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Abstract
Numerical investigation ofwave propagation in transversely isotropic poroelastic
half-space with the use of a new stretched coordinate system through the Mesh-
less Local Petrov–Galerkin (MLPG) formulation is presented in this paper. To
this end, the u−p formulation of Biot is adopted as the framework of the porous
media. One approach to numerically solve the infinite domain problems is the
use of an absorber layer in which the whole half-space is divided into two parts,
that is (i) a finite part, in which the responses are interested, and (ii) the remain-
ing semi-infinite part, which is replaced by a Perfectly Matched Layer (PML).
The stretched coordinates in the PML are introduced in such a way that the
wave propagating in it does not generate spurious reflection to the finite part.
Comparing the numerical results with some existing exact solutions and evalu-
ating the norm of error demonstrate that the response functions in the finite part
are achievable as precise as desired. Some new results are also presented which
show the validity of the numerical approach in poroelastic transversely isotropic
domain.

KEYWORDS
MLPG, PML, soil-structure interaction, transversely porous media, wave propagation

1 INTRODUCTION

The wave propagation problem in multiphysics, especially in saturated porous media, has been of great interest for both
mathematicians and engineers due to its mathematical complexity and engineering applications. An accepted theory in
this discipline is the Biot’s theory,1,2 which has been applied successfully by analytical and numerical approaches. Among
different expressions of Biot’s formulations for poroelastodynamic phenomena,whichwere proposed by considering some
constrains and assumptions,3–6 the formulation known as 𝒖 − 𝑝,4 where 𝒖 is the displacement vector and 𝑝 is the pore
fluid pressure, has been employed by many researchers due to its applicability, simplicity, and less unknown variables. In
this formulation, the inertial effect due to the relative acceleration between solid and pore phases is neglected, which is
precise enough in many engineering problems with low-frequency excitation.
During the last three decades, many researchers have concentrated on determining the responses of the poroelastic

media with the use of Biot’s theory and its simplified forms.7–16 In the subject of elastodynamics of porous media, espe-
cially soil-structure-interaction, because of its nature the transversely isotropic properties for mechanical and hydraulic
behavior are accepted. Vertical sedimentation and compaction over time are mainly the reasons for the transversely
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isotropic behavior of the soil. Based on the 𝒖 − 𝑝 formulation of Biot’s theory, the analytical solutions for the boundary
value problems (BVPs) of transversely isotropic half-space with the use of the potential functions for decoupling of the
coupled equations of motion and fluid continuity have been studied by Sahebkar and Eskandari–Ghadi.10 Applying the
stiffness method and the inverse Fourier transform, Ba et al.17,18 solved the steady-state dynamic response of multilayered
transversely isotropic half-space subjected to point forces and pore pressure. Dynamic responses of poroelastic layered
media under transient and moving loads by means of integral transform techniques have been investigated in several
works.19–21 Furthermore, time history response of a half-space filled by transversely isotropic saturated materials
subjected to obliquely incident seismic waves is studied in ref. 22.
Since performing both the analytical and semianalyticalmethods for various boundary conditions (BCs) and anisotropic

