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Abstract: In this paper, an investigation into the propagation of far 
field explosion waves in water and their effects on nearby structures 
are carried out. For the far field structure, the motion of the fluid 
surrounding the structure may be assumed small, allowing 
linearization of the governing fluid equations. A complete analysis 
of the problem must involve simultaneous solution of the dynamic 
response of the structure and the propagation of explosion wave in 
the surrounding fluid. In this study, a dynamic adaptive finite 
element procedure is proposed. Its application to the solution of a 2D 
fluid-structure interaction is investigated in the time domain. The 
research includes: a) calculation of the far-field scatter wave due to 
underwater explosion including solution of the time-depended 
acoustic wave equation, b) fluid-structure interaction analysis using 
coupled Euler-Lagrangian approach, and c) adaptive finite element 
procedures employing error estimates, and re-meshing. The 
temporal mesh adaptation is achieved by local regeneration of the 
grid using a time-dependent error indicator based on curvature of 
pressure function. As a result, the overall response is better predicted 
by a moving mesh than an equivalent uniform mesh. In addition, the 
cost of computation for large problems is reduced while the accuracy 
is improved. 
Keywords: adaptive mesh; fluid-structure interaction; acoustic 
wave; finite element analysis; underwater explosion 
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1 Introduction1 

Most problems of dynamic fluid-structure interaction (FSI) 
in acoustic media around hydraulics and marine structures are 
solved by the finite element method (FEM). For example, 
dynamical response of a concrete dam subjected to underwater 
contact explosion has numerically investigated by Yu (2009) or 
ship shock modeling under far-field underwater explosion by 
Shin (2004). Although experimental works have down in this 
field such as Ghanaat et al. (1992). In his work, an 
experimental study of dam-water-foundation interaction has 
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down on a full scale dam in China.  However, even after more 
than 40 years of development of FEM, the question of 
estimating and controlling the discretization errors has 
remained as a major challenge. Several FEM modifications 
have been reported for improving the results. Sprague and 
Geers (2008) have developed a Legendre spectral finite 
elements algorithm for structural dynamics analysis. Ross et al. 
(2008; 2009) proposed the localized Lagrange multiplier 
method for acoustic FSI. In these coupled Euler-Lagrange 
works, fixed uniform meshes are considered for the whole 
analyses. As fine meshes are required where large gradients 
exist in the solution, such computations are not optimum. 
Other methods such as arbitrary Lagrangian-Eulerian (ALE) 
ones have been reviewed by Mair (1999). Kim and Shin (2008) 
have recently applied ALE techniques to underwater explosion 
analysis of a submarine liquefied oxygen tank. Lagrangian 
motion was computed at every time step, followed by a re- 
map phase in which the spatial mesh was alternatively not 
re-zoned (as Lagrangian), re-zoned to its original shape (as 
Eulerian) or re-zoned to some more “advantageous” shape (as 
somehow between Lagrangian and Eulerian). ALE technique 
is usually employed to preserve a uniform mesh and not used 
to enhance the physical phenomena itself. Thus, its spatial 
description of the mesh is neither restricted to follow the 
material motions (as in Lagrangian) nor does it remain as fixed 
in space (as in Eulerian). One of the main concerns in acoustic 
finite element analysis is the adequacy of the finite element 
mesh to solve the dilatational wave equation that governs the 
fluid behavior. The Galerkin method provides good accuracy 
as long as the mesh is fine enough to comply with the 
maximum wave number. This is a criterion often too expensive 
even for moderate wave numbers. Moreover, a non-uniform 
finite element mesh is needed in many practical problems 
because increasingly finer grids are required near singularities 
and non-smooth boundaries. Nevertheless, such a 
discretization process is still unable to provide a proper 
resolution and order of the approximation at the required 
locations despite quite fine meshes. An h-adaptive finite 

user
Placed Image



Journal of Marine Science and Application (2015) 14: 302-315 303

element strategy for acoustic problems was presented by 
Bausys and Wiberg (1999), among the others. Their method’s 
key features are error estimation, adaptive mesh generation and 
re-meshing for finite element analysis using the 
superconvergent patch recovery technique for prime variables. 
In this process a highly reliable estimation of the discretization 
errors is crucial. Bouillard et al. (1996) implemented the 
original superconvergent patch recovery (SPR) technique for 
acoustic finite element analysis. They extended the original 
concept to complex variables and studied the reliability of the 
error estimation process.  

