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The subject of this study is to investigate propagation of cohesive cracks under various mixed mode con-
ditions in saturated porous media. The mesh-free EFG algorithm, which uses the MLS shape functions for
approximating both displacement and pressure fields, is used. An enrichment approach similar to XFEM,
which exploits the Heaviside step function as the enrichment function for representing the crack surfaces
is adopted. Basic formulations are developed for saturated fully coupled porous media, and a series of
benchmark problems are assessed through the enriched EFG formulations. Both cases of uncoupled
and fully coupled formulations for the solid displacements and the water pressure are presented. For
the fully coupled case, the effect of mass exchange through the fracture and the surrounding undamaged
media is examined. The results predicted by the present numerical framework are in good agreement
with existing solutions in the literature.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Cohesive crack analysis has been the subject of extensive
research topics in the past few years. It is well known that in
quasi-brittle materials such as concrete and soil, instead of a highly
singular stress field at the tip of fracture, the stress state can be
better represented by a redistributed field in a finite region, known
as the cohesive zone. Basic cohesive zone models have been intro-
duced by Dugdale [1], Barenblatt [2] and Hillerborg et al. [3], in
which a traction-separation law governs the mechanical load
exchanging across the crack faces and the cohesive zone is lumped
into a zero-thickness surface [4] or sometimes a finite width band
[5]. These models have been extensively applied in the context of
standard finite element solutions, where a conforming and highly
refined mesh along the discontinuity lines is usually needed and
re-meshing processes are inevitable [6].

Introduction of the extended finite element method by Bely-
tschko and Black [7] and Moes et al. [8], based on the early contri-
butions on the generalized finite element method [9,10] eased the
re-meshing burden of the standard finite element solutions and
proved to be a reliable method for modeling discrete fractures
[11–18] and weak discontinuities [19–21].

Mechanics of porous-like materials were originated from the
fundamental contributions by Terzaghi [22] and Biot [23], and
has been the subject of vast number of studies which have resulted
in the current generalized form of the governing equations based
on different inherent properties of multi-phase porous systems
[24–29]. Nevertheless, introduction of discontinuities in porous
materials seems to be of great importance and complexity, as in
different engineering applications, porous-like materials such as
soil, concrete and rock are widely encountered to severe external
loadings that may result in various forms of cracking and failure.
Both singular and cohesive zone models have been adopted in
the literature to govern the mechanical behavior of the defects in
porous media. Boone and Ingraffea [30] analyzed the hydraulic
fracture phenomena in fully saturated media by adopting a finite
difference strategy for the water flow inside the fracture. An adap-
tive refinement technique for porous materials with cohesive
cracks was introduced by Schrefler et al. [31] and a mathematical
model for introducing cohesive fractures in porous materials was
proposed in [32] using the finite element method with continuous
re-meshing strategies along with the propagating fractures. Zero-
thickness cohesive interface elements in the framework of the
finite element method were applied to saturated porous material
in Segura and Carol [33] and Lobao et al. [34]. An extension of
cohesive fracture phenomena to dynamic situations was recently
developed by Khoei et al. [35].

Based on the PU enrichment strategies of the basic finite ele-
ment solution, Rethore et al. developed a two-scale algorithm
applied to singular [36] and cohesive cracks [37]. In their works,
water pressure was assumed continuous across the fracture width,
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while due to the effect of fluid exchange between the fracture and
surrounding porous media, normal gradients of water pressure
were modeled as discontinuous fields with the help of distance
enrichment functions. Extension of the same idea to three-phase
and large deformation analysis were performed in [38,39],
respectively.

Alternatively, mesh-free methods are powerful numerical tools
that have been exploited widely along with the finite element
method for solving general partial differential equations [40–46].
It is believed that the mesh-free methods can be superior to the
finite element method in dealing with distorted meshes and gen-
eral propagation problems [47,48]. Moreover, due to higher order
of continuity of unknown variables, more precise and smooth
stress fields are attainable [49].

Similarly, within the context of the isogeometric analysis (IGA)
of poroelasticity problems, reference [50] illustrated that the
higher order of continuity could validate the local mass balance
unlike the usual FEM. As a result, it led to low oscillated results
with even smaller time steps than the critical time step. This prop-
erty eliminated the implementation of additional tip elements for
cohesive fractures, where the state of crack propagation could
mainly be defined by the values of stresses at the tip of fracture.

In this paper, the well-known element-free Galerkin (EFG)
approach [51,52] is adopted for arbitrary modeling of cohesive
crack propagation based on the extrinsic enrichment of the basic
EFG solution [49,53–60]. Fully saturated porous media under
external mechanical loadings within the small deformation regime
are considered. Fractures are assumed to act as cohesive cracks
with considerable permeabilities which allow for the water phase
to flow inside. Basic governing equations are discretized for a fully
coupled saturated state using the enriched MLS shape functions
and different coupled/uncoupled fracturing problems of mode I
and mixed mode porous materials are addressed. In the case of
permeable defect, the exchange of fluid flow across the crack width
is considered based on the two-scale algorithm proposed in [37].
Through the various numerical tests on dry and saturated porous
materials, it is shown that the results of the present extended ele-
ment-free Galerkin (XEFG) approach are in good agreement with
the existing reference solutions.
2. Governing equations for fully coupled saturated porous
media

In this section, the governing equations for a saturated porous
medium, typically shown in Fig. 1, under the assumption of small
deformation regime are presented. Convective terms are dropped
Fig. 1. An arbitrary saturated cracked domain.
out from the equilibrium equations and the formulations are
developed for quasi-static situations with no inertia terms
involved. Saturated porous media under the isothermal condition
are assumed.

The momentum balance equation for a porous medium can be
written as:

r � rþ qb ¼ 0 ð1Þ

where b is the body force and q is the density of the system defined
as,

q ¼ ð1� nÞqs þ nqw ð2Þ

qs and qw are the density of solid and water phases and n denotes
the porosity. The total stress vector r can be written in terms of
the effective stress vector r00,

r ¼ r00 � amðpwÞ ð3Þ

and the constitutive relation is defined in terms of the effective
stress and strain increments,

dr00 ¼ Dðd�Þ: ð4Þ

where D is the elastic stiffness tensor and a is the Biot’s constant,

a ¼ 1� KT

Ks
ð5Þ

with KT and Ks defined as the bulk modulus of porous skeleton and
solid grains, respectively. The momentum balance equation for the
water phase leads to the generalized form of the Darcy equation
[26]:

vws ¼ k
lw
½�rpw þ qwb� ð6Þ

and the final form of the continuity equation for the water phase
can be expressed as [26],

ða� nÞ
Ks

þ n
Kw

� �
@pw

@t
þ ar � vs þr � ½kð�rpw þ qwðbÞÞ� ¼ 0 ð7Þ

where k is the permeability tensor and lw is the value of water vis-
cosity. Kw and vs are defined as the bulk modulus and the Darcy
velocity for the water phase, respectively.