property are complicated, the researchers have been forced to develop and implement numerical methods. The mathe-
matical requirement for this problem is the concept of wave propagation in infinite domains.23–25 Since imposing radiation
condition in domain-based analysis, like finite element method (FEM), is not straightforward, applying numerical meth-
ods in wave propagation of unbounded domains needs special attention. To obviate the issue, several approaches have
been proposed to make it possible to truncate the unbounded domain,23,26–31 Absorbing boundary, proposed in refs. 26,
28, 29, is a successful numerical approach for these kinds of problems. In this method, the absorbing boundary, that is
surrounding the truncated domain, is used to be replaced for the far-field points of the domain; meaning that the wave
propagating toward the absorbing boundary is not reflecting back to the truncated domain as it is in real physics. How-
ever, Perfectly Matched Layer (PML), which was first introduced by Berenger in the context of electromagnetic waves,32
is another innovation for numerical investigation for wave propagation of unbounded domain. The concept of PML in
which the far-filed is replaced by a finite layer, was employed in electromagnetics and electrodynamics by some other
researchers.33,34 PML also has been used in elastic wave propagation in Cartesian, cylindrical, and spherical coordinate
systems.35–37 Chew et al.34,35 with the use of the technique of PML obtained precise results for both time-harmonic and
transient wave propagation in unbounded elastic media. Basu and Chopra38,39 clearly explained the problem for one-
dimensional wave propagation and extended it to three-dimensional case. Zeng and Liu40 combined finite difference
method with PML to study wave propagation in poroelastic material in the framework of 𝒖 − 𝒖 formulation derived
from the Biot’s theory. Fathi et al.41 proposed a hybrid formulation for elastic wave propagation in a heterogenous PML-
truncated media in which displacement-stress and standard displacement formulations are respectively used for the PML
and the interior domain. Zhang and Taciroglu42 developed the standard PML to the viscoelastic PML that incorporates
the Rayleigh damping mechanism. To remove the frequency singularity in transient elastic wave propagation, François
et al.43 proposed the complex-frequency-shifted PML in which a frequency shift is added to the stretching functions.
Computational modeling techniques have been employed to model and investigate the physical phenomena in engi-

neering systems. These techniques require solving equations with partial derivatives that govern the physical phenomena.
These partial differential equations can be analyzed using numerical methods such as finite element method, finite dif-
ference method, meshless method, and so forth. Some of these methods require discretization of the overall domain of
the problem into elements, for example, FEM, and in some others like meshless methods, a set of nodes is used to repre-
sent the domain of interest. In fact, in the latter approach the relationship between the nodes defined in the domain does
not generate elements. The meshless approach, which is used in this paper, generates a system of algebraic equations by
using sparse nodes both on the boundary and inside the domain in order to derive the response to the excitation. Vari-
ous meshless methods have been developed, including the Element Free Galerkin (EFG) method,44 the Meshless Local
Petrov–Galerkin (MLPG) method,45 the Point Interpolation Method (PIM),46 the Point Assembly Method (PAM),46 the
Finite PointMethod (FPM),47 and so forth. TheMLPGmethod, presented in refs. 45, 48, is ameshlessmethod inwhich the
weak form equations are written over a set of local subdomains defined on the global domain, and no global background
cells are required for integration.
On the other hand, to perform calculations on the weak form extracted bymeshlessmethods, onemay need to use some

methods to generate shape functions, the most famous of which are the Smoothed Particle Hydrodynamics (SPH),49,50
the Reproducing Kernel Particle Method (RKPM),51,52 the Moving Least Squares (MLS),44,53 the PIM,46 the Radial Point
Interpolation Method (RPIM).52 Each of these methods of generating shape functions contains special features that dis-
tinguish their functions from each other. Some of these features are the partition of unity, the property of Kronecker’s
delta function, the linear field reproduction, stability, consistency, compatibility, and high flexibility to choose any arbi-
trary distribution of nodes on the boundary and inside the problem domain. In this paper, the Polynomial-Radial Point
Interpolation Method (P-RPIM)54 is used, in which the delta function property, high convergence, consistency (which is
achieved by adding polynomial bases), and proper accuracy are its properties.
To enhance the accuracy of the approximate solutions obtained by the numerical methods, it is needed to know the

effective sources may increase the errors for example, mesh/node distribution, field variable concentrations, singularities,



SHAKER et al. 3

F IGURE 1 The half-space containing saturated transversely isotropic materials in both mechanical and hydraulic points of view
subjected to arbitrary BCs. BCs, boundary conditions.