Tetambe and Rajakumar (1996) presented the error 
estimation strategy for acoustic analysis based on nodal 
averaging technique. A residual-based a posteriori error 
estimator for Helmholtz equation was presented by Harari et al. 
(1996). Recently, many efforts have been made for dynamic 
adaptive finite elements. Kadioglu and Sussman (2008) 
presented adaptive solution techniques for simulating 
underwater explosions and implosions. They solved several 
test problems to show the performance of their methods and 
validated the results by comparing shock speed, shock 
amplitude, and material interface speed, with benchmark 
results produced by Wardlaw (1998). Finally, their effort 
indicated that for some specific cases, e.g. investigating bubble 
growth and collapse dynamics, that the semi-implicit approach 
is significantly more efficient than an explicit approach.   

Early, in order to solving hyperbolic conservation laws 
adaptive mesh refinement techniques are developed (Bell et al., 
1994). These extended to solve the compressible Navier– 
Stokes equations accordingly Skamarock and Klemp (1993) 
and Steinthorsson et al. (1995). The significant efforts have 
been performed by them in order to solve incompressible or 
weakly compressible flows adaptively by Stevens and 
Bretherton (1996), Howell and Bell (1997) and Pember  et al. 
(1998).  

Recently, an adaptive method is developed for solving 
one-dimensional systems of hyperbolic conservation laws, 
which combines the rezoning approach with the finite volume 
weighted essentially non-oscillatory scheme (Hua et al., 2015). 
They found this adaptive method exhibits more accurate 
resolution of discontinuities for a similar level of 
computational time comparing with that on a uniform mesh.  

Dapogny et al. (2014) propose a method for dealing with the 
problem of mesh deformation (or mesh evolution) in the 
context of free and moving boundary problems, in three space 
dimensions. Their method would have been considered in the 
fields of mesh generation, shape optimization, and 
computational fluid dynamics.  

Berrone and Marro (2009) presented space–time adaptive 
simulations for unsteady Navier–Stokes problems. The fluid 
domain was discretized by structured triangular finite element 
mesh and the unsteady flow was traced with a posteriori 
estimates and adaptive algorithms. 

In the present research an adaptive FE strategy has used that 
employ refined mesh only in wave front and provide reduced 
equations. This refining has also been a terminated optimal 

refining. Early works with traditional FE employ refined mesh 
in whole domain of analysis. The main difference of the 
content and advantages of the following is adapting the mesh 
refining with wave length and wave frequency. Usually in 
wave front the wave frequency is high and consequently wave 
length decreases, so a refining mesh has developed for optimal 
covering of wave front length. 

In the present study, the error estimation has been performed 
using curvature based error indicators for prime variables of 
finite element approximation. For mesh generation and 
re-meshing, the program MESH2D is adopted employing the 
advancing front technique. This program was originally 
prepared by Gilardo (1995) for compressible flow. The finite 
element code ZFEAP, prepared by Emamzadeh (2008), is used 
for adaptive fluid-structure interaction problem. Numerical 
examples are shown to illustrate the efficiency of the proposed 
error indicator and adaptive strategy procedure. 

2 Underwater explosion and pressure wave 
distribution 

The pressure load acting on a structure due to an underwater 
explosion (UNDEX) changes with respect to both time and 
space. The pressure time history at the standoff point (the point 
where the wave hits the structure first) is given. The incident 
pressure pI  at a point j with vector coordinate xj can be written 
as: 

( , ) ( ) ( )I j t x jP x t P t P x                           (1) 

where ( )tP t is the pressure time history at the standoff point 

x0, and ( )x jP x  is the spatial function, at an arbitrary point xj. 

For a plane wave: 

( ) 1x jP x                                    (2) 

By considering the time delay required for the wave to travel 
from the standoff point to an arbitrary point, it is found that 

0( ) ( ) ( ) ( ), j
I j t x j t j x j

f

R R
p x t p t p x p τ p x

c

 
    

          
(3) 

where 

( ) ( )j s o s

j
s o

x x x x
R

x x

  



                           (4) 

where xs is considered to be the specified source point of 
explosion. cf is the wave velocity in the fluid and τj known as 
the “retarded time” corresponds to the time lag for the 
pressure wave to travel from the standoff point. Detailed basic 
formulation of the incident wave can be found in Cole (1948). 