The boundary conditions include the imposed tractions and
water fluxes on the outward boundaries and the relevant pre-
scribed essential boundary conditions for solid displacements
and water pressures,

u ¼ �u on Cu

pw ¼ �pw on Cpw

ð8Þ

r � nCc ¼ �t on Ct

vw � nCc ¼ qw on Cqw

ð9Þ

Along with the external boundaries, extra conditions are satisfied at
fracture surfaces to account for compatibility of transformed cohe-
sive tractions with the cohesive zone model adopted for the govern-
ing mechanical behavior of the fracture and the role of fluid
exchange through the crack faces. Assumption of a cohesive zone
model leads to elimination of infinite stresses at the crack tips,
which is more realistic for porous-like materials. In this model,
the crack is assumed to be fully opened when the values of openings
exceed the critical openings inferred from the governing interface
law. The imposition of exchanging cohesive forces along the frac-
ture surfaces is performed as an internal boundary condition. The
cohesive zones are assumed to have a zero thickness across the
crack face and the stresses are computed based on the traction-sep-
aration cohesive law. Water may flow freely through the fractured
zone and the fracture walls act as permeable defects, which lead
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to changes in the hydro-mechanical behavior of the defected zones.
Flow of water through the fracture faces leads to discontinuous
water pressure gradients (discontinuous water flows), whereas
the water pressure is assumed to be constant and uniform across
the crack width. For the mass transfer along the fracture, the conti-
nuity equation of the whole medium is linked with the balance of
mass equation derived for a control volume of the fracture line
[37]. In order to model the hydro-mechanical behavior of the frac-
ture, the following additional internal boundary conditions are
satisfied,

r � nCc ¼ �tc ¼ �td � apwnCc on Cc

svwt � nCc ¼ �qwd on Cc
ð10Þ

where nCc is the unit normal vector to the crack surface, td is the
cohesive traction resulted from the cohesive law and pw is the value
of water pressure imposed on the crack surface.

Different rules for the governing mechanical behavior of the
cohesive crack are used in this paper. The linear, bi-linear and
exponential non-linear traction-separation laws are depicted in
Fig. 2. It is noted that without the loss of generality, only the effect
of normal tractions is considered and exceeding the normal stress
at the nearest point to the fracture tip from the tensile threshold of
the material is used as the criterion for crack propagation. When a
crack is perceived to be propagated, a predefined small crack
length increment along the normal to the maximum hoop stress
direction is added to the current crack configuration. Eq. (11)
defines the angle of crack growth direction in terms of the stress
intensity factors at a crack tip [61],

h ¼ 2 arctan
1
4

KI

KII
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI

KII

� �2

þ 8

s0
@

1
A ð11Þ

where the stress intensity factors KI and KII are computed based on
the domain form of the interaction integral [11].

Next, the water flux exchange terms (10), introduced to the
total continuity equation of water (7) to account for transmit of
water through the fracture walls, are elaborated. Considering an
arbitrary volume of the fractured zone in a local coordinate system
x0—y0, in which the horizontal axis is placed along the fracture line,
one can write the continuity equation for the water flow in an
average sense:Z h

�h

1
Q wd

_pw þ ar � _uþr � vws

� �
dy ¼ 0 ð12Þ
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Fig. 2. Linear, bilinear and ex
where 2h represents the value of crack opening. The water pressure
is assumed to be constant across the fracture width, and linear vari-
ations for horizontal solid phase velocities are considered. Simplify-
ing the gradients of water pressure and solid displacement time
derivatives and inserting the Darcy Eq. (6) for water phase veloci-
ties, the final form of the expression for the exchanging flux term
�qwd in (10) is obtained [37],

�qwd ¼
2h

Qww

@pw

@t
þ aswstþ 2ha <

@vs

@x

> � @

@x
2kwd

@pw

@x

� �
þ 2kwd

@pw

@x
@h
@x

� �
ð13Þ

where hHiand sHt represent the average and difference of variables at
the two opposite sides of the crack, respectively. kwd is the permeabil-
ity tensor in the fractured region and �qwd represents the rate of water
flux exchange between the damaged and undamaged surrounding
media, obtained by the satisfaction of continuity equation for water
flow through an arbitrary control volume in the fractured zone.

3. Numerical model

3.1. Weak formulation

In this section, the weak form of the governing equations is
derived and discretization of the unknowns in the framework of
the EFG meshfree method is developed using the MLS shape func-
tions. As the MLS shape functions do not satisfy the Kronecker
delta function property, which facilitates the imposition of essen-
tial boundaries, the Lagrange multipliers method is adopted to
impose the essential boundary conditions. No gas pressure is pres-
ent in the assumed saturated domain and the whole void space is
filled with the liquid water. Solid displacements and water pres-
sures are considered as the main unknowns, which is compatible
with the governing equations of fully coupled porous media, dis-
cussed in the previous section.

Applying the weighted residual method to Eqs. (1) and (7),
along with the corresponding boundary conditions of (9) and
(10), the final constrained weak form of the governing equations
are obtained,Z

X
dðLuuÞTðrÞdX�

Z
X

duT bdX�
Z

Cu

duT t dCu

þ
Z

Cc

dsut
T �tc dCc � d

Z
Cu

kT
uðu� �uÞdCu

� �
¼ 0 ð14Þ
pening

Normal crack opening
a2 wc

Bilinear cohesive law

ential cohesive law

ponential cohesive laws.
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Z
X

dðpwÞ
T � ða� nÞ

Ks
þ n

Kw

� �
@pw

@t
dXþ

Z
X

dðpwÞ
T � amTLu

@u
@t

dX

þ
Z

X
dðLpw

pwÞ
T � ½kð�rpw þ qwðbÞÞ�dXþ

Z
Cc

dðpwÞ
T �qwd dCc

þ d
Z

Cpw

kT
pw
ðpw � �pwÞdCpw

 !
¼ 0 ð15Þ

dðuÞ and dðpwÞ represent the variations of solid displacement and
water pressure, respectively and act as the weighting functions in
the proposed Galerkin weak form of the fully coupled saturated
porous medium. Note that the last parts are introduced due to the
enforcement of essential boundary conditions for solid displace-
ments and water pressure in the context of the Lagrange multipliers
method. The integrals on the crack surfaces (Cc) are the interfacial
terms resulted from the hydro-mechanical exchange of tractions
and fluxes through the fracture walls. The differential operators
Lu and Lp are defined as,