and jump conditions. The error analysis has been successfully performed to improve the efficiency and accuracy of the
numerical methods. This analysis is done in two steps: (i) error estimation,55–57 and (ii) geometry refinement based on
the first step.58–61 Besides, based on the estimated error, the refinement is generally done by two ways: (i) adding, moving,
or remeshing/regenerating nodes (denoted as h-method), and (ii) using higher order interpolation function (so called
p-method) to improve the accuracy. Also, simultaneous application of h- and p-methods is possible.
In this study, wave propagation due to an arbitrary time-harmonic finite surface excitation applied on a half-space

containing saturated poroelastic transversely isotropic material in bothmechanical and transport points of view is consid-
ered. The 𝒖 − 𝑝 formulation is adopted as the governing equations for the whole half-space. To the best knowledge of the
authors, the PML based numerical investigation of wave propagation in unbounded anisotropic poroelastic domains has
not been studied so far. To this end, defining a family of continuous stretched coordinate transformation tomake PML, the
equations of motion and their weak forms are written in the stretched coordinate system to obtain the local weak forms.
In this regard, a family of transfer functions is used to make an image of the original problem in the stretched coordinate
system. These transfer functions are proposed in such a way that the response functions in the new and old coordinate
systems are the same in the finite region where the responses are desired (near field), and the wave energy is dissipated
along the PML surrounding the near field. The parameters of the transfer functions are chosen in such a way that the
outer boundary of the PML plays the role of the remote boundary.
To implement the MLPG method for estimation of nodal values, the P-RPIM is used to construct shape functions.

The general form of the governing equations in the PML for the transversely isotropic saturated poroelastic material can
be degenerated to some other problems such as: transversely isotropic elastic, isotropic elastic, and viscoelastic media.
The procedure of the meshless implementation is summarized and two general forms of excitation, that is, stress wave
propagation and forced vibration of a rigid foundation, are expressed. It is shown that the numerical results are collapsed
on the analytical solutions in near field with high accuracy, while they are attenuated in the far-field.

2 STATEMENT OF THE PROBLEM

Dynamic responses for a half-space containing transversely isotropic materials subjected to arbitrary BCs, such as forced
vibration and stress vibration, in the frequency domain (as seen in Figure 1) are investigated by using ameshless approach.
Themechanical and hydraulic properties of the half-space are considered transversely isotropic;meaning that thematerial
properties in the depth direction are different from any direction in the planes perpendicular to the depth direction, and
the material properties in any direction in this plane are the same. The governing equations of motion of this BVP are a
special form of Biot’s theory, known as the 𝒖 − 𝑝 formulation, in which the relative acceleration of the fluid and the solid
skeleton is assumed to be negligible.
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Due to the impossibility of manipulation with infinite/semi-infinite domains in domain-based numerical approaches,
one can truncate the domain of the problem, and impose proper BCs around it in such way that the solutions in the
truncated domain be equal to the corresponding region in the unbounded domain. To this end, a layer with a finite depth
is defined around the finite domain denoted as near field, to be replaced for the surrounding unbounded domain namely
far-field. This finite layer surrounding the near field, known as PML, absorbs the energy of the propagating waves in such
a way that there will be no reflection to the near field. According to this definition, the infinite/semifinite domain can be
divided into two separate regions: the near field and the far-field.
The near field is a part of the infinite/semifinite domainwhere the accuracy of the solutions of the problem is important,

and the far-field is the rest of the domain where the accuracy and precision of the solution are not required. It is worth
mentioning that in the far-field, the rate of attenuation of various functions and the smallness of the functions at the outer
boundary of the PML are important. By replacing the entire infinite/semifinitemediumwith a near field and an absorbing
layer around it, a solution can be reached that the functions in the near field are completely identical to the ones of the
infinite/semifinite medium, and the absorbing layer plays the role of the rest of the infinite/semifinite medium. Thus, in
this way the infinite/semi-infinite domain replaced by a finite domain and this modeling is suitable for numerical analysis
of wave propagation problems.
In order to define this absorbent layer, it is necessary to write the governing equations in a new coordinate system,