3 Modeling of fluid-structure interaction 
phenomenon by CEL approach 

If a continuum deforms or flows, the position of the small 
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volumetric elements changes with time. These positions can 
be described as functions of time in two ways. Lagrangian 
describes it as the movement of the continuum is specified as 
a function of its initial coordinates and time. Eulerian 
describes it as the movement of the continuum is specified as 
a function of its instantaneous position and time. In 
simulations with Lagrangian formulation the interface 
between two parts is precisely defined and tracked. In these 
simulations large deformation of a part leads to hopeless 
mesh and element distortion. In Eulerian analysis an Eulerian 
reference mesh, which remains undistorted and does not 
move is needed to trace the motion of the particles. The 
advantage of an Eulerian formulation is that no element 
distortions will occur. Disadvantageously, the interface 
between two parts cannot be described as precise as if a 
Lagrangian formulation is used. The ALE method can be 
considered a superset of both the Eulerian and Lagrangian 
method, since both types of mesh motions are incorporated 
within an ALE Scheme. The ALE method cannot be 
considered a superset for allowing an Eulerian region to 
interact with a Lagrangian interface. In the following, 
Lagrangian approach has been selected for structure and 
Eulerian approach has been selected for surrounding fluid. 
When a structure is exposed to UNDEX, it deforms and 
displaces the surrounding fluid, by the scattered pressure 
wave. Thus, the sum of the known incident pressure (as in Eq. 
(1)) and the unknown scattered pressure are applied to the 
structure as a result of the fluid-structure interaction. The 
equilibrium equation for small motions of an acoustic fluid 
with velocity-dependent losses is taken to be as: 

0f
ffp uu     

                             (5) 

where p is hydrodynamic pressure in excess to hydrostatic 

pressure. fu , fu are velocity and acceleration vectors of 
fluid particles, respectively. ρf is fluid density and γ is the 
“volumetric drag” (force per unit volume for unit velocity). 
Fluid behavior is assumed to be in viscid, linear, and 
compressible, so 

( )f
fp K u                                  (6) 

where fK  and fu are the bulk modulus and displacement 

vector of fluid particles, respectively. By dividing Eq. (5) by 
ρf, taking its divergence, neglecting spatial variation of,

f/   and combining the result with the time derivatives of 

Eq. (6) one obtains the equation of transient motion for the 
fluid in terms of the fluid pressure:  

21 1
0

f f f f

p p p
K K


 

    

                     
(7) 

An equivalent weak form of Eq. (7) is obtained by 
introducing an arbitrary variational field, p , and 

integrating over the fluid domain Vf 

21 1
d 0

f f f f fV

p p p p V
K K


 

 
     

 
  

              

(8) 

Integration by parts allows this to be rewritten as: 

1 1
d

1
d

f f f f fV

fS
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 



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





          

(9) 

Assuming that p is prescribed on Sfp, the equilibrium equation, 
Eq. (5), is used on the remainder of the boundary to relate the 
pressure gradient to the motion of the boundary: 

1
0f f

f f

n p u u


 
 
      
 

     on  S−Sfp              (10)
 

where n is the inward unit vector normal to the fluid boundary. 
Using this equation, the term n p  is eliminated from Eq. (9) 

to produce 
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


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(11) 

where, for convenience, the boundary “traction” term is 
defined as: 

1 f
n

f f

fT n p n uu


 
   

           
   

   on  fpS S
      

(12) 

In the absence of volumetric drag this boundary traction is 
equal to the inward acceleration of the particles of the 
acoustic medium, i.e.; 

n
fu T n       on    fpS S

                        
(13) 

Many engineering problems dealing with waves involve 
infinite domains. Usually, the infinite domain is truncated for 
computational purposes and the wave problem is solved in a 
finite domain. Non-reflecting boundaries (NRBs) have to be 
considered, which must allow the waves to leave the 
truncated domain avoiding spurious reflections that may 
pollute the solution in the interior of the computational 
domain of interest. 

There are many types of NRBs, which can be classified 
into two groups, namely, Non-Reflecting Boundary 
Conditions (NRBCs) and Non-Reflecting Boundary Layers 
(NRBLs). NRBCs are boundary conditions on the artificial 
boundary that absorb impinging waves. On the other hand, 
NRBLs have the property of absorbing waves that are 
traveling inside the layer. 

Finite element simulation of the time-dependent wave 
propagation in infinite media requires enforcing the 
transmitting boundary to replace the truncated far-field 
infinite domain so as to model the effect of the wave radiation 
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towards infinity. 
The well-known Helmholtz equation governing the 

pressure p: 
2

2
2

1
 

f

p
p

c t


  


                              (14) 

where  

f
f

f

k
c


                                     (15) 

it is considered to denote the speed of sound in the fluid. 
If we consider only variations in x (the horizontal direction) 

we know that the general solution of Eq. (14) can be written 
as  

   f fp F x c t G x c t                         (16) 

where two waves F and G travel in positive and negative 
directions of x, respectively. The absence of the incoming 
wave G means that on infinite boundary we have only  

          fp F x c t                               (17) 

Thus 

p p
F

n x

 
 

 

                              

(18) 

f

p
c F

t


 


                                 (19) 

where F   denotes the derivative of F with respect to (x−cft) 
by eliminating the unknown function F   the Sommerfeld 
formulation obtained. 

