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ABSTRACT Thermo-mechanical coupling in shape memory alloys is a very complicated phenomenon. The heat
generation/absorption during forward/reverse transformation can lead to temperature-dependent variation of its
mechanical behavior in the forms of superelasticity and shape memory effect. However, unlike the usual assumption, slow
loading rate cannot guarantee an isothermal process. A two-dimensional thermo-mechanically coupled algorithm is
proposed based on the original model of Lagoudas to efficiently model both superelasticity and shape memory effects and
the influence of various strain rates, aspect ratios and boundary conditions. To implement the coupled model into a finite
element code, a numerical staggered algorithm is employed. A number of simulations are performed to verify the
proposed approach with available experimental and numerical data and to assess its efficiency in solving complex SMA
problems.
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1 Introduction

Shape memory alloys are categorized among the smart
materials, which exhibit a direct interaction between
thermal and mechanical fields. Unique behaviors of
shape memory alloys (SMAs), including superelasticity
and shape memory effect (SME), have made them suitable
for various high-tech applications in different areas such as
biotechnology and aerospace industry. These behaviors are
based on the reversible phase transformation phenomenon
between the austenite (A) and martensite (M) phases;
associated with the high and low temperature phases,
respectively. The phase transformation of SMA is
accompanied with heat generation/absorption. As a result,
it is trivial that SMAs exhibit a temperature-sensitive
behavior; and therefore, the thermo-mechanical coupling
effects should be taken into account.
It is accepted that the forward phase transformation (A to

M) and the reverse transformation (M to A) in SMAs are

exothermic and endothermic processes, respectively [1]. In
other words, in the case of high loading rates, the material
does not have enough time to disperse the heat flow, and its
temperature will consequently increase/decrease during the
forward/reverse transformation. Therefore, the necessity of
considering thermo-mechanical coupling is evident. The
influence of high loading rates, particularly strain rates, on
thermo-mechanical coupling has been discussed in several
studies [1,2]. For instance, Morin and Moumni [3] studied
the isothermal superelastic behavior of SMAs and the
effect of loading rates using the Helmholtz-based ZM
constitutive model. However, recent experimental and
analytical studies showed that other parameters such as
boundary conditions and the size of the SMA device are
also important [4,5].
In this study, to capture both the shape memory effect

and the superelasticity behaviors and to study the effects of
various parameters, the original Lagoudas model [6] for
thermo-mechanically coupled behavior of SMAs is
extended and implemented in a staggered time-stepping
algorithm, which uncouples the original problem into twoArticle history: Received Jan 14, 2015; Accepted May 11, 2015
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smaller problems. In each iteration, after solving the
isothermal mechanical problem, the heat equation is solved
to determine the temperature variations due to phase
transformation. This process continues until the problem
convergences.
This paper consists of three main sections. First, a brief

theory of adopted constitutive model is presented. Then, an
implementation of the constitutive model in a time-
stepping staggered algorithm is presented within the finite
element framework. The last part is dedicated to simulation
and discussion of several numerical examples to assess the
performance of the developed methodology.

2 Constitutive model

First, a brief discussion of the constitutive model for SMAs
is presented. The explicit form of the Gibbs free energy is
given by [7]:

Gð�,T ,�,εtÞ ¼ –
1

2�
� : S : � –

1

�
� : ½aðT – T0Þ þ εt�

þ c ðT – T0Þ – T ln
T

T0

� �� �

– s0T þ u0 þ
1

�
f ð�Þ, (1)

where the state variables �, �, εt, T , T0 are the Cauchy
stress, the martensitic volume fraction, the transformation
strain, the temperature and the reference temperature,
respectively. The function f ð�Þ is a representative form for
the transformation hardening due to phase interaction. The
material parameters �, S, a, c, s0 and u0 are the density, the
fourth-order effective compliance tensor, the second-order
effective thermal expansion tensor, the effective specific
heat, the effective specific entropy at the reference state,
and the effective specific internal energy at the reference
state, respectively. Assuming isotropic and linear elastic
behavior for each phase, the rule of mixtures allows for
determining these material parameters,