namely stretched coordinate system, which is an image of the physical coordinate system. This new coordinate system
must be written in such away that the response functions in the near field are equal to the original problemwith appropri-
ate accuracy. For numerical analysis of the problem, a meshless approach is used. In this method, a set/cloud of scattered
nodes are chosen both in the domain and on its boundary, and the weak forms of the equations of motion are written
using four degrees of freedom defined at each node, three of which are used for displacement vector 𝒖 and one for fluid
pressure 𝑝. Then, solving the obtained equations with the BCs, the nodal values at each node are calculated from which
the stress tensor at every node in the domain is calculated by postprocessing analysis.
The numerical method used in this research is the MLPG method. It should be mentioned that the saturated porous

medium is the general state, which with minor changes can be degenerated to dry homogeneous media, saturated porous
homogeneous media, and dry homogeneous media.

3 GOVERNING EQUATIONS IN THE STRETCHED COORDINATE SYSTEM

Asaturated poroelasticmaterial being transversely isotropic for bothmechanical and hydraulic properties is considered, in
such a way that the material axes of symmetry for bothmechanical and flow of fluid are parallel. The governing equations
of motion and Darci’s law in the framework of 𝒖 − 𝑝 formulation, as a simplified version of Biot’s formulation, where the
relative pore fluid acceleration has been neglected, may be written in the form of3,4

∇ ⋅ 𝝈 + 𝜌𝒃 = 𝜌𝒖̈ (1a)

𝐰̇ =
𝒌

𝜂
(−∇𝑝 + 𝜌𝑓𝒃 − 𝜌𝑓𝒖̈) (1b)

In Equation (1b), 𝝈 is the total Cauchy stress tensor, 𝒖 is the displacement vector of solid skeleton,𝐰 and 𝑝 are, respec-
tively, the relative displacement vector of fluid with respect to the solid skeleton and the pore fluid pressure. In addition, 𝒃
is the body force vector, and 𝜌𝑓, 𝜌𝑠 and 𝜌 = (1 − 𝑛)𝜌𝑠 + 𝑛𝜌𝑓 are the fluid, solid, and mixture mass densities, respectively,
with 𝑛 being the porosity. Furthermore, 𝒌, which is a diagonal matrix with two independent eigenvalues for a transversely
isotropic material, is intrinsic permeability tensor and eventually, 𝜂 is dynamic viscosity of the fluid.
In the following, the stretched coordinate system is introduced, then the governing equations are written in this new

coordinate system, and finally, the weak forms are obtained. The BCs involved in the problem are defined in the end of
this section.

3.1 Stretched coordinate system

The absorption layer formulation is one of the approaches used to replace a finite thickness layer for an infinite far-
field. With this approach, the computational cost for domain-based numerical methods is greatly reduced. The energy
of the advancing wave must be almost completely dissipated in this absorbent layer, and in this case, there will be no
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F IGURE 2 The near field adjacent to the PML. The propagated wave is attenuating in the PML, and so, there is no reflected wave
propagating through the near field. PML, perfectly matched layer.

reflected wave from the end of the absorbent layer. Therefore, the numerical solution is performed in the near field with
the highest accuracy. The response functions in the PML, which are affected by the attenuation procedure, are not correct.
Nevertheless, the solution method followed in this approach does not affect the accuracy of the response functions in the
near field. In this method, a frequency-dependent complex function, which is referred to as the transfer function from
now on, is used to produce the standard formulation of the PML. This transfer function, which is used to image the far-
field on the PML, initially defined by Chew and his colleagues.62 If the coordinate system for the half-space is the physical
coordinate system, the transfer function transfers the domain from the physical coordinate system to a new coordinate
system which is called the stretched coordinate system. To define the equations in the stretched coordinate system, it is
necessary to briefly discuss the requirements for the construction of the PML. As seen in Figure 2, there are two adjacent
subdomains in the PML technique to define the whole domain of the problem:

∙ the near field where the responses are the same as the original problem,
∙ the PML around the near field, where the amplitude of any function is attenuating through and there is no reflection
back to the near field.

