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ABSTRACT
An extended element free Galerkin method (XEFGM) has been adopted for fracture analysis of function-
ally gradedmaterials (FGMs). Orthotropic enrichments functions are used alongwith the sub-triangle tech-
nique for enhancing the Gauss quadrature accuracy near the crack, and the incompatible interaction inte-
gral method is employed to calculate the stress intensity factors. Numerical simulations have proved that
XEFGM provides more accurate results by less number of nodes (DOFs) in comparison with the unenriched
EFGM and other conventional methods for several FGM problems with different crack locations and load-
ings. The results have been compared with the reference results, showing the reliability, stability, and effi-
ciency of present XEFGM.

1. Introduction

Today, functionally graded materials (FGMs) are signifi-
cant in many branches of engineering applications, including
aerospace, automobile, medical equipment, turbine industries,
etc. A formulated concept of FGMs was proposed in 1984 by
material scientists in Sendai, Japan, as a means of preparing
thermal barrier materials, and was followed by a coordinated
research in that country since 1986. The idea of continuously
changing the composition,microstructure, porosity, etc. of these
materials, which results in gradients in various properties such
as mechanical strength and thermal conductivity, has spread all
over the world in recent years [1]. FGMs are gradually replac-
ing layered composites in different applications from high-tech
industries to rather ordinary devices.

Several studies have been performed on fracture analysis
of functionally graded materials. Most of the studies on these
types of materials have been conducted by using the numeri-
cal methods rather than the theoretical methods due to inabil-
ity to analytically investigate such complicated problems. In
calculation of the stress intensity factors in isotropic FGMs,
the order of singularity of the stress field in the vicinity of
the crack tip was assumed the same as isotropic homogenous
materials [2]. Dolbow and Gosz [3] presented an approach
that was applicable to analysis of FGMs in which the form
of the asymptotic near-tip fields matched those of a homoge-
neous material. In the derivation, an interaction energy con-
tour integral was expressed in the domain form and evalu-
ated as a post processing step in the extended finite element
method (XFEM). Rao and Rahman [4] used the meshless ele-
ment free Galerkin method (EFGM) for calculating the frac-
ture parameters of isotropic FGM by developing two interac-
tion integrals in terms of homogenous and nonhomogenous

CONTACT Soheil Mohammadi smoham@ut.ac.ir High Performance Computing Lab, School of Civil Engineering, University of Tehran, Tehran, Iran, .
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/umcm.

auxiliary fields. In addition, Kim and Paulino [5] developed an
accurate scheme for evaluatingmixed-mode stress intensity fac-
tors (SIFs) by means of the interaction integral (M-integral)
within a finite element method (FEM) considering arbitrarily
oriented straight and curved cracks in two-dimensional (2D)
orthotropic FGMs. The interaction integral proved to be an
accurate and robust scheme in the numerical problems where
various types of material gradation, such as exponential, radial,
and hyperbolic-tangent, might exist. They observed that the
material orthotropy, material gradation, and the direction of
material gradation could have a significant influence on SIFs.
Also, Kim and Paulino [6] provided a critical assessment and
comparison of three different formulations: non-equilibrium,
incompatibility, and constant-constitutive-tensor formulations
for calculation of stress intensity factor in FGMs by the interac-
tion integral approach.

Dai et al. [7] used a mesh-free model for the static and
dynamic analyses of FGM plates based on the radial point inter-
polation method (PIM). In this method, the mid-plane of FGM
plate was represented by a set of distributed nodes while the
material properties across the thickness were computed ana-
lytically to take into account their continuous variations from
one surface to another. Sladek et al. [8] used a meshless local
boundary integral equation method for a dynamic anti-plane
shear crack problem in functionally graded materials. In addi-
tion, Gao et al. [9] presented 2D crack analysis in nonhomoge-
neous isotropic and linear elastic FGMs by a boundary-domain
integral formulation. Developments in the extended finite ele-
ment method have enormously contributed in fracture analy-
sis of complex materials, such as composites and FGMs. Asad-
poure et al, [10, 11] presented a modeling crack in orthotropic
media using coupled finite element and partition of unity
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514 H. KHAZAL ET AL.

Figure . A cracked orthotropic FGM body.

methods. Motamedi and Mohammadi [12–14] studied the
dynamic behavior of fixed and moving cracks in orthotropic
media using the extended finite element method. Also, delam-
ination analysis of composites by new orthotropic bimate-
rial extended finite element method was performed by Esna
Ashari andMohammadi [15]. Similarly, Ghorashi et al. [16] pre-
sented a novel extended isogeometric analysis (XIGA) approach
based on the combination of isogeometric analysis (IGA) and
extended FEM for fracture analysis of structures. Recently,
XFEM fracture analysis of orthotropic functionally graded
materials with orthotropic crack tip enrichments was reported
by Bayesteh and Mohammadi [17], Hosseini et al. [18], and
Goli et al. [19] to solve thermodynamic crack propagation of
isotropic and anisotropic functionally graded materials.

One of the well-developed mesh-free methods is the element
free Galerkin (EFG) method [20–24], which is adopted in this
work. An enriched form of EFG is also available for crack anal-
ysis, which has the major advantages of capability solving sev-
eral crack length/orientation problems on a fixed nodal distribu-
tion and no redistribution/remeshing is necessary even for crack
propagation problems [25]. EFG provides a number of other

Figure . The contour integral at the crack tip.

major advantages [26, 27], including higher accuracy, adap-
tive handling of large deformations, higher-order of continu-
ity, and a relatively high stability solution. EFGM uses the mov-
ing least squares (MLS) approximation for generating the shape
functions of required order of continuity. This feature of MLS
approximation has allowed for it to be used in complicated prob-
lems and in the form of strong and weak formulations.

Similarly, MLS approximation was used to construct the
shape functions in meshless local Petrov–Galerkin method
(MLPG), developed by Atluri et al [28–30], where no global
background mesh was required. Recently, Viola et al. [31, 32]
presented the generalized differential quadrature finite element
method (GDQFEM) for modeling of composite structures and
compared their results with the cell method (CM) and FEM.
Alternative approaches [33, 34] were also introduced for com-
positematerials based on either themoving least-square approx-
imation or the PIM.