Sð�Þ ¼ SA þ �ðSM – SAÞ ¼ SA þ �ΔS, (2)

að�Þ ¼ aA þ �ðaM – aAÞ ¼ aA þ �Δa, (3)

cð�Þ ¼ cA þ �ðcM – cAÞ ¼ cA þ �Δc, (4)

s0ð�Þ ¼ sA þ �ðsM – sAÞ ¼ sA þ �Δs0, (5)

u0ð�Þ ¼ uA þ �ðuM – uA
�
¼ uA þ �Δu0, (6)

where superscripts A and M indicate the austenitic and
martensitic phases, respectively and Δ represents the
difference of a particular parameter between the mentioned

phases. The constitutive relation for the total strain can be
derived from substituting Eq. (1) into the first and second
laws of thermodynamics:

ε ¼ – �
∂G
∂�

¼ S : �þ aðT – T0Þ þ εt: (7)

Equation (7) is not solely capable of fully describing the
material behavior so the necessity of describing a phase
transformation rule is evident. The transformation rule is
defined as the relation between the evolution of transfor-
mation strain tensor and the evolution of martensitic
volume fraction:

_εt ¼ Λ _�, (8)

where Λ is the transformation tensor:
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(9)

where the material parameter H is associated with the
maximum uniaxial transformation strain, �# is the
deviatoric stress tensor, and εtr –R is the transformation
strain at the reversal point. To solve the constitutive
relation numerically, an implicit scheme based on the
return mapping and the Newton-Raphson method is
exploited. For further information, refer to [7,8].
To discuss the discrete form of the heat equation, first the

fully coupled form of the heat equation of SMAs is
presented [9]:

Ta : _�þ�c _Tþ – πþΤΔα : � – �Δcln
T

T0

� �
þ �Δs0T

� �
_�

¼ –r:q, (10)

where π is the thermodynamic force

π ¼ � : Λ – �
∂G
∂�

: (11)

The first and third terms of the left-hand side of Eq. (10)
express how the temperature varies due to stress variations,
and due to a change in martensitic volume fraction,
respectively. The second term of the left-hand side of Eq.
(10) represents the heat capacity. The first and second
terms on the right-hand side of Eq. (10) are related to the
heat transfer process by the heat flux q.
The thermal conductivity, the effective specific heat, and

the thermal expansion coefficient of the two phases are
identical for most SMAs [8]. By this assumption and using
the Fourier’s law of heat conduction q ¼ – krT , Eq. (10)
yield to:
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Ta : _�þ �c _T þ – πþ �Δs0Tð Þ _� ¼ r: krTð Þ: (12)

Now, the general type of convection boundary condition
is imposed:

q:n ¼ – ðkrTÞ:n ¼ hðT – TextÞ, (13)

where n is the outward normal vector, h is the convection
coefficient and Text is the external temperature. Tempera-
ture distribution at t = 0 is given as the initial condition T =
Text.
By considering the Dirichlet and Neumann temperature

boundary conditions and applying Stokes’ theorem along
with the conventional finite element discretization,
Eq. (12) yields to

ðK þ Kh þ K� þ K�Þ:TþM : _T ¼F, (14)

or in an incremental form:

ðK þ Kh þ Knþ1
� þ Knþ1

� Þ:Tnþ1þM :
Tnþ1 – Tn

Δt
¼Fnþ1, (15)

where the superscript n represents the increment, Δt is the
time of each increment, K is the heat conduction matrix, Kh
is the heat convection matrix, K� is the matrix of latent heat
due to stress changes, K� is the matrix of latent heat due to
martensite volume fraction changes,M is the heat capacity
matrix and F is a load vector:

ðKÞij ¼!
Ω

krNirNjdΩ, (16)

ðKhÞij ¼!
S

hNiNjdS, (17)

ðK�Þij ¼!
Ω

a : _�NiNjdΩ, (18)