In Eulerian approach, the non-reflecting infinite boundary 
Sfi, Sommerfeld equation (Sommerfeld, 1949) has been used 
as:  

1

f

p
p

n c


 




                               
(20) 

For a rigid boundary, 

0
p

n




                                   
(21) 

For the structural interface boundary, 

n

p
a

n


 
                                

(22) 

where an is considered to be the normal acceleration. 
Application of the standard Galerkin discretization to the 
weak form of the governing equations of structure and fluid 
leads to a classical coupled problem, expressed by two set of 
second order differential equations as; 

Tu u u p    M D K Q                       (23) 

p p p u    E A H Q                         (24) 

where M, D and K are the structural mass, damping and 
stiffness matrices. Also E, A and H are the fluid equivalent 
mass, damping and stiffness matrices, respectively. In the 
above equations pressure is defined as: 

I Sp p p                                  (25) 

where p, pI and ps correspond to the total, incident and 
scattered pressure waves respectively. By substituting Eq. 
(24) in Eq. (25), the fluid equation is obtained in terms of the 
unknown scattered pressure term, depicted by p hereinafter 
for brevity. The resulting equation is solved together with Eq. 
(23) to obtain the response of the structure. The unknown 
functions are discretized as: 

pp  N p                                     (26) 

uu  N u                                     (27) 

where u  and p  are nodal displacement and pressure vectors 

of structure and fluid fields, respectively. Linear shape 
function matrices denote by Nu and Np. The structural 
matrices are defined as: 

Tdu u

V

V M N N
                             

(28) 

Tdu u

V

V  K Ν Β N
                           

(29) 

  D M K                                 (30) 

d
fs

u p

S

n s Q N N                                (31) 

where B is the material elasticity matrix of the structure, D is 
Rayleigh damping matrix, α and β are proportional to 
significant frequencies of structural response. The coupling 
matrix Q relates the structural and fluid nodal forces on 
interacting surfaces. The structure loading is due to an 
explosion occurring at a source point in the fluid. For fluid 
domain, similar matrices are defined as: 

T1
d

t

p p
fV

V
K

 E N N                              (32) 

T1
d

fi

p p
fS

s
c

 A N N                               (33) 

T1
( ) d

t

p p
fV

V


  H N N                          (34) 

where the Kf  is the bulk modulus of fluid.  
For solving the dynamic equations, Newmark implicit 

method with fixed time increment is applied in a staggered 
algorithm. In the following problems, a reliable time 
increment about 0.1 microseconds is adopted for time 
discreization. 

In the staggered algorithm based on the previous scattered 
pressure at each time step the structural response is calculated 
from which the new acceleration could in turn be exerted to 
the fluid domain boundary. This alternative domains 
calculation is followed iteratively in the same time step until 
a convergence be achieved. 
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4 Adaptive finite elements 

In structural problems it is generally desirable to obtain a 
solution in which an energy norm of error is equally 
distributed within all elements. Such a norm of error can also 
be extended to viscous flow especially when it is relatively 
slow and nearly elliptic. However, according to Zienkiewicz 
et al. (2005) the energy norm has little significance at high 
speeds, a situation we face due to explosion, and thus we 
revert to other considerations which simply give an error 
indicator rather than an error estimator. Among the two 
available procedures such as gradient and curvature, the 
curvature based refinement will be adopted in this study. 

4.1 Curvature based refinement 
The error indicator should remain constant in each element. 

The h-refinement process is applied to first-order triangular 
elements. Fig. 1 determination of error indicators over the 
elements is carried out by interpolation error approach. If x' is 
the local coordinate inside an element of length hand p is a 
scalar function, the error in p is of order O(h2) (Peraire et al., 
1987) 

2 2
2 2

2 2

d d

d d

h
h p p

e p p ch ch
x' x

   


 
                    

(35) 

where ph is the finite element solution and c  is a constant. 
 

 
Fig. 1 An element based error defined by Zienkiewicz et al. 

(2005) 
 

If, for instance, it is assumed that p=ph is at the nodes, i.e. 
the nodal error is zero, then ݁  represents the values on a 

parabola with a local curvature of 
2

2

d

d

hp

x'
. The assumption 

that the nodal values of the function p are exact is true only 
for certain types of interpolating functions and equations. 
However, according to Zienkiewicz et al. (2005), the nodal 
values remain always more accurate than elsewhere. An 
element subdivision is sought for equal distribution of errors. 