Being free from the restrictions ofmesh-basedmethods, such
as FEM, EFG can be used more efficiently to solve complicated
problems, such as discontinuities, considerable meshings, and
remeshings practices in structural optimization problems, or
having multi domains of influence in multi physics problems.
It is very difficult and sometimes impossible to completely over-
come those mesh-related difficulties by a mesh-based method
[35]. In this study, the development of extended EFGM for frac-
ture analysis of cracked isotropic and orthotropic FGMs is pre-
sented. The sub-triangular technique near the crack tip, mod-
ified support domain in the location of the crack tip, effective
nodal distribution for the local crack region and for the whole
geometry, and interaction integralmethod (M-integral) with the
incompatibility form to calculate SIFs are explained in detail.
Several case studies are considered and the results are verified
with those available in the literature to assess the accuracy and
the efficiency of the proposed extended element free Galerkin
method for fracture analysis of orthotropic FGMs.

2. Constitutive equations

The Hooke’s law for 2D elastic solids has the following form:

σ = Dε, (1)

whereD is the matrix of material constants.
For isotropic nonhomogenous materials (FGMs), D can be

defined as:

D = E (x)
1 − ν2

⎡
⎣ 1 ν (x) 0

ν 1 0
0 0 (1 − ν (x)) /2

⎤
⎦ (Plane stress) (2)

and

D = E (x) (1 − ν (x))
(1 + ν (x)) (1 − 2ν (x))

×

⎡
⎢⎣

1 ν(x)
1−ν(x) 0

ν(x)
1−ν(x) 1 0
0 0 1−2ν(x)

2(1−ν(x))

⎤
⎥⎦ (Plane strain) . (3)

E(x) and υ(x) in Eqs. (2) and (3) can be viewed as smoothly
varying “effective” material properties of FGMs. This change in
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MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 515

Figure . A general D cracked body.

thematerial properties cannot be easily implemented in analysis
of anisotropic materials by many existing numerical methods.

For isotropic materials in the plane stress state, Eq. (1) can be
converted to:

ε = Cσ =
⎡
⎣ c11 c12 c16
c12 c22 c26
c16 c26 c66

⎤
⎦
⎧⎨
⎩

σxx
σyy
σxy

⎫⎬
⎭ , (4)

whereC is the compliance matrix.C for orthotropic plane stress
problems can be written as:

C =

⎡
⎢⎣

1
E1

− ν12
E1

0

− ν12
E1

1
E2

0

0 0 1
G12

⎤
⎥⎦ . (5)

3. Crack tip asymptotic solution

Figure 1 defines a 2D orthotropic cracked body subjected to typ-
ical forces with relevant boundary condition, and definitions of
global, local, and polar coordinates. The characteristic equation,
obtained from the equilibrium and compatibility, can be written
as [36, 37]:

c11s4 − 2c16s3 + (2c12 + c66) s2 − 2c26s + c22 = 0, (6)

where cij are the components of the compliance matrix C.
The 2D displacement and stress fields in the vicinity of the

crack tip are defined in terms of the roots sk = skx + isky, k =
1, 2 [36, 38]:

3.1. Mode I

uI1 = KI

√
2r
π
Re
[

1
s1 − s2

(
s1p2

√
cosθ + s2sinθ

−s2p1
√
cosθ + s1sinθ

)]
, (7)

uI2 = KI

√
2r
π
Re
[

1
s1 − s2

(
s1q2
√
cosθ + s2sinθ

−s2q1
√
cosθ + s1sinθ

)]
, (8)

σ I
xx = KI√

2πr
Re
[

s1s2
s1 − s2

(
s2√

cosθ + s2sinθ

− s1√
cosθ + s1sinθ

)]
, (9)

σ I
yy = KI√

2πr
Re
[

1
s1 − s2

(
s1√

cosθ + s2sinθ

− s2√
cosθ + s1sinθ

)]
, (10)

σ I
xy = KI√

2πr
Re
[

s1s2
s1 − s2

(
1√

cosθ + s1sinθ

− 1√
cosθ + s2sinθ

)]
. (11)

3.2. Mode II

uII1 = KII

√
2r
π
Re
[

1
s1 − s2

(
p2
√
cosθ + s2sinθ

−p1
√
cosθ + s1sinθ

) ]
, (12)

uII2 = KII

√
2r
π
Re
[

1
s1 − s2

(
q2
√
cosθ + s2sinθ

−q1
√
cosθ + s1sinθ

)]
, (13)

Figure . Selection of the support domain: (a) near a crack face and (b) near a crack tip (rs : radius of support domain).
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516 H. KHAZAL ET AL.

Figure . Distribution of Gauss points around the crack in the standard approach and the sub-triangles technique.

σ II
xx = KII√

2πr
Re
[

1
s1 − s2

(
s22√

cosθ + s2sinθ

− s21√
cosθ + s1sinθ

)]
, (14)

σ II
yy = KII√

2πr
Re
[

1
s1 − s2

(
1√

cosθ + s2sinθ

− 1√
cosθ + s1sinθ

)]
, (15)

Figure . An edge crack parallel to thematerial gradation in a rectangular function-
ally graded plate subjected to unit tensile loading.

σ II
xy = KII√

2πr
Re
[

1
s1 − s2

(
s1√

cosθ + s1sinθ

− s2√
cosθ + s2sinθ

)]
, (16)

where Re represents the real part of the statement,KI andKII are
the stress intensity factors for mode I and mode II, respectively,
and pi and qi are defined as:

pi = c11s2i + c12 − c16si i = 1, 2, (17)

qi = c12si + c22
si

− c26 i = 1, 2 (18)

In FGMs (Figure 1), thematerial properties, such as themod-
ulus of elasticity E and the Poisson’s ratio ν, vary in differ-
ent points of the domain. Nevertheless, due to the fact that the
linear-elastic singular stress field near the crack tip cannot be

Figure . Background cells and nodal distribution for modeling the rectangular
functionally graded plate.
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MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 517

Figure . Gauss points around the crack: (a) sub-triangles technique and (b) conventional (ordinary) distribution.

analytically obtained for general FGM problems, it is common
to assume that the field functions are similar to homogenous
media based on the crack tip material properties [4]. Similarly,
the displacements and stresses of a cracked orthotropic FGMare
obtained from Eqs. (7)–(18) by calculating the roots of the char-
acteristic equation (6) at the crack tip.

4. Computation of stress intensity factors by the
interaction integral

Various forms of the interaction integral have been used to
obtain the SIFs, including the nonequilibrium, the incompati-
bility, and the constant-constitutive-tensor formulations, as pro-
posed by Kim and Paulino [6]. In the present work, the incom-
patibility formulation is employed to approximate the J-integral
because it requires less complicated derivatives withmore or less
the same level of accuracy as the nonequilibrium formulation [6,
18]. The incompatibility formulation is based on the following
relations for the auxiliary fields:

σi j = di jkl (x) εkl, εi j �= 1
2
(
ui, j + uj,i

)
, σi j, j = 0 (19)

where di jkl is the material modulus. The material compliance
tensor ci jkl can be obtained from the first relation of Eq. (19):

εi j = ci jkl (x) σkl
(
i, j, k, l = 1, 2, 3

)
. (20)

Coefficients ci jkl are related to components of the material
compliance matrix ci j:⎡
⎣ c11 c12 c16
c12 c22 c26
c16 c26 c66

⎤
⎦ =
⎡
⎣ c1111 c1122 2c1112

c2211 c2222 2c2212
2c1211 2c1222 4c1212

⎤
⎦ . (21)

Table . Comparison of SIFs with [] for rJ = 0.5 and rJ = 0.6.