ðK�Þij ¼!
Ω

�Δs0 _�NiNjdΩ, (19)

ðMÞij ¼!
Ω

�cNiNjdΩ, (20)

Fð Þi ¼!
S

hTextNidS þ!
Ω

π _�NidΩ, (21)

where Ni and Nj are the finite element shape functions.
Ultimately, the temperature at the increment n + 1 is
obtained from:

Tnþ1 ¼ ðKnþ1
im Þ – 1ðFnþ1

im Þ, (22)

where Knþ1
im and Fnþ1

im are:

Knþ1
im ¼ K þ Kh þ Knþ1

� þ Knþ1
� þ M

Δt

� �
, (23)

Fnþ1
im ¼ Fnþ1 þ M

Δt
Tn

� �
: (24)

3 Numerical algorithm

To implement the thermo-mechanical coupled model into a
finite element code, a staggered time-step numerical
algorithm is employed. According to this algorithm, in
each iteration, first the isothermal mechanical problem is
solved. To numerically solve the constitutive equation, the
return mapping algorithm based on an elastic prediction
and phase transformation corrector is employed. In the
elastic prediction part, the phase transformation strain is
assumed constant, and other variables are calculated. Then,
in the phase transformation step, the strain and other
variables are corrected. After solving the mechanical part,
the thermal effects are calculated and considered for the
next mechanical step. This step-by-step algorithm is given
bellow. Note that in this algorithm n is the step number and
k represents the iteration number in each step.
1) Solve the balance equation and calculate the

displacement vector
2) Calculate the strain tensor from the consistency

equation
3) Return mapping algorithm
(a) Set initial values

k¼0, �ð0Þnþ1¼�n, ε
trð0Þ
nþ1 ¼εtrn , Sð0Þnþ1¼Sn, a

ð0Þ
nþ1¼an: (25)

(b) Elastic prediction and checking the phase transfor-
mation condition

�
ðkÞ
nþ1 ¼ CðkÞ

nþ1 :
�
εnþ1 – a

ðkÞ
nþ1ðTnþ1 – T0Þ – εtrðkÞnþ1

�
, (26)

f
ðkÞ
nþ1 ¼ f

�
�
ðkÞ
nþ1,Tnþ1,�

ðkÞ
nþ1

�
: (27)

(c) If f
ðkÞ
nþ1

			 			£tol1, return to step 4

(d) Calculate variations of martensitic volume fraction �
and phase transformation strain εtr

Δ�ðkÞnþ1 ¼
ΦðkÞ

nþ1

�∂�Φ
ðkÞ
nþ1 : C

ðkÞ
nþ1 : ∂�Φ

ðkÞ
nþ1 – ∂εΦ

ðkÞ
nþ1

, (28)

ΔεtrðkÞnþ1 ¼ Δ�ðkÞnþ1Λ
ðkÞ
nþ1, (29)

where+ and – are for the forward and reverse
transformations, respectively.
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(e) Updating state variables; phase transformation strain
and martensitic volume fraction

�
ðkþ1Þ
nþ1 ¼ �

ðkÞ
nþ1 þ Δ�ðkÞnþ1, (30)

εtr kþ1ð Þ
nþ1 ¼ εtr kð Þ

nþ1 þ Δεtr kð Þ
nþ1 : (31)

(f) Updating material parameters; elastic and thermal
moduli

Cð�Þ ¼ CA þ �ðCM –CAÞ ¼ CA þ �ΔC, (32)

að�Þ ¼ aA þ �ðaM – aAÞ ¼ aA þ �Δa, (33)

where CA and CM are the stress influence coefficients
of austenite and martensite phases, respectively (see
Eq. (36)–(39)).
(g) Set k = k + 1 and return to (a).
4) Calculate the temperature Tkþ1

nþ1
5) Calculate the residual internal force (R)