2
2

2

d

d

hp
h C

x'
                                 (36) 

C  can be interpreted as a permissible error and so it can be 
simply insisted that 

2
2

2

d

d

h

p

p
h e

x'


                                 
(37) 

where ep= C  is considered to be the user-specified error limit. 
If the shape functions of p are assumed to be linear, then 

the second derivatives are difficult to determine. They are 
difficult to determine because they are clearly zero inside the 
element and infinity at the element interfaces. Some 
averaging processes have to be used in order to determine the 
curvatures from nodal computed values. In two and three 
dimensional problems, the second derivatives (or curvatures) 
tensors are given as: 

2

i j

p

x x


 

                                   

(38) 

This requires determination of the principal values and 
directions. Determination of the second derivatives of ph 
needs future elaboration. Despite linear elements the 
curvatures of ph should be interpolated and a second-order 
polynomial has to be adopted over a local patch of linear 
elements. 

hp Np 
                                 (39) 

Such a polynomial can be applied in a least square manner to 
fit the values at all nodal points within a patch of elements 
sharing a particular node. In problems where the gradient of a 
function may be preferred to the curvature, the maximum 
value of the gradient of p, for instance, can be easily 
determined at any point of the patch and in particular at the 
nodal points. 

4.2 Mesh data transfer 
A simplified data transfer procedure is obtained by nodal 

interpolation. The initial solution at the current mesh is 
interpolated from the solution of the previous mesh at the last 
time-step. 

     
3

1
j i i

i

p x ,t N x p t


                        (40) 

where  jp x,t  is considered to be a vector of nodal values. 

For each node in the current mesh, the solution is interpolated 
locally from the element in the previous mesh containing the 
current node. To identify the element containing each 
specified node location efficient searching algorithms should 
be used.  

5 Adaptive algorithms for FSI analysis 

Eq. (7) could be rewritten as: 

 2
1 2

1
;    

f

p p p f x ,x
c

                            (41) 

The second derivatives could be depicted in a tensor type 
notation as: 

2

  , 1,2ij
i j

p
p i j

x x

 
     

                            (42) 
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Principal values and directions of the second derivative 
tensor can be calculated from: 

11 12

21 22

det 0
p p

p p








                         

(43) 

With the following two solutions, λ1 (the minimum) and λ2 
(the maximum) values: 

2 2

1 22 2
1 2

d d

d d

p p
 ,

X X
                            (44) 

where X1 and X2 are the directions of the minimum and 
maximum principal values. For a uniform distribution of the 
interpolation error: 

2 2
2 2 2

max2 2min max min
2 1

d d

d d

p p
h h

X X
                    (45) 

2

max 2
2

d
max

d
i

p

X


 
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      

for all nodes i                (46) 

The user sets the limits of minimum and maximum element 

sizes as min  and max . Therefore, actual values of minh  and 

maxh  at each node can be represented as: 

 min min minmin , h h      (47) 

 max max maxmin ,h h      (48) 

Fig. 2 illustrates the FSI staggered solution. In each several 
time steps, the fluid domain solution results are transformed 
into the adaptive algorithm process as of Fig. 3. After error 
estimation and re-meshing, the new mesh is applied to the 
FSI algorithm for the next time step. 

 

 
Fig. 2 Staggered FSI algorithm 

 
Fig. 3 Curvature based adaptive mesh generation algorithm 

Error factors. 
To evaluate the performance of transient-response histories 

with respect to a benchmark solution, a form of 
comprehensive error factor (C-error) given by Sprague and 
Geers (2006) is adopted: 

2 2C V P                                    (49) 
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In these equations, c(t) is a candidate solution in the form 
of a response history, b(t) is the corresponding benchmark 
history, and t1≤t≤t2 is the time span of interest. V is the 
magnitude error factor, which is insensitive to phase 
discrepancies, and P is the phase error factor, which is 
insensitive to magnitude discrepancies. 