XEFG Normalized KI
rJ = 0.5

XEFG Normalized KI
rJ = 0.6

αb Normalized KI [] Value Error% Value Error%

. . . . . .
. . . . . .
. . . . . .
. . . . . .
 . . . . .
−. . . . . .
−. . . . . 
−. . . . . 
−. . . . . .

The equivalent domain formulation of the J-integral for an
arbitrary contour 	 surrounding the crack tip can be expressed
as (Figure 2):

J =
∫
A

(
σi jui,1 − wδ1 j

)
q, jdA +

∫
A

(
σi jui,1 − wδ1 j

)
, jqdA,

(22)

where q is a smooth function varying from q = 1 on the inte-
rior boundary of surface A to q = 0 on the outer one. nj
is the jth component of the outward unit normal to 	, δi j is
the Kronecker delta and the local Cartesian coordinate system
x1 is set parallel to the crack surface. w is the strain energy
density:

w = 1
2
σi jεi j. (23)

The interaction integral method is applied to calculate the
mode I and II stress intensity factors. The interaction integral
can be defined as [39, 40]:

M =
∫
A

{
σi juauxi,1 + σ aux

i j ui,1 − 1
2
(
σikε

aux
ik + σ aux

ik εik
)
δ1 j

}
q, jdA

+
∫
A

{
σi j

(
ctipi jkl − ci jkl (x)

)
σ aux
kl,1

}
qdA. (24)

The effect of two superimposed fields can be written as [37,
38]:

M = 2t11Kaux
I KI + t12

(
Kaux
I KII + Kaux

II KI
)+ 2t22Kaux

II KII,

(25)

with

t11 = − c11
2
Im
(
s1 + s2
s1s2

)
, (26)

t12 = − c22
2
Im
(

1
s1s2

)
+ c11

2
Im (s1s2) , (27)

t22 = − c11
2
Im (s1 + s2) . (28)

Substituting Kaux
I = 1,Kaux

II = 0 and Kaux
I = 0,Kaux

II = 1
into Eq. (25), results in the following simplified simultaneous
equations:

M1 = 2t11KI + t12KII (Kaux
I = 1,Kaux

II = 0),

M2 = t12KI + 2t22KII (Kaux
I = 0,Kaux

II = 1),
(29)

which should be solved for calculation of the actual modes I and
II stress intensity factors.
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518 H. KHAZAL ET AL.

Figure . Different background cells compared with [].

5. EFG formulation

Figure 3 shows a 2D problem of linear elasticity, which includes
a crack 	c. The partial differential equation of this problem can
be written in the form of:

Equilibrium equation : LTσ

+b = 0 in problemdomain�, (30)

with the following boundary conditions:

Natural boundary condition : σn = t̄ on	t , (31)

Essential boundary condition : u = ū on	u, (32)
Traction freecrack : σn = 0 on	c, (33)

where L is the differential operator defined as:

L =

⎡
⎢⎣

∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

⎤
⎥⎦ , (34)

Figure . Sub-triangular and ordinary techniques compared with [] for the finest
background mesh.

Figure . Values of SIFs for various relative rJ for the case of  ×  background
mesh.

and σ, u, and b are the stress, displacement, and body force vec-
tors, respectively. t̄ is the prescribed traction on the traction
(natural) boundary; ū is the prescribed displacement on the dis-
placement (essential) boundary; and n is the unit outward nor-
mal vector at a point on the natural boundary.

Since theMLS shape functions lack theKronecker delta func-
tion property, the Lagrange multiplier technique is adopted to
enforce the essential (displacement) boundary conditions. The
constrained weak form of the governing equation can be written
as: ∫

�

(Lδu)T (DLu) d� −
∫

�

δuTbd� − ∫
	t

δuT t̄d	

−
∫

	u

δλT (u − ū) d	 −
∫

	u

δuTλd	 = 0, (35)

whereD is the matrix of elastic constants (inverse of compliance
matrix c), and λ is the Lagrange multiplier variable.

The problem domain is now represented by a set of n field
nodes in order to approximate the displacement variable. EFG
uses the moving least squares (MLS) shape functions [41] to
approximate the displacement at any point of interest using a
set of nodes in the local support domain of that point. The MLS
shape function associated with the node i and point x can be
written as [42]:

φi (x) = pT (x) [A (x)]−1w (x − xi) p (xi) , (36)

Table . The error in SIFs for different number of Gauss points in each sub-triangle.

αb
Error % ( Gauss

points)
Error % ( Gauss

points)

. . .
. . .
. . .
. . .
 . .
−. . .
−. . .
−. . .
−. . .

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

eh
ra

n]
 a

t 0
1:

57
 1

9 
D

ec
em

be
r 

20
15

 



MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 519

Figure . Contours of stress components around the crack tip: (a)–(c) enriched σxx, σxy, and σyy , respectively, and (d) σyy without enrichment functions. (αb= ., rJ =
., dmax = .,  field nodes,  gauss points for each sub-triangle). Units of stress are MPa.

where p (x) is the basis function. A linear basis function is
adopted in this study:

pT (x) = [1 x y] , (37)

and A is defined as:

A (x) =
n∑

i=1

w (x − xi) p (xi) pT (xi) , (38)

where n is the number of nodes in the neighborhood of point x
where the weight function w(x − xi) �= 0. The commonly used

Table . Average and maximum errors of SIFs (mode I) for different J-integral
domains.

dmax

Error % .  .

Average . . .
Maximum . . .

cubic spline weight function is used here:

w (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
3 − 4rs2 + 4rs3 rs ≤ 1

2

4
3 − 4rs + 4rs2 − 4

3 rs
3 1

2 < rs ≤ 1

0 rs > 1

, (39)

where rs is the radius of the support domain for node i.
An efficient extrinsic enrichment, similar to XFEM, is

adopted to account for discontinuities or singularities within
the support domain. The extrinsically enriched displacement
approximation for a typical point x can be written as [43, 44]:

uh (x) =
n∑

i=1

φi (x) ui +
mt∑
k=1

φk

4∑
α=1

Qα (x) bk, (40)

where bk is the vector of additional degrees of freedom formod-
eling crack tips, mt is the set of nodes that the discontinuity is
in its influence (support) domain, and Qα(x) are the enrich-
ment functions. The first term in the right-hand side of Eq. (40)
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520 H. KHAZAL ET AL.