Next, it is assumed that the attenuation of the wave amplitude takes place in the direction perpendicular to the interface
of the near field and the PML. The coordinate variable normal to this common boundary is denoted by 𝑠. In this case, the
near field and the PML are respectively defined in the intervals 0 < 𝑠 < 𝑠0 and 𝑠0 < 𝑠 < 𝑠𝑡. Therefore, the thickness of the
PML in the direction of 𝑛𝑠 according to Figure 2 is 𝑠𝑃 = 𝑠𝑡 − 𝑠0. The physical coordinate 𝑠 inside the absorbent layer is
depicted as 𝑠, and defined in the following form as a function of external excitation circular frequency 𝜔, and 𝜆𝑠, which is
called stretching function:

𝑠 =

𝑠

∫
0

𝜆𝑠(𝑠
′, 𝜔)d𝑠′ (2)

It will be seen that 𝑠 has been considered as a function of both 𝑠 and the frequency of the excitation for achieving the
best accuracy. In classical studies conducted on the idea of the PML, the stretching function is chosen in the following
form:

𝜆𝑠(𝑠, 𝜔) = 𝛼𝑠(𝑠) +
1

𝑖𝜔
𝛽𝑠(𝑠) (3)
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F IGURE 3 The near field and the PML in the stretched coordinate system. PML, perfectly matched layer.

so that 𝛼𝑠(𝑠) is the scaling function which stretches or shortens the coordinate variable 𝑠, and 𝛽𝑠(𝑠) is the attenuation
function reducing the amplitude of the propagating wave. In the evanescent wave, the term 𝛼𝑠(𝑠) strengthens the action
of reducing the wave amplitude by lengthening the real part of the coordinate variable 𝑠. Thus, 𝛼𝑠(𝑠) is used to enhance
the attenuation of the evanescent wave amplitude and 𝛽𝑠(𝑠) is used to enhance the attenuation of the propagating wave
amplitude. For waves that consist of both types of waves, both functions must be defined appropriately. One of the limita-
tions related to the definition of these two functions is that the wave does not break or refract when crossing the interface
of the near field and the PML. In other words, the wave should not realize the interface when passing through this region.
It is necessary and also sufficient that:

∙ 𝛼𝑠(0 ⩽ 𝑠 ⩽ 𝑠0) = 1
∙ 𝛽𝑠(0 ⩽ 𝑠 ⩽ 𝑠0) = 0
∙ 𝛼𝑠(𝑠) and 𝛽𝑠(𝑠)must be continuous, positive, and non-descending

in order to (i) have no reflected wave from the boundary between the near field and the PMLwhen the wave is propagating
through, (ii) have the responses in the near field to be as accurate as we wish, and (iii) the wave energy to be attenuated
along the PML. To define the absorbing layer in order to attenuate the amplitude of the waves entering this area, the
equations of motion and Darcy’s law are written in the stretched complex coordinate system. In the frequency space, the
variables of the stretched coordinate system are defined as follows:

𝑥̃𝑖 ≔ ∫
𝑥𝑖

0

𝜆𝑖(𝑠, 𝜔)𝑑𝑠, 𝑖 = 1, 2, 3 (4)

It should be noted that each of 𝑥̃𝑖 is assumed to be only a function of 𝑥𝑖 . Equation (4) defines a new coordinate system
in which the near field in the stretched and physical coordinate systems are exactly the same, while the positions on the
outer boundaries of the PML are the interpretation of the remote points in the physical coordinate system. The transfer
function 𝜆𝑖 and its parameters are used to speed up/down the attenuation of the response functions inside the PML along
𝑥𝑖-axis.