Sprague and Geers (2006) set C<0.1, 0.1≤C≤0.2 and C>0.2 
as the bounds for satisfactory, marginal, and unacceptable 
error, respectively. These bounds can be used to decide 

adaptiveT  the maximum time period for mesh modification in 

specific problem where a reference solution is available 
otherwise a general empirical equation must be defined for 

determination of adaptiveT . In this study a fine mesh is used as 

the reference solution. If the C-error at the end of total time 
exceeds the maximum acceptable value, a reduction in 

adaptiveT  is needed. The following guideline is proposed for 

the maximum time period for mesh modification  , adaptiveT  in 

a dynamic adaptive analysis. 

max
adaptive 6

f

L
T

c

 
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                          (55) 

where 

max
min max

fc
L

n f
       (56) 

In our experience for the maximum element size, six linear 
elements are considered to span the minimum wave length. 
According to Eq. (51), adaptiveT  is the time that is required by 

wave front to span maximum mesh size Lmas. 

6 Results and discussion 

Numerical examples of scatter wave propagation by 
adaptive finite elements are presented. Accuracy of the 
results using fine, equivalent and adaptive meshes is studied. 
The number of degrees of freedom (DOFs) in an equivalent 
mesh is approximately equal to the average number of DOFs 
in the adaptive meshes during the total analysis time. The 
latter procedure has been employed to assess the efficiency of 
the adaptive mesh.  

6.1 Concrete wall under a triangular pulse  
A concrete wall in contact with a semi-infinite reservoir is 

affected by a pulse of triangular plane wave. The results of 
adaptive and equivalent meshes are compared against that of 
a uniform fine mesh (as the reference solution). Fig. 4 shows 
the concrete wall with 0.3 m thickness and 2 m height.  

Concrete material properties consist of mass density of 
2400 kg/m3, modulus of elasticity of 21.0 MPa and Poisson’s 
ratio of 0.2. The incident pulse has amplitude of 1.0 MPa and 
a duration of 1.0 millisecond as defined in Fig. 5. 

 
Fig. 4 Concrete wall under a triangular pulse 

 

 
Fig. 5 Pressure loading at the stand-off point 

 

 
Fig. 6 Power spectral density of triangular loading 

 

An incident plane pulse wave is considered inside the 
reservoir to represent a wave travelling toward the standoff 
point in the middle height of the wall. A non-reflective 
boundary condition is considered at just 2 m away from the 
wall in order to model the infinite boundary. The power 
spectral density of pressure incident wave has been plotted in 
Fig. 6 and the frequency content is determined. 

max
min max

1440
0.12m

6 2000
fc

L
n f

  


                (57) 

Accordingly, the maximum element size is 12 cm for the 
wave front but it could be increased elsewhere. 

Generally, by medium frequencies (MF) one could refer to 
the range of 300 kHz to 3 000 kHz. Frequencies below and 
higher than this range could be denoted as low (LF), and high 
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(HF) frequencies, respectively. According to Fig. 6, the 
present problem can be categorized as an LF problem. The 
initial mesh shown in Fig. 7(a)–(c) and Fig. 7(d) is fairly fine. 
In Table 1, the number of nodes and elements in adaptive 
steps has been shown. 
 

 
(a) T=0–0.5 ms (Initial uniform mesh) 

 

 
(b) T=0.5–1 ms 

 
(c) T=1–1.5 ms 

 
(d) T=1.5–2 ms (Final mesh) 

Fig. 7 Successive updated meshes 
 

 
Fig. 8 Fine mesh with 1 877 nodes 

 

 
Fig. 9 Equivalent mesh with 609 nodes 

 
For the initial and reference uniform fine meshes as shown 

in Fig. 8, the maximum size of the elements is considered as 
10 cm. In this case the fluid and structure interface nodes are 
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kept coincident. The equivalent mesh is shown in Fig. 9. The 
total time required the scattered wave to travel from the wall 
to the infinite boundary is about 1.4 ms, after this time, the 
wave front exits the fluid domain and the pressure magnitude 
is decayed. According to Eq. (51), this period is divided into 
four 0.5 ms time steps and adaptation is performed once in 
each division 

adaptive

0 12
6 0.5ms

1440

.
T    

 
   (58) 

In Figs. 10 to 12, adaptive steps are shown for the fluid 
domain.  

When the wave front is near the wall (Fig. 10), pressure is 
an element is justified. A coarse mesh has been generated 
near the infinite boundary at x=2, while a fine mesh is 
necessary around the wave front, as shown in Fig. 11.  