Figure . (a) Nodal distribution, (b) adaptive background cells, and (c) uniform background cells used for modeling of the rectangular functionally graded plate.

is the classical EFG approximation to determine the displace-
ment field, while the second term is the enrichment approxima-
tion in order to accurately represent the analytical solution near
the crack tip.

The orthotropic enrichment functions (that will be used
in Eq. (40)) are used extrinsically for anisotropic materials to
enrich the MLS formulation [36]:

Q (r, θ ) =
(√

r cos
(

θ1

2

)√
g1 (θ ),

√
r cos
(

θ2

2

)√
g2 (θ ),

× √
r sin
(

θ1

2

)√
g1 (θ ),

√
r sin
(

θ2

2

)√
g2 (θ )

)
,

(41)

where

θ j = arctan
(

s jy sin (θ )

cos (θ ) + s jx sin (θ )

) (
j = 1, 2

)
, (42)

Figure . Enrichment nodes around the crack tip.

g j (θ ) =
√(

cos (θ ) + s jxsin (θ )
)2 + (s jysin (θ )

)2
), (43)

where s j = s jx + is jy are the roots of the characteristic equation
(6).

Discretization of Eq. (35) results in:[
K Q
QT 0

] [
U
λ

]
=
[
F
q

]
, (44)

where K is the global stiffness matrix, F is the global force vec-
tor, Q and q are the Lagrange related terms for enforcement of
the boundary conditions by the Lagrange multipliers λ:

Q = −∫	u
NTφd�, (45)

q = −∫	u
NT ūd�, (46)

λ (x) =
nλ∑
i=1

Ni (x) λi, (47)

whereN stands for Lagrange interpolation shape functions over
the boundary 	u with nλ nodes.

Table . Comparison of normalized SIFs for different background cells for the edge-
cracked plate subjected to shear load (rJ = ., dmax = .).

KI KII

E/E Ref. []
XEFGM

× 
XEFGM

×  Ref. []
XEFGM

× 
XEFGM

× 

. . . . . . .
. . . . . . .
. . . . .  .
. . . . . . .
 . . . . . .
. . . . . . .
 . . . . . .
. . . . . . .
 . . . . . .
 . . . . . .

Note: The values have been normalized by the exact solution for a uniform E.
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MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 521

Figure . Values of KI for various relative rJ .

Figure . Values of SIF KII for various relative rJ .

U is the global displacement vector that collects the displace-
ments of all nodes in the entire problem domain and additional
enrichment degrees of freedom:

U = {u b1 b2 b3 b4
}T

. (48)

Table . Error of normalized stress intensity factor (mode I) for different background
cells.

Uniform
background cells

Area of crack tip
cell Error of KI (%) Error of KII (%)

×  . . .
×  . . .
×  . . .

K and F are assembled from the nodal stiffnessmatrix and nodal
force vector, respectively:

Kn
i j =
[
Kuu
i j Kub

i j

Kbu
i j Kbb

i j

]
, (49)

Fn
i = {Fu

i Fb1
i Fb2

i Fb3
i Fb4

i

}T
, (50)

where

Krs
i j = ∫�

(
Br
i
)TDBs

jd� (r, s = u, b) , (51)

Fu
i = ∫� φt

i bd� + ∫	t
φT
i t̄d	, (52)

Fba
i = ∫� φT

i Qabd� + ∫	t
φT
i Qat̄d	 (a = 1, 2, 3, 4) .(53)

Bu
i and Bb

i are matrices of shape function derivatives:

Bu
i =
⎡
⎣φi,x 0
0 φi,y
φi,y φi,x

⎤
⎦ , (54)

Bb
i = [Bb1

i Bb2
i Bb3

i Bb4
i

]
, (55)

Bu
i =
⎡
⎣ (φiQα ),x 0
0 (φiQα ),y
(φiQα ),y (φiQα ),x

⎤
⎦ (α = 1, 2, 3, 4) . (56)

Strain and stress components can then be retrieved from
nodal displacements uh using Eqs. (57) and (58), respectively:

ε = Luh, (57)
σ = Dε. (58)

Figure . Zoomcontours of stresses of theedge crack FGMplateunder shear loading (E/E = ., rJ =.,dmax = ., fieldnodes,  gausspoints for each sub-triangle).
Units of stress are MPa.
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522 H. KHAZAL ET AL.

5.1. Appropriate domain of influence

There are severalmethods available in the literature to introduce
discontinuities inmeshlessmethods. They differ on theway they
represent the displacement approximation of a point on a spe-
cific side of the crack from the displacement field of the nodes
on the opposite side of the crack. Among them, the visibility cri-
terion and the diffraction method have been frequently used in
EFG fracture analysis. In the visibilitymethod, the crack bound-
ary is considered to be opaque, and any nodes on the opposite
side of the crack are excluded from the support domain of a node
for approximating the displacement field. Difficulties arise for
particles close to the crack tip since undesired interior disconti-
nuities occur [27]. On the other hand, the diffraction method is
motivated by the way light diffracts around a sharp corner.

In the present article, appropriate selection for the support
domain near a crack tip is based on a similar approach adopted
by [25], as depicted in Figure 4. For each point x1, the nodes on
the opposite side of the crack face are not considered. In order to
take into account the effect of discontinuity near a crack tip xc,
indirect distance of s1 + s2(x) is considered instead of the direct
distance of s0(x), as shown in Figure 4b:

⎧⎨
⎩
s0 (x) = x − x1
s1 (x) = x1 − xc
s2 (x) = x − xc

. (59)

5.2. Numerical integration by the sub-triangle technique

Usually the Gauss quadrature rule is employed for numerical
integration inside the background cell of the EFG mesh-free
method. Existence of a discontinuity within a background cell
may result in substantial accuracy reduction. Many researchers
demonstrated that a regular increase in the order of Gauss inte-
gration does not necessarily improve the accuracy of integration

Figure . FGM plate with an interior crack under mixed-mode loading.

over a discontinuous element/cell, whereas independent inte-
gration of each side of the discontinuity with even low-order
rules does guarantee an accurate integration [25]. Thus, an effi-
cient technique is required to define the necessary points needed
for the integration within these background cells, while remain-
ing consistent with the crack geometry.