Lu ¼

@
@x 0
0 @

@y

@
@y

@
@x

2
64

3
75; Lp ¼

@
@x
@
@y

" #
ð16Þ
3.2. Numerical discretization and non-linear solution procedure

To capture discontinuities in solid and water pressure phases,
enrichment of the local variables are written in the following for-
mat at an arbitrary point x of the domain,

uhðxÞ ¼
Xn

I¼1

Uu;std
I ðxÞustd

I þ
Xn

I¼1

Uu;std
I ðxÞHðxÞuenr

I ;

ph
wðxÞ ¼

Xn

I¼1

Upw ;std
I ðxÞ pstd

w

� �
I þ
Xn

I¼1

Upw ;std
I ðxÞ!pw

ðxÞ penr
w

� �
I;

ð17Þ

where Uu;std
I and Upw ;std

I stand for the MLS shape functions for dis-
cretization of the solid displacements and water pressures, respec-
tively. HðxÞ is the Heaviside enrichment function (18) representing
the discontinuous part of the displacement field. To account for
continuous water pressure but with discontinuous normal gradi-
ents, !pw

ðxÞ is selected as the modified distance enrichment func-
tion (19), which also eliminates the loss of precision in the
blending domain [21],

HðxÞ ¼
1 if ðx� xcrÞ � n P 0
0 otherwise

	
ð18Þ
!pw
ðxÞ ¼

X
I
Upw

I ðxÞjfIj �
X

I

Upw
I ðxÞfI












: ð19Þ

Insertion of the enriched approximation (17) into the weak form
equations of (14) and (15) results in the complete discretized set
D = 150 mm

F

Crack 

Fig. 3. Three-point
of constrained equations for the fully coupled saturated deforming
porous medium,Z

X
BT;nþ1r00dX� Cnþ1

sw Pnþ1
w þ fnþ1

coh ¼ Fnþ1
u � GT

�uknþ1
u

h i
Cnþ1

ws
_Unþ1 þ Pnþ1

ww
_Pw

nþ1 þHnþ1
ww Pnþ1

w þ Q nþ1
mass ¼ Fnþ1

w � GT
�pw

knþ1
pw

h i
ð20Þ

which is naturally coupled with the following constraint equations
for imposition of essential boundaries:

U ¼ G�uUnþ1

�Pw ¼ G�pw Pnþ1
w

ð21Þ

along with the following internal force and flux vectors,

fcoh ¼
Z

Cc

sNT
ut�tc; dCc

Q mass ¼
Z

Cc

NT
pw

�qwd dCc

ð22Þ

where

K ¼
Z

X
BT

uDBu dX

Csw ¼
Z

X
BT

uamNpw
dX

Cws ¼
Z

X
NT

pw
amT:Bu dX

Pww ¼
Z

X
NT

pw
:

1
Qww

� �
� Npw

dX

Hww ¼
Z

X
ðLpw

Npw
ÞT kðLpw

Npw
ÞdX

ðG�uÞIK ¼ �
Z

Cu

Uu
I Nk dCu

ðG �pw
ÞIK ¼ �

Z
Cpw

Upw
I Nk dCpw

NkðxÞ ¼ dðx� xkÞ

ð23Þ

xk is defined as the set of nodes placed along the essential bound-
aries and m ¼ ½1 1 0�T , and

Bu ¼ Bstd
u BH

u

h i
Nu ¼ Nstd

u NH
u

h i
Npw ¼ Nstd

pw N!
pw

h i ð24Þ

It is noted that the terms fcoh and Q mass are line integrals along the
crack faces, which are computed by the Gaussian quadrature rule.
These terms introduce non-linearity to the system of equations
which are solved through a suitable non-linear strategy. Assuming
a linear variation for derivatives of unknown variables in time
L  =  600 mm

path

bending beam.



Fig. 4. Load–deflection and load–CTOD curves for Gf ¼ 0:05 N/mm.

Fig. 5. Load–deflection and load–CTOD curves for Gf ¼ 0:01 N/mm.
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and using the Newton–Raphson algorithm, the final form of the
discretized set of equations can be written as,

Ri;nþ1
u ¼ KUi;nþ1 � CswPi;nþ1

w þ fnþ1
coh � Fnþ1

u þ GT
�uknþ1

u

h i

Ri;nþ1
pw ¼ Cnþ1

ws
Unþ1 � Un

Dt

 !
þ Pnþ1

ww
Pnþ1�Pn

w
w

Dt

 !
þHnþ1

ww Pnþ1
w

þ Q nþ1
mass � Fnþ1

w þ GT
�pw

knþ1
pw

h i
Ri;nþ1

ku
¼ �U� G�uUnþ1; Ri;nþ1

kpw
¼ �Pw � G�pw Pnþ1

w

ð25Þ

and the unknown and residual vectors can be expressed by:

Xi;nþ1 ¼

Ui;nþ1

Pi;nþ1
w

ki;nþ1
u

ki;nþ1
pw

8>>>><
>>>>:

9>>>>=
>>>>;

Ri;nþ1 ¼

Ri;nþ1
u

Ri;nþ1
pw

Ri;nþ1
ku

Ri;nþ1
kpw

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð26Þ
Differentiating the residual with respect to the unknowns vector X,
gives the Jacobian matrix for the constrained system of equations,

J ¼

Kþ @fcoh
@u �Csw þ @fcoh

@pw
GT

�u 0
Cws
Dt þ

@Q mass
@u

Pww
Dt þHww þ @Q mass

@pw
0 GT

�pw

�G�u 0 0 0
0 �G�pw 0 0

2
66664

3
77775 ð27Þ

The following fully coupled nonlinear system of equations should
then be solved at each time step to compute the vector of unknown
increments,

Riþ1;nþ1 ¼ Ri;nþ1 þ J½dXiþ1;nþ1� ¼ 0 ð28Þ

½dXiþ1;nþ1� ¼

dUiþ1;nþ1

dPiþ1;nþ1
w

dki;nþ1
u

dk
i;nþ1
Pw

2
66664

3
77775 ¼ �J�1Ri;nþ1: ð29Þ



Fig. 6. Load–displacement curves for different values of Gf .
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Fig. 7. Geometry of the double cantilever problem.
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in which Ri;nþ1 is given in (25) and is computed as:

Ri;nþ1 ¼ J

Ui;nþ1

Pi;nþ1
w

ki;nþ1
u

ki;nþ1
pw

2
66664

3
77775�

Fu

Fw

U
Pw

2
6664

3
7775� Pn ð30Þ

where Pn is the value of converged solution from the last time step
of analysis:
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Then, the unknowns vector is updated at each iteration until the
required convergence criterion is satisfied:
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w

2
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3
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4. Numerical simulations

4.1. Cohesive crack propagation in a dry domain

In the first set of numerical solutions, it is assumed that no fluid
phase is present in the analysis. The developed computer imple-
mentation is then verified by problems of cohesive crack propaga-
tion under pure mode I and mixed mode conditions. In the
numerical simulations of this paper, an appropriate estimate for
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Fig. 12. Propagation of a cohesive crack in a saturated porous medium.