As the wave front is transmitted towards the infinite 
boundary, refinement is concentrated near this boundary. In 
Fig. 12 in the region near the wall a coarse mesh can be 
sufficient that has a non-essential limitation of at least one 
fluid element being attached to each structural element. Fig. 
13 depicts the time history of the scattered pressure for a 
middle point of reservoir. The existing jumps in the “adaptive” 
curve are due to the particular interpolation scheme for the 
solution data transfer from the old to the new mesh. Table 2 
compares the global C-error factor and the CPU time 
evaluated for different meshes. The pressure error norm is 
improved at about 18 percent compared to that of the 
equivalent mesh. The adaptive mesh CPU time also includes 
the mesh updating time. This result showed improvements in 
both precision and CPU time when using the adaptive mesh 
algorithm. Figs. 14 and 15 clearly showed that the overall 
response of the wall is improved when using the moving 
adaptive mesh rather than the equivalent uniform mesh. 

 
Table 1 The number of nodes and elements in different 

meshes  

Mesh type 
Number 

of elements 
Number 
of nodes 

Time 
Intervals/ms 

Initial mesh 887  485  0–0.5  
2nd mesh 399  452  1–0.5  
3rd mesh 602  732  1.5–1  
4th mesh 941  765  2–1.5  

Adaptive (average) 707 608 —  

Equivalent mesh 1 129 609 0–2  

Fine(reference) mesh3 611  1 877  0–2  

 
Table 2 Comparison of error factors and CPU times 

CPU time/s C-error (Eq. (39)) Mesh type 

50 0.020 Adaptive 

58 0.024 Equivalent 

80 0.000 Fine(exact) 

 

 
Fig. 10 Pressure contour at 0.5 ms 

 

 
Fig. 11 Pressure contour at 1 ms 

 

 
Fig. 12 Pressure contour at 1.5 ms 
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Fig. 13 Scattered pressure time history in the middle of 

reservoir 

 
Fig. 14 Time history of acceleration in the x direction at the 

standoff point on the wall 

 
Fig. 15 Time history of velocity in the x direction at the 

standoff point on the wall 
 
6.2 Concrete shell under step pulse  

An infinite 0.15 m thickness concrete shell, in contact with 
a semi-infinite reservoir, is affected by a pulse of step plane 
wave, as depicted in Fig. 16.  

The results of adaptive and equivalent meshes are 
compared with that of a uniform fine mesh. The incident 
pulse has amplitude of 1 MPa and a 1 µs rise time as shown 

in Fig. 17. The source of the pulse is at the center of the 
reservoir and the location of standoff is at the middle of the 
concrete shell. The power spectral density of pressure 
incident wave has been plotted in Fig. 18. The maximum 
element size is calculated as:   

max
min max

1440
0 00048m=0.48mm

6 500000
fL

n
 .

C

f
    


   

(59) 

With this result it can be derived that a very fine mesh is 
required. However, for the sake of comparison of adaptive 
and equivalent meshes, some level of error with fmax=2 000, 
which is related to 0.95 of maximum power spectral density 
is accepted. Lmax=10 cm and the initial mesh is generated 
according to Fig. 19. 

Table 3 presents the mesh data in different adaptive 
analysis steps. The guideline in Eq. (51) proposes 0.41 s for 
the mesh updating time, with Lmax=10 cm, but for higher 

accuracy adaptiveT  is set 0.2 s. Figs. 19 and 20 show the initial 

and the equivalent meshes, respectively. 
 

Table 3 Number of nodes and elements in different meshes  

Mesh type 
Number 

of 
elements 

Number 
of 

nodes 

Time 
intervals/ms

Initial mesh 2 736 1 452 0–0.2 
2nd mesh 229 145 0.4–0.2 
3rd mesh 361 211 0.6–0.4 
4th mesh 463 262 0.8–0.6 
5th mesh 365 213 1–0.8 
6th mesh 465 265 1–1.2 
7th mesh 394 229 1–1.2 

Adaptive (average)716 399 1.2–1.4 
Equivalent mesh 679 390 0–1.4 

Fine mesh 2 736 1 452 0–1.4 

 

 
Fig. 16 Plane strain concrete shell under step pulse 

 
Fig. 17 Pressure loading at the standoff point (rise time=1 µs) 
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Fig. 18 Power spectral density of step loading 

 
Fig. 19 Initial mesh with 1 452 nodes 

 
Fig. 20 Equivalent mesh with 399 nodes 

 
Fig. 21 shows successive updated meshes based on the 

curvature indicator criterion. When the scattered wave front 
propagates almost in radial direction, the fine part of the mesh 
moves with it until it reaches to the infinite boundary. Since 
Lmax is very small and a relatively large element size is still 
used for the fine mesh, oscillations are expectedly observed 
even in the fine mesh. This is illustrated in Fig. 22. The effect 
of these oscillations is not considered in the present 
comparison of adaptive and equivalent meshes.  