An approach similar to the one proposed by [45] and origi-
nally utilized by [25] is adopted. Any background cell that inter-
sects with a crack is subdivided at both sides into sub-triangles
whose edges are adapted to the crack faces, as illustrated in
Figure 5. It is important to note that, while triangulation of
the crack tip element substantially improves the accuracy of
integration by increasing the order of Gauss quadrature, it also
avoids numerical complications of singular fields at the crack tip
because none of the Gauss points are placed on the position of
the crack tip.

6. Numerical case studies

Several case studies are presented in this section to illustrate
the application of EFG mesh-free method for crack analysis of
FGMs. In addition, the sub-triangular technique near the crack
tip, appropriate support domain in the location of the crack and
crack tip, the proper nodal distribution for local crack region
and for the whole geometry, and the interaction integral method
with the incompatibility formulation are adopted to calculate
SIFs for cracked FGMs.

6.1. Edge cracked FGMplate under tension

In this problem, an edge crack parallel to the material gradation
in a rectangular FGM plate is considered. The plate is subjected
to a uniform tensile loading, as depicted in Figure 6.

The geometry of the cracked plate is described by: width b=
10 mm, length 2h = 30 mm, and crack length a = 0.4b. The
material gradation in the x1-direction parallel to the crack is
described by an exponential law:

E (x1) = Eoeαx1 , α = 1
b
ln
(
Ew

Eo

)
, (60)

where E0 = 10,000 MPa and Ew = 50,000 MPa are the Young’s
modulus at the left and right side of the plate, respectively. The
Poisson’s ratio is taken as ν = 0.25 and the plane strain condition
is assumed in the numerical calculations.

Also, a linear basis function pT (x) = [1 x y] and the cubic
spline weight function with circular support domain (r = 1.7)
are selected. Integration of each sub-triangle cell is performed
by 13 Gauss points near the crack tip.

Further, 376 nonuniformly distributed nodes are used to sim-
ulate the model. Numerical integration is performed on a back-
ground mesh of 682 cells with a 2 × 2 Gauss quadrature rule
in each cell. The background cells and nodal distribution are
depicted in Figure 7.

Gauss points distribution around the crack using the typical
and sub-triangles techniques are shown in Figure 8. The cell that
includes a crack tip is divided into six sub-triangles, whereas the
cell that cuts a crack edge is divided into four sub-triangles.
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MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 523

Figure . Background cells and nodal distribution used for modeling the FGM plate with a central crack (β = ).

Figure . Enrichment nodes around the crack tip.

Figure . Normalized mode I stress intensity factor for the inclined center crack.

Table 1 compares the results of the proposedmethodwith [9],
which used the boundary elementmethod based on a boundary-
domain integral formulation, consisting of 431 nodes for the half
model. Better results are obtained with rJ = 0.6( rJ is the radius
of the J integral).

It can be observed that the error of the normalized SIF of the
ordinary technique in comparison with the reference value for
the homogenous case is about 9.5% (at E1 = E2, rJ = 0.5). This
shows the inefficiency of the ordinary technique to capture the
correct SIF of the FGM plate with the same number of nodes as
used for the sub-triangle technique.

To further clarify the effect of nonuniform background cells
on the solution accuracy, four nonuniform background cells
have been selected, as shown in Figure 9. Figure 9 clearly shows
that when the number of cells is increased, better results are
obtained. The number of nodes with the enrichment functions
must be sufficient to obtain sufficiently accurate results espe-
cially for complicated problems, such as the edge crack plate
under shear loading.

Optimal backgroundmesh has to be selected to avoid unnec-
essary computational costs while providing the required accu-
racy. Figure 9 illustrates the result of a number of background
cells with and without the sub-triangular technique, in compar-
ison with the reference values.

Similar comparisons aremade for the finest background cells,
as shown in Figure 10. In any case (homogenous material or
FGM), the results of the proposedmethod remain accurate for a
wide range of rJ values, as clearly seen fromFigure 11. As a result,
the size of the J-integral domain (rJ) does not substantially affect
the values of SIFs. Also, Table 2 shows that by the increase of the

Figure . Normalized mode II stress intensity factor for the inclined center crack.
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524 H. KHAZAL ET AL.

Table . Normalized SIFs for dmax = .,  field nodes,  Gauss points for each sub-triangle.

(β = °) (β = °) (β = °) (β = °) (β = °)

rJ KI (.)
∗ KII (.)

∗ KI (.)
∗ KII (.)

∗ KI (.)
∗ KII (.)

∗ KI (.)
∗ KII (–.)

∗ KI (.)
∗ KII (–.)

∗

. . . . . . . . −. . −.
. . . . . . . . −. . −.
. . . . . . . . −. . −.
. . . . . . . . −. . −.
. . . . . . . . −. . −.

Note: ()∗ are the reference values.

number of Gauss points in each sub-triangle, the error of SIFs
decreases.

Despite exponential grading inmaterial property, as depicted
in Figure 12, very smooth stress contours are obtained without
any additional treatment, as it is necessary in conventional FEM
through the stress extrapolation or stress recovery techniques.

Figure 12d illustrates the inefficiency of conventional mesh-
less method without enrichment functions in capturing the
stress singularity at the crack tip, compared with the singular
stress contour previously depicted in Figure 12c. The normal-
ized SIF of un-enriched solution is 1.662, compared with the
reference value of 1.741 [9].

It is also clearly observed that the right edge bears higher σyy
stress, because of higher stiffness, when E2/E1 becomes more
than 25. In addition, by the proposed method, the ratio of the
elapsed time for solving the problem with appropriate support
domain to the typical support domain in the vicinity of the crack
is equal to 0.78 (2.91% error of mode I SIF) for αb = 0.339, and
13 Gauss points in each sub-triangle.

Finally, Table 3 illustrates the effect of size of support domain
on the accuracy of mode I SIF for different J-integral domains.
The best results are obtained for size of support domain dmax =
1.7 mm. The average value is computed from the average error
of all SIFs for different J-integral domains (but for a certain size
of the support domain, dmax). The maximum valve represents
the largest error of SIFs for different J-integral domains (for a
certain size of the support domain, dmax).

6.2. Edge crack FGMplate with shear loading

In order to demonstrate the capabilities of the proposed mesh-
less approach for a general case of mixed-mode fracture, an
edge-cracked plate subjected to a shear load is considered. The
problem geometry is shown in Figure 6 (2h = 16 mm, b = 7
mm, a = 3.5 mm), where the bottom edge is clamped and the
top edge is subjected to a shear load.