R ¼ fext – fint , (34)

where fext is the equivalent applied load and fint is

fint ¼ !
Ω

BT�dΩ, (35)

where B is the matrix of shape function derivatives.
6) If Rj j£tol2 or Tkþ1

nþ1 – T
k
nþ1

		 		£tol3, return to step 1

4 Numerical simulations

4.1 Tensile test

The first simulation is performed to assess the accuracy of
the proposed model in three different loading rates in
comparison with the loading-unloading in a pseudo-
elasticity experimental problem, previously reported by
[10]. The simulations are carried out on a mesh of 450-
quadrilateral elements to model a thin strip subjected to
the displacement control condition, as depicted in Fig. 1.
For this simulation L, w, and t, are chosen 30, 2.6, and

0.5 mm, respectively. The applied displacement is set to u
= 2.4 mm. The specimens are fixed at both ends and are
elongated up to the strain of 0.08. The original tests were
conducted in the air, where the ambient and initial
temperatures were equal to 23°C. Due to the fact that
some of the parameters of the model were not reported in
[10], a model calibration is required. The transformation
surfaces can be defined as [9]:

�Ms ¼ CM ðT – TMsÞ, (36)

�Mf ¼ CM ðT – TMf Þ, (37)

�As ¼ CAðT – TAsÞ, (38)

�Af ¼ CAðT – TAf Þ, (39)

where T is the material temperature. �Ms, �Mf , �As and �Af
are the start and finish stresses of forward and reverse
transformations, respectively, which are captured from the
stress versus strain diagram provided in [10]. Conse-
quently, the unknown material parameters TMs, TMf , TAs,
TAf can be calculated from Eqs. (36) – (39). Table 1 lists the
adopted material properties. The average convection
coefficient in air is taken from Ref. [11] and the conduction
coefficient is adopted for a typical Ni Ti [8]. The
convection coefficient in water is assumed 300W/(m2K),
which is required to study the effects of convection
boundary conditions.
The stress-strain curves at different strain rates of 1.1 �

10–1, 1.1 � 10–2 and 1.1 � 10–4 are presented in Fig. 2 and

Table 1 SMA material properties

material parameters value material parameters value

EA 16.5 � 109 Pa aA ¼ aM 22� 10 – 6   1=K

EM 16.5 � 109 Pa �CA ¼ �CM 3:2� 105   J=ðm3KÞ
vA ¼ vM 0.3 �_Δs0 – 0:375� 106   J=ðm3KÞ

TMs – 30°C Hmax 0.3

TMf – 31°C k 18 W=ðmKÞ
TAs 4°C hair 50 W=ðmKÞ
TAf 5°C hwater 300 W=ðmKÞ

Fig. 1 (a) Geometry and boundary conditions; (b) finite element mesh
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are in good agreement with the experimental data. The
slight difference at the onset of forward transformation is
due to nucleation phenomenon which is a consequence of
unstable phase transformation. According to the fact that in
practice, SMAs are often trained to shake out this slight
instability, particularly for engineering purposes, it is
neglected in this study.
Note that there is a high heat exchange between the

specimen and the grips which can lead to faster decrease in
the temperature of the material during the unloading,
causing higher slopes of the reverse phase transformation
plateau. Hence, by increasing the strain rate, the numerical
and experimental curves tend to deviate from each other
during the reverse transformation. However, at slow strain
rates (Fig. 2(c)), which is near the adiabatic condition, the
specimen would not have enough time to dissipate the
latent heat to the environment; consequently, slopes of the

reverse transformation plateau in the experiment and
numerical simulation become nearly identical.

4.1.1 Convective boundary condition

To study the effect of convective boundary condition,
simulations are now performed in different environments;
air and water. The results are demonstrated in Fig. 3.
Comparing the stress versus strain diagrams of air and
water in different strain rates, shows that the water
boundary generates much less variations than the air.
Due to the higher value of convection coefficient of water,
heat exchange with the environment is higher. The increase
in the convection coefficient leads to a decrease in the
slope of the stress-strain curve. Thereby, a near-isothermal
material response of SMAs in highly convective environ-
ments such as water is trivially expected (Fig. 3(e)).