Table 1
Material properties for the cohesive crack problem.

Young’s modulus (Pa) 25:85� 109

Solid bulk modulus (Pa) 13:46� 109

Fluid bulk modulus (Pa) 0:2� 109

Water viscosity (MPa s) 1:0� 10�9

Intrinsic permeability of water (m2) 2:78� 10�9

Poisson’s ratio 0.18
Biot’s coefficient 1
Tensile strength (MPa) 2.7
Fracture energy (N/mm) 0.095
Porosity 0.2
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the size of the support domain has been numerically determined
from a sensitivity analysis on several examples to ensure both opti-
mum run-times and generation of smooth gradient distributions.
This value is found to be 1.4 times of the average size of nodal spac-
ings. Also, for all the numerical experiments, a linear basis function
(pTðxÞ ¼ f1 x yg) is adopted.

4.1.1. Three-point-bending specimen
This problem has been solved extensively by various authors

[6,61,62] using the conventional FEM and the extended finite ele-
ment analysis (XFEM). A simply supported beam of dimensions
600� 150� 50 mm is considered. Horizontal displacements are
eliminated by fixing the left edge along the x direction, as shown
in Fig. 3. The problem is solved with the Poisson’s ratio of 0.1
and the Young’s modulus of 36500 MPa in the plane strain condi-
tion. The linear cohesive law with f t ¼ 3:19 MPa is adopted and a
uniform nodal arrangement of 80� 30 is used. It is assumed that
the fracture is nucleated at the center line when the maximum ten-
sile strength (f t) is reached. Different values of Gf are adopted. As
the beam is loaded in the pure mode I condition, the crack path
is predefined along a vertical path, as shown in Fig. 3.

Variations of load–deflection and the load versus crack tip
opening displacements (CTOD) are shown in Fig. 4 for the fracture
energy of 0.05 N/mm. Both results are in good agreement with the
reference solutions of Carpinteri and Colombo [6] and Moes and
Belytschko (XFEM) [61]. The fracture energy for this case is high
enough to prevent a sharp snap-back instability.

The fracture energy is now further reduced to a value of 0.01 N/
mm, which results in a small value for the critical opening dis-

placement wc ¼
2�Gf

f t

� �
. As a result, a smaller value for the cohesive

zone length is obtained, which means that larger parts of crack sur-
faces are fully opened with zero cohesive tractions. As shown in
Fig. 5, good agreements between the present and reference results
are obtained. It should be noted that due to existence of snap-back
in the load–displacement curves, standard displacement or load
control analyses fail and appropriate crack length increment strat-
egies need to be exploited. Fig. 6 shows the results from different
values of fracture energy, which ranges from a very large value
of 0.5 N/mm for which no snap-back is present, and descends to
a low value of 0.015 N/mm, which results in a sharp snap-back.
4.1.2. Double cantilever beam
To further verify the cohesive formulation, the double cantilever

beam with a cohesive crack is examined. The problem has previ-
ously been solved by Zi and Belytschko [13] using XFEM with no
crack tip enrichments and especial crack tip elements that allowed
for arbitrary placement of the crack tip.

A 400� 200 mm beam is considered with the boundary condi-
tions shown in Fig. 7 and the uniform nodal arrangement of
80� 40 is used. A traction-free pre-notch of 120 mm length is
placed at the center line of the beam, and a pure mode I condition
prevails. Material properties for the bulk are E = 36500 MPa and
m ¼ 0:18. The problem is solved under the plane strain condition.

Two different linear and bilinear cohesive laws are examined
for this problem. The tensile strength (f t) is taken as 3.19 MPa
and the fracture energy is equal to 0.095 N/mm for the linear cohe-
sive law, while for the bi-linear cohesive law: a1 ¼ 1 MPa,
a2 ¼ 0:008 mm and wc ¼ 0:07 mm (see Fig. 2).

The predicted load–displacement curves for the two cohesive
laws are depicted in Fig. 8, which show a good agreement with
the reference results reported by Zi and Belytschko [13]. Fig. 9
shows variations of vertical stress ryy along the crack line, obtained
by the linear and bi-linear cohesive laws at three different steps of
crack propagation. This figure further compares the effect of differ-
ent cohesive laws on the stress state along the fracture line. In
addition, the deformed configurations illustrate the extent of cohe-
sive zones (filled area) at three different steps of the crack
propagation.

Finally, the mixed mode cohesive crack propagation is analyzed
by moving upward the notch 2 mm from the centerline of the
beam. As a result, the crack path is expected to curve towards
the upper edge of the plate. Also in order to prevent the beam from
rotations, the right edge is fully clamped. In this case, the nodal
arrangement of 120� 60 is used. The resulted crack path and
load–deflection curve are shown in Fig. 10, which verifies the capa-
bility of the developed XEFG algorithm in reproducing the results
of a mixed mode cohesive crack propagation. Fig. 11, shows the
deformed mesh and the extent of cohesive process zones at differ-
ent stages of the mixed mode crack propagation for the linear
cohesive law.
4.2. Cohesive crack propagation with coupling active water pressure

In this section, the full effect of coupling between solid and
liquid phases is considered. Two distinct cases are studied in the
numerical analysis: one without the mass exchange along the
crack walls and the other with introducing the coupling term (13).



 

 
t = 0.5 seconds

0 50 100 150 200 250
0

50

100

150

200

250

 

 
t = 3 seconds

0 50 100 150 200 250
0

50

100

150

200

250

 

 
t = 5 seconds t = 6.5 seconds

0 50 100 150 200 250
0

50

100

150

200

250

 

 

0 50 100 150 200 250
0

50

100

150

200

250

−0.07

−0.065

−0.06

−0.055

−0.05

−0.045

−8

−7

−6

−5

−4

−3

x 10
−3

−0.044

−0.042

−0.04

−0.038

−0.036

−0.034

−0.032

−0.03

−0.056

−0.054

−0.052

−0.05

−0.048
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4.2.1. Mode I cohesive crack test
In this example, the cohesive crack test in a porous medium is

considered. This problem was previously solved in [37–39] using
the extended finite element method. An square plate with dimen-
sions 250 � 250 mm and an initial notch of 50 mm length along
the centerline is considered. Upper and lower edges of the domain
are stretched with a fixed vertical velocity _uy ¼ 2:35� 10�3 mm=s,
while the horizontal displacements are fully constrained. Geome-
try and the boundary conditions are depicted in Fig. 12. The prob-
lem is solved for two different states: full coupling of fluid phase
and with no fluid coupling involved. In the former case, the effect
of mass coupling fluxes are considered along the whole fracture
length.