 

 
(a) T= 0.2 ms (Initial uniform mesh)                                         (b) T=0.4 ms                                                             (c) T=0.6 ms 

                          
(d) T=0.8 ms                                                                                           (e) T=1 ms 
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(f) T=1.2 ms                                                                               (g) T=1.4 ms (Final mesh) 

Fig. 21 Successive updated meshes and pressure  
 

According to Table 4 the pressure C-error factor of 
adaptive mesh is 11 percent less than that of the equivalent 
mesh. Also, CPU time has been reduced when using adaptive 
mesh. By comparing Table 2 and Table 4 it can be seen that 
the adaptive mesh is more effective for higher frequency 
contents of the incident wave loading. 

The time histories of acceleration and velocity are plotted 
in Figs. 23 and 24. 

 
Fig. 22 Time history of pressure at the standoff point 

 
Fig. 23 Time history of acceleration in x direction at the 

standoff point on the wall 

 

 
Fig. 24 Time history of velocity in x direction at the standoff 

point on the wall 
 
Adaptive and equivalent C-error factors are also compared 

with that of the fine mesh in Table 5. This showed that the 
velocity error factor of the adaptive mesh is 12.5 percent less 
than that of the equivalent mesh. This is an indication of the 
efficiency of dynamic adaptive solution. 

 
Table 4 Comparison of error factors and CPU times 

CPU time/s C-error (Eq. (3)) Mesh type 
30 0.163 0 Adaptive 
48 0.17 Equivalent 
214 0.00 Very fine (4326 Nodes)

 
Table 5 Comparison of horizontal velocity error norms 

C-error (Eq. (39))Mesh type 
0.063 Adaptive 
0.072 Equivalent 
0.000 Fine 

7 Conclusions 

This paper has presented a dynamic adaptive finite element 
analysis strategy for acoustic wave propagation due to 
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underwater explosion in fluid-structure interaction problems. 
This approach is based on the C-error factor, which has an 
appropriate adaptive mesh refinement that is carried out at 
certain time intervals during the total time of wave 
propagation. It has been numerically illustrated that the error 
indicator based on the curvature could produce improvement 
as high as 22 percent in C-error factor for the pressure time 
history for the test cases considered. Similar results have 
been obtained for the response of velocity and acceleration. 
The curvature error indicator can be an effective tool for 
examining the adequacy of a finite element meshes by 
identifying the regions where mesh refinement is necessary in 
acoustic adaptive dynamic analysis. The proposed guideline 
for the mesh updating time interval can be used in the 
dynamic adaptively process and its performance may be 
investigated in future studies. The same procedure can be 
used with gradient based formulation for very low frequency 
waves. Therefore, reduction in computational cost and 
increase in accuracy for high frequency wave is the obvious 
improvement compared to other traditional works. 
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2015 International Ocean Technology Conference & Expo (IOTCE 2015) 

 
September 1-3, 2015, Qingdao, Shandong, China 

 

The 2015 International Ocean Technology Conference & Expo (IOTCE 2015) will be held in the heart of the rapidly expanding Blue Economic Zone in 
Shandong Peninsula, Qingdao. It is a platform for the international and cooperative development of the national marine economy, in support of the 
offshore oil & gas, oceanographic, environmental and maritime industries around the world. IOTCE 2015 is a bridge for communication, and a 
showcase platform for engineers, scientists, and industry professionals to share and exchange ideas in their industries, and expand their network. IOTCE 

2015 includes a state-of-the-art marine science & technology and equipment exhibition, and a large-scale international academic conference.  

Marine Technology & Equipment Exhibition 

The International Ocean Technology Conference & Expo is a state-of-the-art showcase of the latest advancements in the marine science & technology 
industries. It provides a unique opportunity to gather global marine science & technology advantages as well as exhibiting achievements of marine 
industry. 

Exhibition agenda: 

August 30-31: Exhibition Setup 
September 1-3: Exhibition IOTCE Exhibition Area Division: 

(1)  Development Technology and Equipment for Ocean Oil, Gas, and Mineral Resources 
(2)  Marine Engineering Technology and Equipment, Harbor Machinery 
(3)  Technology and Equipment for Ocean Renewable Resource 
(4)  Underwater Technology and Equipment, Ocean Exploration and Detection Instruments 

During the exhibition, venues are available for companies to host conferences to promote new products and new technology, hold commercial 
negotiation and cooperation sessions, and host press conferences. 

International Academic Conference 

The conference begins with the main introductory session and keynote speech. The introductory session demonstrates the future of the marine industry, 
including its challenges and direction. The remaining sessions cover topics ranging from offshore platform and technology design to underwater 

technology development. 
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