Fig. 2 Comparison of the experimental and numerical simulation for the strain rate of (a) 1.1 � 10–4 s–1, (b) 1.1 � 10–2 s–1; (c) 1.1 � 10–1 s–1
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4.1.2 Effect of the strain rate

Now all the simulations are performed in air. As shown in
Fig. 4, the increase in strain rate will result in higher stress
levels during the forward transformation. The reason can
be attributed to the fact that during the forward
transformation, the temperature of material increases
monotonically with the increase of the strain rate, resulting
in higher stress levels. However, the increase in strain rate
does not necessarily result in lower stress levels during the

reverse transformation.
According to Fig. 5, with the increase of the strain rate,

the stress level of reverse transformation is decreased.
However, further increase in the strain rate results
adversely. The reason is that at these strain rates, there is
not enough time for the released latent heat to completely
transfer to the environment. Hence, the temperature of the
material becomes much higher than the ambient tempera-
ture at the start of the reverse transformation, which leads
to higher stress levels. Consequently, depending on the

Fig. 3 Numerical stress-strain curves in air and water for different strain rates of (a) 1.1 � 10–1 s–1, (b) 3.3 � 10–2 s–1, (c) 2 � 10–2 s–1,
(d) 1.1 � 10–2 s–1, (e) 1.1 � 10–4 s–1
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value of strain rate, the temperature of the material may
become higher or lower than or even equal to the ambient
temperature after the unloading.

Note that the behavior of SMAs at different strain rates
can be explained by a comparison between the dominance
of heat exchange or internal heat generation/absorption
during the forward/reverse phase change [9]. At inter-
mediate strain rates, the amount of latent heat generation/
absorption due to the forward/reverse transformation is
comparable to the amount of heat exchange with the
environment due to convection. Hence, as it can be seen in
Fig. 2, a slightly nonlinear behavior is observed in the
transformation region of stress-strain curves. However, the
increase/decrease in the temperature will make the heat
exchange or heat generation/absorption dominant, and the
transformation region of the stress-strain would conse-
quently become nearly linear.

4.1.3 SME versus superelasticity for a tensile SMA

The same specimen with dimensions of 18 mm�
10 mm�1 mm is now simulated at two temperatures of
– 76ºC and – 10ºC, and is subjected to an elongation
equivalent to 9.5% strain. The material properties are
changed to Table 2 [8] to allow for better capturing the
differences between the shape memory effect (SME) and
superelasticity.
According to the results of Fig. 6, the loading paths in

superelasticity and SME are respectively shown with A-B-
C-D and A-F-H-D, while the unloading paths follow D-E-
G-A and D-E-I, respectively. In superelasticity, as
expected, the generated strain during the loading is fully
recovered upon the unloading. In SME, the unloading
process cannot recover the entire strain and a strain equal to
6.7% is remained. Further heating can initiate the reverse
transformation and the strain will become fully recovered
under zero stress condition (I-A).

4.1.4 The effect of aspect ratio

To study the effect of aspect ratio, three thin strips with
different length/width ratios of 5, 15, and 100 are simulated
with 248- regular quadrilateral element specimens under
the pure tension condition. The material properties are
chosen as Table 2. The specimens are elongated up to a
given strain of 0.085 at the constant strain rate of 1.1 �
10–2 under the displacement control condition. Note that

Fig. 4 Stress-strain curves for different strain rates

Fig. 5 Temperature variations vs. time steps for different strain
rates

Table 2 SMA material properties [8]

material parameters value material parameters value

EA 55 � 109 Pa vA ¼ vM 0.33

EM 46 � 109 Pa aA ¼ aM 22� 10 – 6   1=K

TMs – 28°C �CA ¼ �CM 4:81� 105   J=ðm3KÞ
TMf – 43°C Δs0 0  J=ðm3KÞ
TAs – 3°C Hmax 0.056

TAf 7°C k 18 W=ðmKÞ
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the temperature is fixed at the right and left sides of the
strips and is equal to 55°C.
The stress-strain responses for different aspect ratios of