Material properties for this problem are summarized in Table 1.
Fixed displacements are exerted as a prescribed linear displace-
ment in time. Normal stresses at the crack tip are checked in each
time step of analysis and a new crack segment is introduced if this
value exceeds the tensile threshold of the material (f t). The
problem is solved with the time step value of 0.05 s, and analysis
is continued until the cohesive fracture propagates and reaches
to the right edge. A plane strain condition is assumed and a
uniform set of 60� 60 nodal arrangement is used.

For the case I, where no mass exchange along the fracture walls
is assumed, Fig. 13 shows the value of water pressures at four
different time steps of the analysis, while Fig. 14 shows the corre-
sponding values for the vertical gradients of water pressure. It is
clearly observed that in the absence of any coupling term, distribu-
tion of the water pressure in the fractured medium is the same as
an intact medium; the water flows through the fracture as it does
in the bulk material.

The deformed mesh and the developed cohesive zone regions
are depicted in Fig. 15. Fig. 16 shows the value of vertical and hor-
izontal stress distributions in the final time step of the analysis,
clearly showing that even when the crack is fully developed in
the domain, crack walls remain closed and still transfer the vertical
stresses.

Next, the effect of interfacial coupling terms are assessed. Val-
ues of water pressure and the corresponding vertical gradients
are depicted in Figs. 17 and 18. It is clear that as the flux terms
are integrated and imposed on the crack interface integral points,
highly concentrated values for the water pressure at the fracture
line with discontinuous vertical gradients are generated. Introduc-
tion of the modified distance function (19) results in a discontinu-
ity in water velocity field (first gradients of the water pressures
normal to the fracture) along the fracture sides, as shown in
Fig. 18. Also, it is noted that in contrast to [37], both the initial
notch and the developed cohesive parts are assumed to be involved
with the mass exchange.
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Table 2
Material properties for the L-shaped panel.

Young’s modulus (MPa) 20� 103

Solid bulk modulus (Pa) 13:46� 109

Fluid bulk modulus (Pa) 0:2� 109

Water viscosity (MPa s) 1:0� 10�9

Intrinsic permeability of water (m2) 2:78� 10�7

Poisson’s ratio 0.18
Biot’s coefficient 1
Tensile strength (MPa) 2.5
Fracture energy (N/mm) 0.13
Porosity 0.2
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The high value of water pressure along the fracture surfaces
leads to an increase in the load bearing capacity of the fracturing
porous domain. In fact, the fracture walls are compressed due to
significant water pressures for the mass exchange case. This effect
can be observed in the load–deflection curves of Fig. 19, where the
two cases with no coupling and with full coupling terms are
compared.

The crack length histories for the current propagation test using
different nodal arrangements are depicted in Fig. 20a, which shows
the insensitivity of the results. Also, the convergence of the crack
path histories is observed in Fig. 20b, which suggests that in the
case of full coupling, the crack is initiated, propagated and reached
to the right edge of the domain slightly later than the case of no
mass exchange coupling. This behavior was also reported in [39],
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however the differences might not be substantial for the material
properties used in the present analysis. It is expected that for smal-
ler values of permeability, this effect can become significant and
even lead to convergence difficulties for extremely small values
of permeabilities, where high values of water pressure is exerted
on the crack surfaces.
4.2.2. Mixed mode crack propagation in saturated porous media – L-
shaped panel

For the final numerical example, a mixed mode cohesive crack
propagation with a more complex geometry is analyzed. It is
selected based on the experiments conducted by Winkler on con-
crete materials [63] and later assessed numerically by Unger
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et al. [64] and Dumstorff and Meschke [18] using the extended
finite element method. An L-shaped panel, shown in Fig. 21, with
dimensions of L = D = 250 mm and the thickness of 100 mm is con-
sidered. The bottom edge is fixed in all directions while prescribed
vertical displacements are imposed on a point placed at 30 mm
from the left side of the panel, as depicted in Fig. 21. The problem
is solved for an increasing prescribed displacement with a constant
rate in time. No initial crack is present and it is deemed that the
crack nucleates from the corner joint within the panel when the
principal tensile stress exceeds the tensile strength of the material.
The basic experimental tests by Winkler [63] were performed on
dry concrete with no water pressure, but here, the effect of filling
water phase in the void volume of the specimen is included. It is
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Fig. 26. Water pressure at different times of the analysis for
assumed that the specimen is totally saturated with water. Then,
the boundaries are made impermeable and a displacement control
loading is applied until the cohesive fracture is fully developed
through the specimen. The basic experimental material properties
are E ¼ 25850 MPa and m ¼ 0:18, but in the numerical analysis,
Unger et al. [64] proposed to adopt the modified material proper-
ties listed in Table 2 in order to match the corresponding experi-
mental load–displacement curves. The value of the time step is
taken as 0.1 s. The crack trajectory and the standard and enriched
set of nodes along with the imposed boundaries of the problem are
shown in Fig. 21.

Fig. 22 shows the load–displacement curves for the case of no
fluid coupling along the fracture walls. Similar to [62,64], an expo-
nentially decaying non-linear cohesive law with f t ¼ 2:7 MPa and
Gf ¼ 0:13 N/mm and Kp ¼ 25� 104 N are used in the present XEFG
analysis. A good agreement is observed between the present
results and the reference experiments conducted by Winkler [63]
and the results reported by Unger et al. [64]. It is noted that these
results are produced without considering any coupling term along
the fracture line, which confirms that for this case, inclusion of
fluid–solid coupling does not change the overall mechanical
behavior of the specimen, as similarly reported in [37]. Fig. 23
shows the corresponding deformed configuration in three steps
of the crack propagation.

Fig. 24 shows the distribution of water pressure and its vertical
gradients at the last step of the analysis, in which the crack is fully
developed through the medium. This figure clearly shows that the
water pressure distribution is not affected by the discontinuity line
in the case that mass coupling is not activated.

To assess the effect of coupling in the analysis, the same prob-
lem is solved by considering the full coupling terms, as introduced
in Eq. (13). Fig. 25 compares the values resulted from the two cases
of analysis, clearly indicating that a higher loading capacity is
achieved at the post peak stages of loading in the case of full mass
exchange. Fig. 26 displays the contours of water pressure at
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different stages of the analysis, while Fig. 27 shows the corre-
sponding values for the vertical gradient, which becomes discon-
tinuous across the crack surface.

5. Conclusions

In this paper, cohesive crack propagation was assessed through
an extrinsically enrichment strategy based on the partition of unity
property of MLS shape functions in the context of the element-free
Galerkin method. Different problems in single and saturated fully
coupled porous media were analyzed by the developed XEFG strat-
egy and good agreement with the reference solutions were
reported. Crack lengths were modeled with the Heaviside enrich-
ment functions and the water pressure was enriched with the
use of modified distance functions to reproduce discontinuous gra-
dients fields across the crack width. It was observed that neglecting
the coupling exchanging terms through the fracture walls would
not differ the overall response and the water would flow through
the specimen most likely similar to the non-fractured case. How-
ever, considering the coupling terms could dramatically change
the overall response of the system, both in terms of the mechanical
strength and values of water pressure in the media. Problems
involving pure mode I and mixed mode fracture in single and fully
saturated media considering no couplings and fully coupling along
the fracture length were analyzed and the efficiency of the current
strategy in handling permeable cohesive cracks were examined.