The Young’s modulus is taken to be variable with position, as
given by Eq. (60). A set of 2256 nonuniformly distribution nodes

Table . Normalized SIFs vs. dmax (β = °,  field nodes, and  gauss points
for each sub-triangle).

dmax = . dmax = . dmax = .

rJ KI KII KI KII KI KII

. . −. . −. . −.
. . −. . −. . −.
. . −. . −. . −.
. . −. . −. . −.
. . −. . −. . −.

and a 35 × 59 background mesh are used for simulation of the
problem, as depicted in Figure 13. The results of this section have
been obtained using a circular domain of influence and the size
of the support domain is considered as dmax = 2.3 mm. Thus,
12 nodes around the crack tip are selected for enrichment of the
solution, as shown in Figure 14.

Dolbow and Gosz [3] solved this problem by using the
extended finite element method on a uniform mesh of 48 × 96

Figure . Orthotropic FGM rectangular plate with an inclined crack.
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MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 525

Figure . Distribution of nodes and background cells.

quadrilateral elements to extract the final results. Table 4 illus-
trates that the results of the proposedmethodwith 35× 59 back-
ground cells are close to the results of [3], while using approx-
imately half number of nodes. Table 4 also demonstrates that
for the case of 31 × 33 background cells, a good convergence is
obtained for KI [3], but the results for KII [3] are relatively poor.
Therefore, optimum background cell numbers are required to
reduce the time cost while achieving the necessary accuracy for
this mixed mode problem.

As an additional check, a sensitivity analysis is performed
with respect to the size of the J-integral, as depicted in Figures 15
and 16.

The corresponding contours of stresses are depicted in
Figure 17. As in the previous two cases, the proposed method
with appropriate support domain in the vicinity of crack has
reduced the time cost, and the error. For example, the ratio of
the elapsed time for solving the problem with appropriate sup-
port domain to ordinary support domain near the crack is equal

Figure . Distribution of Gauss point and the background cells around the crack tip.
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Table . Stress intensity factors for mixedmode crack in a rectangular plate (rJ/a=
., dmax = .).

Material properties SIFs

α β γ KI KII Reference

   . . Present XEFGM
   . . Kim and Paulino (MCC) []
   . . Kim and Paulino (DCT) []
. . . . . Present XEFGM
. . . . . Kim and Paulino (MCC) []
. . . . . Kim and Paulino (DCT) []
. . . . . Bayesteh and Mohammadi []
. . . . . Present XEFGM
. . . . . Kim and Paulino (MCC) []
. . . . . Kim and Paulino (DCT) []
. . . . . Bayesteh and Mohammadi []

to 0.61 (6.94 and 7.95% are the errors of mode I and II SIFs,
respectively) for the input data of Table 4 at E2/E1 = 2 and 35 ×
59 background cells.

In addition, uniform background cells (schematically
depicted in Figure 13c for 75 × 99 cells) are used to study the
effect of the number of cells on the value of mode I SIF, as
demonstrated in Table 5 where 39 × 59, 49 × 69, and 75 × 99
background cells have been analyzed based on the sub-triangle
technique at E2 = 2.5, rJ = 0.6, dmax = 2.3, and 2256 field nodes.

6.3. FGMplate with inclined center crack

Consider a centrally located inclined crack of length 2a= 2 units
and an orientation β in a finite 2D square plate of size W × W
(W = 20 units), as shown in Figure 18. Plane stress conditions
are assumed with a constant Poisson’s ratio of ν = 0.3. The plate
is subjected to a uniform far-field state of stress σ yy. The elastic
modulus is assumed to be an exponential function, given by Eq.
(60).

Themeshless discretization involves a total of 1672 nodes and
39× 39 background cells. Integration of each sub-triangle cell is
performed by 13 Gauss points near the crack tip (rJ = 0.3) and
for other cells, a 2 × 2 Gauss quadrature rule is used.

The domain of influence is circular and the size of the support
domain is considered to be 1.7. Nine nodes (providing an extra
72 degrees of freedom) around each crack tip are selected for
enrichment, as typically shown in Figures 19 and 20. The results
for KI as a function of β are reported for α = 0.1 in Figure 21.
Also, analogous results for KII are shown in Figure 22. In both
plots, results are reported for the rightmost crack tip when β =
0. Consequently, Dolbow and Gosz [3] used XFEM with 60 ×
60 quadrilateral elements to solve the same problem.

As in previous cases, proper background cells must be
selected to capture the reference values and to save the time. In
this example, accurate SIFs are obtained when the range of rela-
tive rJ is bounded between 0.3 to 0.4 (see Table 6). Finally, Table 7

Table . The effect of the number of the nodes on SIFs, α = β = γ = . (rJ/a =
., dmax = .).

No. of nodes (nnx× nny) KI ([]= .) KII ([]= .)

 (×  bk cell) . .
 (×  bk cell) . .
 (×  bk cell) . .

Figure . Geometry and boundary conditions for an orthotropic diskwith inclined
central crack subjected to point loads.

presents the insensitivity of the results of SIFs of themixedmode
problem in comparison with the change in the values of rJ and
dmax.

6.4. Orthotropic FGM rectangular plate with an inclined
crack (nonproportional distribution)

An orthotropic FGM rectangular plate with an inclined crack is
considered, as depicted in Figure 23. This problem has already
been investigated by several researchers, such as in [38] for
homogeneous orthotropic case (no variation in material prop-
erties), and by [17] and [40] for various orthotropic FGM cases.
In [40] the finite elementmethod and themodified crack closure
approach were used, while XFEMwas used in [17]. Functions of
material properties distribution follow the exponential form:

E11 (x) = EO
11e

αx,E22 (x) = EO
22e

βx,G12 (x) = GO
12e

γ x, (61)

where α, β, andγ are the material nonhomogeneity parameters
for gradation of E11,E22, andG12, respectively.

Material and geometric properties are:

2a = 2
√
2,

L
w

= 2,

EO
11 = 3.5 × 106MPa,EO

22 = 12 × 106MPa,
GO
12 = 3 × 106MPa, υ12 = 0.204.

In this case, 2516 nodes and 40 × 56 background cells are
used to model the specimen, as shown in Figures 24 and 25,
whereas 3694 nodes were used in [40]. The EFG is adopted for
the first time for orthotropic FGMs, along with the enrichment
functions (54).

Almost identical results are obtained, as compared in Table 8
for different cases. It is observed from Table 8 that the results
of the present work are close to the results of [40] for all differ-
ent material properties. This demonstrates the efficiency of the
extended EFGM for fracture analysis of complicated problems.
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Figure . Distribution of nodes and background cells.

The effect of the number of nodes on SIF values at α = β =
γ = 0.2 is shown in Table 9. Clearly, when the number of the
nodes increases, the error of the solution decreases.

Table . SIFs for an inclined center crack in a circular disk considering radial gra-
dation βa= αa= γ a, dmax = ., rJ = ./a.