5, 15, and 100 are presented in Fig. 7. During the forward
transformation, the material response changes from nearly
isothermal to nearly adiabatic condition by the change of
length/width ratio. To explain this phenomenon, one
should note that different heat transfers in various regions
can cause a non-uniform distribution of temperature
(higher temperature at inner regions), which due to
thermo-mechanical coupling results in non-uniform dis-
tribution of stress (higher stress at inner regions). However,
the lower stress plateau in Fig. 7 indicates that the non-
monotonic stress level changes during the reverse
transformation do not necessarily lead to lower stress
levels.

4.2 Bending test

The second simulation is a three point bending test to
assess the necessity of considering thermo-mechanical
coupling. The geometry, loading, and boundary conditions
are adopted from [12] and are shown in Fig. 8. The original
test was conducted in the air and on a wire with the length
and diameter of 20 and 1.49 mm, respectively. The
constant thickness of finite element of the present

simulation is chosen in such a way that the same moment
of inertia is achieved. Material parameters are adopted
from [8] and are given in Table 3. The plane-stress element
is elongated up to 5.2 mm with a constant strain rate of 1.1
� 10–1 under the displacement control condition.

Variations of the force versus displacement of midpoint
of the specimen in comparison with numerical and
experimental results of reference [12] are shown in
Fig. 9. Auricchio et al. [12] used an uncoupled scheme
to solve the 322-element model with the exponential
hardening function; while neglecting the existing strong
thermo-mechanical coupling may lead to inaccuracy. Here,
the simulation is performed on a model of 915 quadrilateral
elements and the thermo-mechanical coupling is taken into
account. As expected, the results of this study shows better
agreement with the experimental data.

Table 3 SMA material properties

material parameters value material parameters value

EA 47 � 109 Pa vA ¼ vM 0.3

EM 33 � 109 Pa aA ¼ aM 22� 10 – 6   1=K

TMs – 52°C �CA ¼ �CM 6:5� 105   J=ðm3KÞ
TMf – 60°C s0 0  J=ðm3KÞ
TAs – 30°C Hmax 0.075

TAf – 20°C k 18 W=ðmKÞ

Fig. 6 SME and superelasticity paths

Fig. 7 Global stress-strain responses of three SMA devices

Fig. 8 Geometry and boundary conditions
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To demonstrate the change of phase transformation
patterns during the uniform 40-step increasing bending
loading, the phase transformation profiles at 8-step
intervals are shown in Fig. 10. At first, the material is
fully austenite, and the martensitic volume fraction is zero.
By increasing the load, the material starts to behave
elastically. Further increase in loading initiates the phase
transformation and consequently the martensitic volume
fraction begins to increase. The temperature boundary
condition is assumed fixed at the right and left sides of the
structure which causes lower temperature for points closer
to these sides compared with the inner regions. Consider-
ing this fact and occurrence of stress localization under the
point load, it can be concluded that the phase transforma-
tion should start in the middle of the beam, right under the
point load. Eventually, the value of the martensitic volume
fraction reaches 1 and the phase transformation completes.

Fig. 9 Force versus displacement of midpoint of the beam in
comparison with the experimental and numerical data [12]

Fig. 10 Phase transformation (martensite volume fraction distribution) during the forward transformation (The lateral deformation is
exaggerated by 100%)
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4.3 Strip with hole

The third simulation is performed on a thin strip with a
central circular hole. The geometry, loading, and boundary

condition are shown in Fig. 11(a). Material parameters are
adopted from [8] and are given in Table 2. The strip is
elongated up to 5% strain under the displacement control
condition. Due to the symmetry, only a quarter of specimen
is simulated, as depicted in Fig. 11(b).
The change of temperature and stress contours are

demonstrated in Figs. 12 and 13, respectively. The
contours are at five equal loading steps; in other words,
each contour represents a 20% progression in the forward
phase transformation. Clearly, the temperature evolution
and the stress generation are similar. They initiate from the
point A on the edge of the circular hole, where the stress
concentration is maximum. By increasing the load, the
phase transformation propagates diagonally through the
specimen. This phenomenon is accompanied with a rise in
temperature in the transformed region, also associated with
the stress increase. As expected, the temperature and stress
variation are minimum at the point B on the edge of the
circular hole due to the minimum stress concentration in
that part of the specimen.