Conflict of interest

There is no conflict of interest.

Acknowledgements

The authors wish to acknowledge the technical support of the
High Performance Computing Lab, University of Tehran. Also, the
support of Iran National Science Foundation is gratefully
appreciated.

References

[1] Dugdale D. Yielding of steel sheets containing slits. J Mech Phys Solids
1960;8:100–4. http://dx.doi.org/10.1016/0022-5096(60)90013-2.

[2] Barenblatt G. The mathematical theory of equilibrium cracks in brittle fracture.
Adv Appl Mech 1962;7:55–129. http://dx.doi.org/10.1016/S0065-
2156(08)70121-2.

[3] Hillerborg A, Modeer M, Petersson P-E. Analysis of crack formation and crack
growth in concrete by means of fracture mechanics and finite elements. Cem
Concr Res 1976;6:773–81. http://dx.doi.org/10.1016/0008-8846(76)90007-7.

[4] Xu X-P, Needleman A. Numerical simulations of fast crack growth in brittle
solids. J Mech Phys Solids 1994;42:1397–434. http://dx.doi.org/10.1016/0022-
5096(94)90003-5.

[5] Remmers J, Borst R, Verhoosel C, Needleman A. The cohesive band model: a
cohesive surface formulation with stress triaxiality. Int J Fract
2013;181:177–88. http://dx.doi.org/10.1007/s10704-013-9834-3.

[6] Carpinteri A, Colombo G. Numerical analysis of catastrophic softening
behaviour (snap-back instability). Comput Struct 1989;31:607–36. http://
dx.doi.org/10.1016/0045-7949(89)90337-4.

[7] Belytschko T, Black T. Elastic crack growth in finite elements with minimal
remeshing. Int J Numer Methods Eng 1999;45:601–20. http://dx.doi.org/
10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.

[8] Moes N, Dolbow J, Belytschko T. A finite element method for crack growth
without remeshing. Int J Numer Methods Eng 1999;46:131–50. http://
dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-
NME726>3.0.CO;2-J.

[9] Strouboulis T, Copps K, Babuska I. The generalized finite element method.
Comput Methods Appl Mech Eng 2001;190:4081–193. http://dx.doi.org/
10.1016/S0045-7825(01)00188-8.

[10] Melenk J, Babuska I. The partition of unity finite element method: basic theory
and applications. Comput Methods Appl Mech Eng 1996;139:289–314. http://
dx.doi.org/10.1016/S0045-7825(96)01087-0.

[11] Mohammadi S. Extended finite element method. Blackwell; 2007.
[12] Mohammadi S. XFEM fracture analysis of composites. Wiley; 2012.
[13] Zi G, Belytschko T. New crack-tip elements for XFEM and applications to

cohesive cracks. Int J Numer Meth Eng 2003;57:2221–40. http://dx.doi.org/
10.1002/nme.849.

[14] Bocca P, Carpinteri A, Valente S. Mixed mode fracture of concrete. Int J Solids
Struct 1991;27:1139–53. http://dx.doi.org/10.1016/0020-7683(91)90115-V.

[15] Wells GN, Sluys LJ. A new method for modelling cohesive cracks using finite
elements. Int J Numer Methods Eng 2001;50:2667–82. http://dx.doi.org/
10.1002/nme.143.

http://dx.doi.org/10.1016/0022-5096(60)90013-2
http://dx.doi.org/10.1016/S0065-2156(08)70121-2
http://dx.doi.org/10.1016/S0065-2156(08)70121-2
http://dx.doi.org/10.1016/0008-8846(76)90007-7
http://dx.doi.org/10.1016/0022-5096(94)90003-5
http://dx.doi.org/10.1016/0022-5096(94)90003-5
http://dx.doi.org/10.1007/s10704-013-9834-3
http://dx.doi.org/10.1016/0045-7949(89)90337-4
http://dx.doi.org/10.1016/0045-7949(89)90337-4
http://dx.doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3c601::AID-NME598%3e3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3c601::AID-NME598%3e3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3c131::AID-NME726%3e3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3c131::AID-NME726%3e3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3c131::AID-NME726%3e3.0.CO;2-J
http://dx.doi.org/10.1016/S0045-7825(01)00188-8
http://dx.doi.org/10.1016/S0045-7825(01)00188-8
http://dx.doi.org/10.1016/S0045-7825(96)01087-0
http://dx.doi.org/10.1016/S0045-7825(96)01087-0
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0055
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0060
http://dx.doi.org/10.1002/nme.849
http://dx.doi.org/10.1002/nme.849
http://dx.doi.org/10.1016/0020-7683(91)90115-V
http://dx.doi.org/10.1002/nme.143
http://dx.doi.org/10.1002/nme.143


198 M. Goudarzi, S. Mohammadi / Computers and Geotechnics 63 (2015) 183–198
[16] Cox JV. An extended finite element method with analytical enrichment for
cohesive crack modeling. Int J Numer Methods Eng 2009;78:48–83. http://
dx.doi.org/10.1002/nme.2475.

[17] Bocca P, Carpinteri A, Valente S. Size effects in the mixed mode crack
propagation: softening and snap-back analysis. Eng Fract Mech
1990;35:159–70. http://dx.doi.org/10.1016/0013-7944(90)90193-K.

[18] Dumstorff P, Meschke G. Crack propagation criteria in the framework of X-
FEM-based structural analyses. Int J Numer Anal Methods Geomech
2007;31:239–59. http://dx.doi.org/10.1002/nag.560.

[19] Sukumar N, Chopp D, Mos N, Belytschko T. Modeling holes and inclusions by
level sets in the extended finite-element method. Comput Methods Appl Mech
Eng 2001;190:6183–200. http://dx.doi.org/10.1016/S0045-7825(01)00215-8.

[20] Chessa J, Wang H, Belytschko T. On the construction of blending elements for
local partition of unity enriched finite elements. Int J Numer Methods Eng
2003;57:1015–38. http://dx.doi.org/10.1002/nme.777.

[21] Moes N, Cloirec M, Cartraud P, Remacle J-F. A computational approach to
handle complex microstructure geometries. Comput Methods Appl Mech Eng
2003;192:3163–77. http://dx.doi.org/10.1016/S0045-7825(03)00346-3.

