, the resulting image stress due to shear modulus difference
is embedded in the proposed methodology. The locking distance
for non-shearable precipitates is derived based on the Orowan
mechanism in which the lp/lm is relatively high and for shearable
precipitates, the dislocation nodes get locked and unlocked based
on the resistance function which is related to the shear modulus
ratio (lp/lm).

The normalized critical resolved shear stress (sc/s0) versus pre-
cipitate and matrix shear modulus ratio (lp/lm) for a dislocation
Table 1
The coefficients of Eq. (11) for the considered problem.

a1 a2 a3 a4 a5 a6

�0.0068 �0.2458 0.8278 �0.1315 0.1308 �1.8173

Fig. 3. Typical resistance of precipitate
line encountering a line array of 10 nm diameter precipitates is
presented in Fig. 4, which shows a good agreement with the refer-
ence results [20]. It is worth to emphasize that the proposed resis-
tance scale function, Eq. (11), is calculated only by considering
precipitate and matrix shear modulus difference and other factors
are not taken into account. In order to assess the effects of other
determining factors such as misfit dislocations and strains, inde-
pendent analyses should be performed to allow for more accurate
definition of the resistance scale function.
3.2. The hardening stress due to forming n loops around precipitates

The diameter of n-th loop around a non-shearable precipitate
with the diameter of 0.1 lm and center-to-center spacing of
0.6 lm in an Fe crystal with the same mechanical properties as
before is calculated from Eq. (10) and compared with the results
of dislocation dynamics simulations presented in [36], Fig. 5(a).
According to [36], the value of 35 was found for c. The diameter
of n-th loop, Eq. (10), is assigned to each precipitate in dislocation
dynamics simulations and the resulting hardening stress due to
forming n loops around precipitates is compared with [36] in
Fig. 5, which shows a reasonable agreement. The geometry of dis-
location line at the critical state for n = 1, 2, 3 and 4 are presented
in Fig. 6. Fig. 6 illustrates that the formation of each loop decreases
the precipitate spacing, which increases the curvature of the dislo-
cation line. The increase in maximum curvature causes the
increase in critical stress, Fig. 5(b).
s as a function of lp/lm and rp/b.
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3.3. Multi-scale analysis of plasticity in a precipitate contained micro
copper cuboid

The plastic deformation in a micro copper cuboid is simulated
within a multi-scale framework for various precipitate distribu-
tions. In this framework, the dislocation dynamics is adopted to
model dislocation motions at the micro scale and the finite ele-
ment analysis is implemented to handle the macro deformation
of the cuboid. The linking of the dislocation dynamics approach
to the finite element analysis is conducted through the following
equation [37,38],

KU ¼ fext þ fB þ f1 þ fP ð12Þ
where K and U are the stiffness matrix and the nodal displacement
vector, respectively. fext is the applied force vector and the other
terms on the right hand side are the force vectors related to the line
dislocation dynamics method. The force vector, fB, arises from the
dislocation long range stress field and f1 is applied to treat bound-
ary conditions as the dislocation stress field is usually considered in
an infinite domain. The term f1 can be omitted if the effect of
boundaries on the stress field of dislocations is considered in calcu-
lating the force vector fB [39,40]. fp arises form dislocation motions
and results in the equivalent plastic strain at the finite element
analysis,

fext ¼
R
C
�tNdC

fB ¼ R
X SDBdX

f1 ¼ � R
C t

1BdC

fp ¼ R
X DepBdX

ð13Þ

in which �t and t1 are the applied traction and the resulting traction
from the presence of dislocations on the boundary C, respectively.
SD is the average stress field due to the presence of dislocations in
the finite domain,X, which is identical to each element at the finite
element analysis. N is the vector of shape functions, B =rN. ep is the
plastic strain vector resulting from dislocation motions, and D is the
elastic stiffness tensor.

Eq. (12) is solved by assuming small deformation for a cuboid
copper specimen with 1 � 1 � 2 lm dimensions and the same
material properties of copper in Section 2. The model contains four
Frank–Read sources on (111) and 1 1 �1

� �
glide planes. The cuboid

is discretized by 10 � 10 � 20 ordinary 8-node cubic finite ele-
ments. As mentioned earlier, the generated mesh is not required
to be consistent with the precipitate geometry since the developed
methodology is independent from the continuum modeling, as
depicted in Fig. 7. A displacement rate of 108 lm/s is applied on
the upper surface in the [001] direction while the bottom surface
is fixed, and the free surface condition is applied on the other four
surfaces by the term f1 in Eq. (12). Simulations are performed for
five cases: (1) precipitates are not considered; (2) the precipitates



Fig. 9. The plastic deformation, exaggerated by factor 200, and the effective plastic strain: (a) no precipitate, (b) q = 2% and D = 100–300 nm and (c) q = 4% and D = 100–
300 nm.

Fig. 8. The geometry of dislocations: (a) no precipitate, (b) q = 2% and D = 100–300 nm and (c) q = 4% and D = 100–300 nm.
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density, q, and the diameter of precipitates, D, are 2% and 200 nm,
respectively; (3) q is 2%, similar to case (2), however, D varies from
100 nm to 300 nm with the average of 200 nm; cases (4) and (5)
are similar to (2) and (3), respectively, while simulations are per-
formed for the precipitates density of 4%.

The geometry of Frank–Read sources for cases (1), (3) and (5)
are shown in Fig. 8. According to this figure, higher density of pre-
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Fig. 10. The effective plastic strain versus applied strain.
cipitates leads to less dislocation movements as the chance of
encountering a dislocation line with precipitates increases. Fig. 9
depicts the corresponding plastic deformation for the presented
cases in Fig. 8, which illustrates that a material with a higher den-
sity of precipitates responds in a more brittle behavior since the
contribution of each dislocation movement to the overall macro-
scopic plastic deformation decreases. Fig. 10 illustrates the effec-
tive plastic strain over the whole cuboid domain and it shows
that the effective plastic strain of the material decreases by
increasing the precipitate content, which is in agreement with
the results shown in Fig. 9.
4. Conclusions

A computational technique to model shearable and non-
shearable precipitates within the line dislocation dynamics has
been presented. The advantage of this methodology is to avoid
any additional auxiliary numerical methods such as FEM, BEM or
FFT since this technique stands on locking and unlocking disloca-
tion nodes. In the present methodology, shearable precipitates
are modeled by defining the resistance function for each precipi-
tate in a way that the precipitate is cut when the exerting shear
stress on the precipitate overcomes the precipitate resistance. A
general form for precipitate resistance function has been proposed
according to the physics of the phenomenon. In addition, non-
shearable precipitates are modeled by drawing a comparison
between the Frank–Read critical stress and the Orowan stress,
which leads to definition of the modeling diameter parameter.
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Moreover, the computational efficiency of the present methodol-
ogy has been examined by implementing the technique in a com-
bined FEM-DD framework to model the plasticity in a multi-scale
framework. No mesh consistency with the geometry of precipitates
is required, which reduces DOFs and the computational cost.
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