βa KI KII KI [] KII [] KI [] KII []

–. . . . . — —
−. . . . . — —
. . . . . . .
. . . . . — —
. . . . . — —

Table . SIFs for an inclined center crack in a circular disk considering radial grada-
tion, dmax = ., rJ = ./a.

Case
Non-homogeneity

parameters KI KII KI [] KII []

 αa= ., βa= .,
γ a= .

. . . .

 αa= ., βa= .,
γ a= .

. . . .

 αa= ., βa= .,
γ a= .

. . . .

Figure . SIFs vs. rJ/a.

6.5. Orthotropic FGMdisk with an inclined center crack

The problem, depicted in Figure 26, shows a circular disk with a
center crack inclined by θ = 30°. A point load is applied on the
top and bottom nodes, i.e., P= ±100. The displacement bound-
ary conditions are prescribed such that (u1, u2) = (0, 0) for the
node at (x1, x2) = (–10, 0) and u2 = 0 for the node at (x1, x2)
= (10, 0). Exponential material gradations with respect to the
radial (r) are considered as:

E11 (r) = EO
11e

αr,E22 (r) = EO
22e

βr,G12 (r) = GO
12e

γ r, (62)

r =
√
x21 + x22, (63)

and

EO
11 = 0.1,EO

22 = 1.0,GO
12 = 0.5, υ12 = 0.03.

The mesh discretization consists of 957 nodes, as depicted in
Figure 27.

Table 10 shows the results of SIFs for the isotropic and
orthotropic cases considering various material nonhomogene-
ity parameter βa. Table 11 compares similar results for differ-
ent nonhomogeneity variations. Variation of SIFs with respect
to values of rJ/a for the case number 3 from Table 11 is depicted
in Figure 28. Clearly, no sensitivity is observed.

7. Conclusion

Development of the XEFGM method for isotropic and
anisotropic FGMs crack analysis along with the use of the
sub-triangle technique for numerical integration, appropriate
support domain, and the enrichment functions in the crack
location has significantly increased the accuracy of the solution.
The triangulation technique substantially improves the accu-
racy of integration by increasing the order of Gauss quadrature,
and avoids numerical complications of singular fields at the
crack tip because none of the Gauss points are placed on the
position of the crack tip. The use of the incompatible interaction
integral method provides very accurate results for the values of
SIFs in mixed mode fracture analysis of FGMs.

Acknowledgment

The authors wish to acknowledge the technical support of the High Perfor-
mance Computing Lab, School of Civil Engineering, University of Tehran.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

eh
ra

n]
 a

t 0
1:

57
 1

9 
D

ec
em

be
r 

20
15

 



528 H. KHAZAL ET AL.

References

[1] I. Shiota and Y. Miyamoto, Functionally graded materials, Proceed-
ings of the 4th International Symposium on Functionally Graded
Materials, October 21–24, Tsukuba, Japan, 1996.

[2] F. Delale and F. Erdogan, The crack problem for a non-homogeneous
plate, J. Appl. Mech., vol. 50, no. 3, pp. 609–614, 1983.

[3] J.E. Dolbow andM. Gosz, On the computation of mixed-mode stress
intensity factors in functionally gradedmaterials, Int. J. Solids Struct.,
vol. 39, pp. 2557–2574, 2002.

[4] B.N. Rao and S. Rahman, Mesh-free analysis of cracks in isotropic
functionally graded materials, Eng. Fract. Mech., vol. 70, pp. 1–27,
2003.

[5] J.-H. Kim and G. H. Paulino, An accurate scheme for mixed-mode
fracture analysis of functionally graded materials using the interac-
tion integral and micromechanics models, Int. J. Numer. Methods
Eng., vol. 58, pp. 1457–1497, 2003.

[6] J.-H. Kim and G.H. Paulino, Consistent formulations of the interac-
tion integral method for fracture of functionally graded materials, J.
Appl. Mech., vol. 72, pp. 351–364, 2005.

[7] K.Y. Dai, G.R. Liu, K.M. Lim, X. Han, and S.Y. Du, A meshfree radial
point interpolation method for analysis of functionally graded mate-
rial (FGM) plates, Comput. Mech., vol. 34, pp. 213–223, 2004.

[8] J. Sladek, V. Sladek, and C. Zhang, A meshless local boundary inte-
gral equation method for dynamic anti-plane shear crack problem in
functionally graded materials, Eng. Anal. Bound. Elem., vol. 29, pp.
334–342, 2005.

[9] X.W. Gao, Ch. Zhang, J. Sladek, and V. Sladek, Fracture analysis of
functionally graded materials by a BEM, Compos. Sci. Technol., vol.
68, pp. 1209–1215, 2008.

[10] A. Asadpoure, S. Mohammadi, and A. Vafai, Modeling crack in
orthotropic media using a coupled finite element and partition of
unity methods, Finite Elem. Anal. Des., vol. 42, pp. 1165–1175, 2006.

[11] A. Asadpoure, S. Mohammadi, and A. Vafai, Crack analysis in
orthotropic media using the extended finite element method, Thin-
Walled Struct., vol. 44, pp. 1031–1038, 2006.

[12] D.Motamedi and S.Mohammadi, Dynamic analysis of fixed cracks in
composites by the extended finite elementmethod, Eng. Fract.Mech.,
vol. 77, pp. 3373–3393, 2010.

[13] D. Motamedi and S. Mohammadi, Dynamic crack propagation anal-
ysis of orthotropic media by the extended finite element method, Int.
J. Fract., vol. 161, pp. 21–39, 2010.

[14] D. Motamedi and S. Mohammadi, Fracture analysis of composites by
time independentmoving-crack orthotropic XFEM, Int. J.Mech. Sci.,
vol. 54, pp. 20–37, 2012.

[15] S. EsnaAshari and S.Mohammadi, Delamination analysis of compos-
ites by new orthotropic biomaterial extended finite element method,
Int. J. Numer. Methods Eng., vol. 86, no. 13, pp. 1507–1543, 2011.

[16] S.S. Ghorashi, N. Valizadeh, and S. Mohammadi, Extended isogeo-
metric analysis for simulation of stationary and propagating cracks,
Int. J. Numer. Methods Eng., vol. 89, no. 9, pp. 1069–1101, 2011.

[17] H. Bayesteh and S. Mohammadi, XFEM fracture analysis of
orthotropic functionally gradedmaterials, Composites Part B, vol. 44,
pp. 8–25, 2013.

[18] S.S. Hosseini, H. Bayesteh, and S. Mohammadi, Thermo-mechanical
XFEM crack propagation analysis of functionally graded materials,
Mater. Sci. Eng., vol. 561, pp. 285–302, 2013.