[22] Terzaghi K. Theoretical soil mechanics. Wiley; 1943.
[23] Biot MA. General theory of three-dimensional consolidation. J Appl Phys

1941;12:155–64. http://dx.doi.org/10.1063/1.1712886.
[24] Hassanizadeh M, Gray WG. General conservation equations for multi-phase

systems: 1. Averaging procedure. Adv Water Resour 1979;2:131–44. http://
dx.doi.org/10.1016/0309-1708(79)90025-3.

[25] Hassanizadeh M, Gray WG. General conservation equations for multi-phase
systems: 2. Mass, momenta, energy, and entropy equations. Adv Water Resour
1979;2:191–203. http://dx.doi.org/10.1016/0309-1708(79)90035-6.

[26] Lewis R, Schrefler B. The finite element method in the static and dynamic
deformation and consolidation of porous media. Wiley; 1998.

[27] Schrefler BA, Xiaoyong Z. A fully coupled model for water flow and airflow in
deformable porous media. Water Resour Res 1993;29:155–67. http://
dx.doi.org/10.1029/92WR01737.

[28] Schrefler BA, Scotta R. A fully coupled dynamic model for two-phase fluid flow
in deformable porous media. Comput Methods Appl Mechods Eng
2001;190:3223–46. http://dx.doi.org/10.1016/S0045-7825(00)00390-X.

[29] Rahman NA, Lewis RW. Finite element modelling of multiphase immiscible
flow in deforming porous media for subsurface systems. Comput Geotech
1999;24:41–63. http://dx.doi.org/10.1016/S0266-352X(98)00029-9.

[30] Boone TJ, Ingraffea AR. A numerical procedure for simulation of hydraulically-
driven fracture propagation in poroelastic media. Int J Numer Anal Meth
Geomech 1990;14:27–47. http://dx.doi.org/10.1002/nag.1610140103.

[31] Schrefler BA, Secchi S, Simoni L. On adaptive refinement techniques in multi-
field problems including cohesive fracture. Comput Methods Appl Mech Eng
2006;195:444–61. http://dx.doi.org/10.1016/j.cma.2004.10.014.

[32] Secchi S, Simoni L, Schrefler B. Mesh adaptation and transfer schemes for
discrete fracture propagation in porous materials. Int J Numer Anal Meth
Geomech 2007;31:331–45. http://dx.doi.org/10.1002/nag.581.

[33] Segura JM, Carol I. Coupled HM analysis using zero-thickness interface
elements with double nodes. Part I: Theoretical model. Int J Numer Anal
Methods Geomech 2008;32:2083–101. http://dx.doi.org/10.1002/nag.735.

[34] Lobao M, Eve R, Owen D, de Souza Neto A. Modelling of hydro-fracture flow in
porous media. Eng Comput 2010;27:129–54. http://dx.doi.org/10.1108/
02644401011008568.

[35] Khoei AR, Barani OR, Mofid M. Modeling of dynamic cohesive fracture
propagation in porous saturated media. Int J Numer Anal Meth Geomech
2011;35:1160–84. http://dx.doi.org/10.1002/nag.955.

[36] Rethore J, Borst Rd, Abellan M-A. A two-scale approach for fluid flow in
fractured porous media. Int J Numer Methods Eng 2007;71:780–800. http://
dx.doi.org/10.1002/nme.1962.

[37] Rethore J, Borst R, Abellan M-A. A two-scale model for fluid flow in an
unsaturated porous medium with cohesive cracks. Comput Mech
2008;42:227–38. http://dx.doi.org/10.1007/s00466-007-0178-6.

[38] Irzal F, Remmers JJ, Huyghe JM, de Borst R. A large deformation formulation for
fluid flow in a progressively fracturing porous material. Comput Methods Appl
Mech Eng 2013;256:29–37. http://dx.doi.org/10.1016/j.cma.2012.12.011.

[39] Mohammadnejad T, Khoei AR. Hydro-mechanical modeling of cohesive crack
propagation in multiphase porous media using the extended finite element
method. Int J Numer Anal Meth Geomech 2013;37:1247–79. http://dx.doi.org/
10.1002/nag.2079.

[40] Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an
overview and recent developments. Comput Methods Appl Mech Eng
1996;139:3–47. http://dx.doi.org/10.1016/S0045-7825(96)01078-X.
[41] Liu G. Mesh free methods: moving beyond the finite element method. CRC
Press; 2003.

[42] Liu G, Gu Y. An introduction to meshfree methods and their
programming. Dordrecht, The Netherlands: Springer; 2005.

[43] Ghorashi SS, Mohammadi S, Sabbagh-Yazdi S-R. Orthotropic enriched element
free Galerkin method for fracture analysis of composites. Eng Fract Mech
2011;78:1906–27. http://dx.doi.org/10.1016/j.engfracmech.2011.03.011.

[44] Hua L. Stable element-free Galerkin solution procedures for the coupled
soilpore fluid problem. Int J Numer Methods Eng 2011;86:1000–26. http://
dx.doi.org/10.1002/nme.3087.

[45] Chen JS, Wu CT, Chi L, Huck F. A mesh-free method for geotechnical materials. J
Eng Mech (ASCE) 2001;127:4409.

[46] Wang J, Liu G, Wu Y. A point interpolation method for simulating dissipation
process of consolidation. Comput Methods Appl Mech Eng 2001;190:5907–22.
http://dx.doi.org/10.1016/S0045-7825(01)00204-3.

[47] Khoshghalb A, Khalili N. A stable meshfree method for fully coupled flow-
deformation analysis of saturated porous media. Comput Geotech
2010;37:789–95. http://dx.doi.org/10.1016/j.compgeo.2010.06.005.

[48] Kardani M, Nazem M, Sheng D, Carter J. Large deformation analysis of
geomechanics problems by a combined rh-adaptive finite element method.
Comput Geotech 2013;49:90–9. http://dx.doi.org/10.1016/
j.compgeo.2012.09.013.

[49] Rabczuk T, Zi G. A meshfree method based on the local partition of unity for
cohesive cracks. Comput Mech 2007;39:743–60. http://dx.doi.org/10.1007/
s00466-006-0067-4.

[50] Irzal F, Remmers JJ, Verhoosel CV, Borst R. Isogeometric finite element analysis
of poroelasticity. Int J Numer Anal Meth Geomech 2013;37:1891–907.

[51] Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. Int J Numer
Methods Eng 1994;37:229–56. http://dx.doi.org/10.1002/nme.1620370205.

[52] Cordes L, Moran B. Treatment of material discontinuity in the element-free
Galerkin method. Comput Methods Appl Mech Eng 1996;139:75–89. http://
dx.doi.org/10.1016/S0045-7825(96)01080-8.

[53] Ventura G, Xu JX, Belytschko T. A vector level set method and new
discontinuity approximations for crack growth by EFG. Int J Numer Methods
Eng 2002;54:923–44. http://dx.doi.org/10.1002/nme.471.

[54] Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for
arbitrary evolving cracks. Int J Numer Methods Eng 2004;61:2316–43. http://
dx.doi.org/10.1002/nme.1151.