5 Conclusion

In this contribution, a staggered algorithm for solving
thermo-mechanical coupling in SMAs is presented. The
presented framework is capable of simulating the thermo-

Fig. 11 (a) Geometry and boundary; (b) finite element mesh for a
quarter of strip
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Fig. 12 Temperature contours during forward transformation based on k

Fig. 13 Stress (σyy) contours during forward transformation based on MPa
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mechanical coupling for both superelasticity and SME
phenomena. Several numerical simulations are performed
to investigate the sensitivity of effective parameters and to
examine accuracy and efficiency of the model. It is
demonstrated that an isothermal process cannot be
guaranteed with the slow strain rate. To analyze the
sensitivity of material response, other variables such as the
convective boundary conditions should accurately be taken
into consideration.

Acknowledgements The authors would like to acknowledge the technical
support of High Performance Computing Laboratory (HPC Laboratory),
University of Tehran. The financial Support of Iran National Science
Foundation (INSF) is greatfully acknowledged.

References

1. Shaw J, Kyriakides S. Thermomechanical aspects of NiTi. Journal

of the Mechanics and Physics of Solids, 1995, 43(8): 1243–1281

2. Chang B. Shaw, Iadicola M. Thermodynamics of shape memory

alloy wire: Modeling, experiments, and application. Continuum

Mechanics and Thermodynamics, 2006, 18(1–2): 83–118

3. Morin C, Moumni Z. Thermomechanical coupling in shape memory

alloys under cyclic loadings: Experimental analysis and constitutive

modeling. International Journal of Plasticity, 2011, 27: 1959–1980

4. Desroches R, McCormick J, Delemont M. Cyclic properties of

superelastic shape memory alloy wires and bars. Journal of

Structural Engineering, 2004, 130(1): 38–46

5. Mirzaeifar R, Desroches R, Yavari A. Analysis of the rate-dependent

coupled thermo-mechanical response of shape memory alloy bars

and wires in tension. Continuum Mechanics and Thermodynamics,

2011, 23: 363–385

6. Lagoudas D C, Bo Z, Qidwai M A. A unified thermodynamic

constitutive model for SMA and finite element analysis of active

metal matrix composites. Mechanics of Composite Materials and

Structures, 1996, 3: 153–179

7. Qidwai M A, Lagoudas D C. Numerical implementation of shape

memory alloy thermomechanical constitutive model using return

mapping algorithm. International Journal for Numerical Methods in

Engineering, 2000, 47: 1123–1168

8. Lagoudas D C. Shape Memory Alloys, Modeling and Engineering

Applications. Springer, 2008

9. He Y J, Sun Q P. On non-monotonic rate dependence of stress

hysteresis of superelastic shape memory alloy bars. International

Journal of Solids and Structures, 2011, 48: 1688–1695

10. Zhange X H, Feng P, He Y J, Yu T X, Sun Q P. Experimental study

on rate dependence of macroscopic domain and stress hysteresis in

NiTi shape memory alloy strips. International Journal of Mechanical

Sciences, 2010, 52: 1660–1670

11. Morin C, Moumni Z, Zaki W. A constitutive model for shape

memory alloys accounting for thermomechanical coupling. Inter-

national Journal of Plasticity, 2011, 27: 748–767

12. Auricchio F, Taylor R L, Lubliner J. Shape-memory alloys:

Macromodelling and numerical simulations of the superelastic

behavior. Computer Methods in Applied Mechanics and Engineer-

ing, 1997, 146(3–4): 281–312

S. HASHEMI et al. An extended thermo-mechanically coupled algorithm for simulation 477


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12