[19] E. Goli, H. Bayesteh, and S.Mohammadi,Mixedmode fracture analy-
sis of adiabatic cracks in homogeneous and non-homogeneous mate-
rials in the framework of partition of unity and the path-independent
interaction integral, Eng. Fract. Mech., vol. 131, pp. 100–127,
2014.

[20] T. Belytschko, Y.Y. Lu, and L. Gu, Element-free Galerkin methods,
Int. J. Numer. Methods Eng., vol. 37, pp. 229–256, 1994.

[21] T. Belytschko, Y.Y. Lu, L. Gu, and M. Tabbara, Element-free Galerkin
methods for static and dynamic fracture, Int. J. Solids Struct., vol. 32,
pp. 2547–2570, 1995.

[22] T. Belytschko, Y.Y. Lu, and L. Gu, Crack propagation by element-
free Galerkin methods, Eng. Fract. Mech., vol. 51, no. 2, pp. 295–315,
1995.

[23] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl,
Meshless methods: An overview and recent developments, Comput.
Methods Appl. Mech. Eng., vol. 139, pp. 3–47, 1996.

[24] P. Krysl and T. Belytschko, Element-free Galerkin method: Conver-
gence of the continuous and discontinuous shape functions, Comput.
Methods Appl. Mech. Eng., vol. 148, pp. 257–277, 1997.

[25] S.S. Ghorashi, S.Mohammadi, and S.R.S. Yazdi,Orthotropic enriched
element free Galerkin method for fracture analysis of composites,
Eng. Fract. Mech., vol. 78, no. 9, pp. 1906–1927, 2011.

[26] U. Häussler-Combe and C. Korn, An adaptive approach with the
element-free-Galerkin method, Comput. Methods Appl. Mech. Eng.,
vol. 162, pp. 203–222, 1998.

[27] V.P. Nguyen, T. Rabkzuk, S. Bordas, and M. Duflot, Meshless meth-
ods: A review and computer implementation aspects, Math. Comput.
Simul., vol. 79, no. 3, pp. 763–813, 2008.

[28] S.N. Atluri and T. Zhu, A new meshless local Petrov-Galerkin
(MLPG) approach in computational mechanics, Comput. Mech., vol.
22, pp. 117–127, 1998.

[29] S.N. Atluri, H.-G. Kim, and J.Y. Cho, A critical assessment of the truly
meshless local Petrov-Galerkin (MLPG), and local boundary integral
equation (LBIE)methods, Comput.Mech., vol. 24, pp. 348–372, 1999.

[30] S.N. Atluri and S. Shen, The meshless local Petrov-Galerkin (MLPG)
method: A simple and less-costly alternative to the finite element and
boundary element methods, Comput. Model. Eng. Sci., vol. 3, no. 1,
pp. 11–51, 2002.

[31] E. Viola, F. Tornabene, E. Ferretti, andN. Fantuzzi, GDQFEMnumer-
ical simulations of continuous media with cracks and discontinuities,
Comput. Model. Eng. Sci., vol. 94, no. 4, pp. 331–369, 2013.

[32] E. Viola, F. Tornabene, E. Ferretti, and N. Fantuzzi, On static analysis
of composite plane state structures via GDQFEM and cell method,
Comput. Model. Eng.Sci., vol. 94, no. 5, pp. 421–458, 2013.

[33] L. Sator, V. Sladek, and J. Sladek, Coupling effects in elastic analysis of
FGM composite plates by mesh-free methods, Compos. Struct., vol.
115, pp. 100–110, 2014.

[34] V. Sladek, J. Sladek, and L. Sator, Physical decomposition of thin plate
bending problems and their solution by mesh-free methods, Eng.
Anal. Bound. Elem., vol. 37, no. 2, pp. 348–365, 2013.

[35] Y. Chen, J.D. Lee, and A. Eskandarian, Meshless Methods in Solid
Mechanics, Springer-Verlag, New York, 2006.

[36] A. Asadpoure and S.Mohammadi, Developing new enrichment func-
tions for crack simulation in orthotropic media by the extended finite
elementmethod, Int. J. Numer.Methods Eng., vol. 69, pp. 2150–2172,
2007.

[37] S.G. Lekhnitskii, Theory of anAnisotropic Elastic Body,Holden-Day,
San Francisco, CA, 1963.

[38] G.C. Sih, P.C. Paris, and G.R. Irwin, On cracks in rectilinearly
anisotropic bodies, Int. J. Fract. Mech., vol. 1, pp. 189–203, 1965.

[39] L. Guo, F. Guo, H. Yu, and L. Zhang, An interaction energy integral
method for nonhomogeneous materials with interfaces under ther-
mal loading, Int. J. Solids Struct., vol. 49, pp. 355–365, 2012.

[40] J.-H. Kim and G.H. Paulino, Mixed-mode fracture of orthotropic
functionally graded materials using finite elements and the modified
crack closuremethod, Eng. Fract.Mech., vol. 69, no. 14–16, pp. 1557–
1586, 2002.

[41] P. Lancaster and K. Salkauskas, Surfaces generated by moving least
squares methods, Math. Comput., vol. 37, pp. 141–158, 1981.

[42] G.R. Liu, Meshfree Methods Moving beyond the Finite Element
Method, SecondEdition, Taylor andFrancisGroup, LLC, BocaRaton,
Florida, 2010.

[43] S. Mohammadi, Extended Finite Element Method for Fracture Anal-
ysis of Structures, First Edition, Blackwell Publishers, Oxford, UK,
2007.

[44] S. Mohammadi, XFEM Fracture Analysis of Composites, JohnWiley
& Sons, Ltd., Chichester, UK, 2012.

[45] J. Dolbow, An extended finite element method with discontinuous
enrichment for applied mechanics, Ph.D. Thesis, Northwestern Uni-
versity, Evanston, IL, 1999.

[46] J.-H. Kim and G.H. Paulino, The interaction integral for fracture of
orthotropic functionally graded materials: Evaluation of stress inten-
sity factors, Int. J. Solids Struct., vol. 40, pp. 3967–4001, 2003.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

eh
ra

n]
 a

t 0
1:

57
 1

9 
D

ec
em

be
r 

20
15

 


	Abstract
	1.EFG formulation
	1.1.Appropriate domain of influence
	1.2.Numerical integration by the sub-triangle technique

	2.Numerical case studies
	2.1.Edge cracked FGM plate under tension
	2.2.Edge crack FGM plate with shear loading
	2.3.FGM plate with inclined center crack
	2.4.Orthotropic FGM rectangular plate with an inclined crack (nonproportional distribution)
	2.5.Orthotropic FGM disk with an inclined center crack

	3.Conclusion
	Acknowledgment
	References