3.2 Strong form of the equations in the stretched coordinate system

The coordinates 𝑥𝑖 and the derivatives with respect to these coordinates in the equations of motion and the transport
equation in the absorbing layer should be replaced by the stretched coordinate variables 𝑥̃𝑖 (see Figure 3):
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𝜕

𝜕𝑥̃𝑖
=

1

𝜆𝑖(𝑥𝑖)

𝜕

𝜕𝑥𝑖
, 𝑖 = 1, 2, 3

𝜕2

𝜕𝑥̃𝑖𝜕𝑥̃𝑗
=

𝜕

𝜕𝑥̃𝑖

(
1

𝜆𝑗(𝑥𝑗)

𝜕

𝜕𝑥𝑗

)
=

1

𝜆𝑖(𝑥𝑖)

𝜕

𝜕𝑥𝑖

(
1

𝜆𝑗(𝑥𝑗)

𝜕

𝜕𝑥𝑗

)

=

⎧⎪⎪⎨⎪⎪⎩
−(𝜆𝑗(𝑥𝑗))

′

(𝜆𝑗(𝑥𝑗))
3

𝜕

𝜕𝑥𝑗
+

1

(𝜆𝑗(𝑥𝑗))
2

𝜕2

𝜕𝑥2
𝑗

𝑖 = 𝑗

1

𝜆𝑖(𝑥𝑖)𝜆𝑗(𝑥𝑗)

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑖 ≠ 𝑗

(5)

in which the Einstein summation convention has not been used.
Before writing the equations in the stretched coordinate system, the equations are first transferred to the frequency

space. In order to obtain the equations of motion for the poroelastic medium in the frequency space, it is sufficient to
apply the Fourier transform which is defined as:

𝑓(𝒙; 𝜔) = ∫
+∞

−∞

𝑓(𝒙; 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 (6)

for an integrable function in time domain 𝑓(𝒙; 𝑡). Thus, Equation (1) is written as:

∇ ⋅ 𝝈̂(𝒙; 𝜔) + 𝜌𝒃̂(𝒙; 𝜔) = 𝜌(𝑖𝜔)
2
𝒖̂(𝒙; 𝜔) (7a)

∇ ⋅ [(𝜌𝑓𝑘𝑖𝑗(𝑖𝜔)
2
− 𝛼𝑖𝑗𝜂(𝑖𝜔))𝑢̂𝑗(𝒙; 𝜔) + 𝑘𝑖𝑗𝑝̂,𝑗(𝒙; 𝜔) − 𝑘𝑖𝑗𝜌

𝑓𝑏̂𝑗(𝒙; 𝜔)]𝒆𝑖 −
𝜂

𝑀
(𝑖𝜔)𝑝̂(𝒙; 𝜔) = 0 (7b)

in frequency domain, where .̂ is the symbol of variables in frequency domain, and 𝛼𝑖𝑗 is Biot’s effective stress tensor. The
term 𝜔 in (𝒙; 𝜔) is dropped from now on for simplicity. Equation (7b), in the stretched coordinate system, is rewritten as
follows:

𝜎̂𝑖𝑗(𝒙̃)

𝜕𝑥̃𝑖
+ 𝜌𝑏̂𝑗(𝒙̃) = 𝜌(𝑖𝜔)

2
𝑢̂𝑗(𝒙̃), 𝑗 = 1,2,3 (8)

Using (5) in (8), the equations are transferred to the physical coordinate system:

1

𝜆1

𝜎̂1𝑗(𝒙)

𝜕𝑥1
+

1

𝜆2

𝜎̂2𝑗(𝒙)

𝜕𝑥2
+

1

𝜆3

𝜎̂3𝑗(𝒙)

𝜕𝑥3
+ 𝜌𝑏̂𝑗(𝒙) = 𝜌(𝑖𝜔)