[55] Rabczuk T, Areias P. A new approach for modelling slip lines in geological
materials with cohesive models. Int J Numer Anal Methods Geomech
2006;30:1159–72. http://dx.doi.org/10.1002/nag.522.

[56] Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for
continuous multiple-crack initiation, propagation and junction in statics and
dynamics. Comput Mech 2007;40:473–95. http://dx.doi.org/10.1007/s00466-
006-0122-1.

[57] Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree
method for arbitrary evolving cracks. Comput Methods Appl Mech Eng
2007;196:2777–99. http://dx.doi.org/10.1016/j.cma.2006.06.020.

[58] Rabczuk T, Areias PMA, Belytschko T. A simplified mesh-free method for shear
bands with cohesive surfaces. Int J Numer Methods Eng 2007;69:993–1021.
http://dx.doi.org/10.1002/nme.1797. URL: http://dx.doi.org/10.1002/
nme.1797.

[59] Rabczuk T, Areias PMA, Belytschko T. A meshfree thin shell method for non-
linear dynamic fracture. Int J Numer Methods Eng 2007;72:524–48. http://
dx.doi.org/10.1002/nme.2013. http://dx.doi.org/10.1002/nme.2013.

[60] Goudarzi M, Mohammadi S. Weak discontinuity in porous media: an enriched
EFG method for fully coupled layered porous media. Int J Numer Anal Methods
Geomech 2014. http://dx.doi.org/10.1002/nag.2281. n/a–n/a. URL: http://
dx.doi.org/10.1002/nag.2281.

[61] Moes N, Belytschko T. Extended finite element method for cohesive crack
growth. Eng Fract Mech 2002;69:813–33. http://dx.doi.org/10.1016/S0013-
7944(01)00128-X.

[62] Zamani A, Gracie R, Reza Eslami M. Cohesive and non-cohesive fracture by
higher-order enrichment of XFEM. Int J Numer Methods Eng 2012;90:452–83.
http://dx.doi.org/10.1002/nme.3329.

[63] Winkler B. Traglastuntersuchungen von unbewehrten und bewehrten,
Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes fur
Beton, PhD Thesis, University of Innsbruck; 2001.

[64] Unger JF, Eckardt S, Knke C. Modelling of cohesive crack growth in concrete
structures with the extended finite element method. Comput Methods Appl
Mech Eng 2007;196:4087–100. http://dx.doi.org/10.1016/j.cma.2007.03.023.

http://dx.doi.org/10.1002/nme.2475
http://dx.doi.org/10.1002/nme.2475
http://dx.doi.org/10.1016/0013-7944(90)90193-K
http://dx.doi.org/10.1002/nag.560
http://dx.doi.org/10.1016/S0045-7825(01)00215-8
http://dx.doi.org/10.1002/nme.777
http://dx.doi.org/10.1016/S0045-7825(03)00346-3
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0110
http://dx.doi.org/10.1063/1.1712886
http://dx.doi.org/10.1016/0309-1708(79)90025-3
http://dx.doi.org/10.1016/0309-1708(79)90025-3
http://dx.doi.org/10.1016/0309-1708(79)90035-6
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0130
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0130
http://dx.doi.org/10.1029/92WR01737
http://dx.doi.org/10.1029/92WR01737
http://dx.doi.org/10.1016/S0045-7825(00)00390-X
http://dx.doi.org/10.1016/S0266-352X(98)00029-9
http://dx.doi.org/10.1002/nag.1610140103
http://dx.doi.org/10.1016/j.cma.2004.10.014
http://dx.doi.org/10.1002/nag.581
http://dx.doi.org/10.1002/nag.735
http://dx.doi.org/10.1108/02644401011008568
http://dx.doi.org/10.1108/02644401011008568
http://dx.doi.org/10.1002/nag.955
http://dx.doi.org/10.1002/nme.1962
http://dx.doi.org/10.1002/nme.1962
http://dx.doi.org/10.1007/s00466-007-0178-6
http://dx.doi.org/10.1016/j.cma.2012.12.011
http://dx.doi.org/10.1002/nag.2079
http://dx.doi.org/10.1002/nag.2079
http://dx.doi.org/10.1016/S0045-7825(96)01078-X
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0205
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0205
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0210
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0210
http://dx.doi.org/10.1016/j.engfracmech.2011.03.011
http://dx.doi.org/10.1002/nme.3087
http://dx.doi.org/10.1002/nme.3087
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0225
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0225
http://dx.doi.org/10.1016/S0045-7825(01)00204-3
http://dx.doi.org/10.1016/j.compgeo.2010.06.005
http://dx.doi.org/10.1016/j.compgeo.2012.09.013
http://dx.doi.org/10.1016/j.compgeo.2012.09.013
http://dx.doi.org/10.1007/s00466-006-0067-4
http://dx.doi.org/10.1007/s00466-006-0067-4
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0250
http://refhub.elsevier.com/S0266-352X(14)00181-5/h0250
http://dx.doi.org/10.1002/nme.1620370205
http://dx.doi.org/10.1016/S0045-7825(96)01080-8
http://dx.doi.org/10.1016/S0045-7825(96)01080-8
http://dx.doi.org/10.1002/nme.471
http://dx.doi.org/10.1002/nme.1151
http://dx.doi.org/10.1002/nme.1151
http://dx.doi.org/10.1002/nag.522
http://dx.doi.org/10.1007/s00466-006-0122-1
http://dx.doi.org/10.1007/s00466-006-0122-1
http://dx.doi.org/10.1016/j.cma.2006.06.020
http://dx.doi.org/10.1002/nme.1797
http://dx.doi.org/10.1002/nme.2013
http://dx.doi.org/10.1002/nme.2013
http://dx.doi.org/10.1002/nme.2013
http://dx.doi.org/10.1002/nag.2281
http://dx.doi.org/10.1016/S0013-7944(01)00128-X
http://dx.doi.org/10.1016/S0013-7944(01)00128-X
http://dx.doi.org/10.1002/nme.3329
http://dx.doi.org/10.1016/j.cma.2007.03.023

	Analysis of cohesive cracking in saturated porous media using  an extrinsically enriched EFG method
	1 Introduction
	2 Governing equations for fully coupled saturated porous media
	3 Numerical model
	3.1 Weak formulation
	3.2 Numerical discretization and non-linear solution procedure

	4 Numerical simulations
	4.1 Cohesive crack propagation in a dry domain
	4.1.1 Three-point-bending specimen
	4.1.2 Double cantilever beam

	4.2 Cohesive crack propagation with coupling active water pressure
	4.2.1 Mode I cohesive crack test
	4.2.2 Mixed mode crack propagation in saturated porous media – L-shaped panel


	5 Conclusions
	Conflict of interest
	Acknowledgements
	References