2
𝑢̂𝑗(𝒙), 𝑗 = 1,2,3 (9)

multiplying both sides of these equations by 𝜆1𝜆2𝜆3, yields:

∇ ⋅ (𝝈̂𝑇(𝒙)𝚲(𝒙)) + 𝜌𝜆1(𝒙)𝜆2(𝒙)𝜆3(𝒙)𝒃̂(𝒙) = 𝜌(𝑖𝜔)
2
𝜆1(𝒙)𝜆2(𝒙)𝜆3(𝒙)𝒖̂(𝒙) (10)

in which 𝚲 with the use of (3) is written as:

𝚲 =

⎡⎢⎢⎢⎢⎣
𝜆2𝜆3 0 0

0 𝜆1𝜆3 0

0 0 𝜆1𝜆2

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝛼𝑠
2𝛼

𝑠
3 0 0

0 𝛼𝑠
1𝛼

𝑠
3 0

0 0 𝛼𝑠
1𝛼

𝑠
2

⎤⎥⎥⎥⎥⎦
+

1

𝑖𝜔

⎡⎢⎢⎢⎢⎣
𝛼𝑠
2𝛽

𝑠
3 + 𝛼𝑠

3𝛽
𝑠
2 0 0

0 𝛼𝑠
1𝛽

𝑠
3 + 𝛼𝑠

3𝛽
𝑠
1 0

0 0 𝛼𝑠
2𝛽

𝑠
1 + 𝛼𝑠

1𝛽
𝑠
2

⎤⎥⎥⎥⎥⎦
1

(𝑖𝜔)
2

⎡⎢⎢⎢⎢⎣
𝛽𝑠
2𝛽

𝑠
3 0 0

0 𝛽𝑠
1𝛽

𝑠
3 0

0 0 𝛽𝑠
1𝛽

𝑠
2

⎤⎥⎥⎥⎥⎦
= 𝚲𝑒 +

1

𝑖𝜔
𝚲𝑝 +

1

(𝑖𝜔)
2 𝚲𝜔

(11)
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Considering the properties of the scaling and attenuation functions, one may select 𝚲𝑝 = 𝚲𝜔 = 0 and 𝚲𝑒 = 𝛿𝑖𝑗 in the
near field. On the other hand, substituting (11) in (10) results in

∇ ⋅

(
𝝈̂𝑇(𝒙)𝚲𝑒 +

1

𝑖𝜔
𝝈̂𝑇(𝒙)𝚲𝑝 +

1

(𝑖𝜔)
2
𝝈̂𝑇(𝒙)𝚲𝜔

)
+ 𝜌

(
𝑎̄1 +

1

𝑖𝜔
𝑎̄2 +

1

(𝑖𝜔)
2
𝑎̄3 +

𝑎̄3

(𝑖𝜔)
3

)
𝒃̂(𝒙)

= 𝜌

(
(𝑖𝜔)

2
𝑎̄1 + 𝑖𝜔𝑎̄2 + 𝑎̄3 +

𝑎̄3

𝑖𝜔

)
𝒖̂(𝒙)

(12)

in which

𝑎̄1 = 𝛼𝑠
1𝛼

𝑠
2𝛼

𝑠
3,𝑎̄2 = 𝛼𝑠

1𝛼
𝑠
2𝛽

𝑠
3 + 𝛼𝑠

1𝛽
𝑠
2𝛼

𝑠
3 + 𝛽𝑠

1𝛼
𝑠
2𝛼

𝑠
3,

𝑎̄3 = 𝛼𝑠
1𝛽

𝑠
2𝛽

𝑠
3 + 𝛽𝑠

1𝛽
𝑠
2𝛼

𝑠
3 + 𝛽𝑠

1𝛼
𝑠
2𝛽

𝑠
3,𝑎̄4 = 𝛽𝑠

1𝛽
𝑠
2𝛽

𝑠
3 (13)

with the same procedure, one may write the Equation (7b) as:

(
𝜌𝑓𝑘𝑖𝑗(𝑖𝜔)

2
− 𝛼𝑖𝑗𝜂(𝑖𝜔)

) 𝜕𝑢̂𝑗(𝒙)

𝜕𝑥𝑘

𝜕𝑥𝑘

𝜕𝑥̃𝑖
+ 𝑘𝑖𝑗

𝜕

𝜕𝑥𝑘

(
𝜕𝑝̂(𝒙)

𝜕𝑥𝑙

𝜕𝑥𝑙

𝜕𝑥̃𝑗

)
𝜕𝑥𝑘

𝜕𝑥̃𝑖
− 𝑘𝑖𝑗𝜌

𝑓
𝜕𝑏̂𝑗(𝒙)

𝜕𝑥𝑘

𝜕𝑥𝑘

𝜕𝑥̃𝑖
−

𝜂

𝑀
(𝑖𝜔)𝑝̂(𝒙) = 0 (14)

It is known that permeability tensor and Biot’s effective stress tensor are diagonal with two distinct eigen values and
two perpendicular eigen vectors, one of which is in 𝑥3-direction and the other is any vector in 𝑥3-plane. Therefore, one
may write (14) as(

𝜌𝑓𝑘11(𝑖𝜔)
2
− 𝛼11𝜂(𝑖𝜔)

)
Λ11

𝜕𝑢̂1(𝒙)

𝜕𝑥1
+
(
𝜌𝑓𝑘22(𝑖𝜔)

2
− 𝛼22𝜂(𝑖𝜔)

)
Λ22

𝜕𝑢̂2(𝒙)

𝜕𝑥2

+
(
𝜌𝑓𝑘33(𝑖𝜔)

2
− 𝛼33𝜂(𝑖𝜔)

)
Λ33

𝜕𝑢̂3(𝒙)

𝜕𝑥3
+ 𝑘11

𝜕

𝜕𝑥1

(
𝜕𝑝̂(𝒙)

𝜕𝑥1
Θ11

)
+ 𝑘22

𝜕

𝜕𝑥2

(
𝜕𝑝̂(𝒙)

𝜕𝑥2
Θ22

)
+𝑘33

𝜕

𝜕𝑥3

(
𝜕𝑝̂(𝒙)

𝜕𝑥3
Θ33

)
− 𝑘11𝜌

𝑓Λ11
𝜕𝑏̂1(𝒙)

𝜕𝑥1
− 𝑘22𝜌

𝑓Λ22
𝜕𝑏̂2(𝒙)

𝜕𝑥2
− 𝑘33𝜌

𝑓Λ33
𝜕𝑏̂3(𝒙)

𝜕𝑥3

−
𝜂

𝑀
(𝑖𝜔)𝜆1𝜆2𝜆3𝑝̂(𝒙) = 0

(15)

in which 𝚯 is:

𝚯 =

⎡⎢⎢⎢⎢⎢⎣

𝜆2𝜆3

𝜆1
0 0

0
𝜆1𝜆3

𝜆2
0

0 0
𝜆1𝜆2

𝜆3

⎤⎥⎥⎥⎥⎥⎦
(16)

Since Λ11, Λ22 and Λ33 are respectively independent of x1, x2 and x3, and since 𝒌 and 𝜶 are fixed tensors, one can write:

𝜕

𝜕𝑥1

[
(𝜌𝑓𝑘11(𝑖𝜔)

2
− 𝛼11𝜂(𝑖𝜔))Λ11𝑢̂1(𝒙)

]
+

𝜕

𝜕𝑥2

[
(𝜌𝑓𝑘22(𝑖𝜔)

2
− 𝛼22𝜂(𝑖𝜔))Λ22𝑢̂2(𝒙)

]
+

𝜕

𝜕𝑥3

[
(𝜌𝑓𝑘33(𝑖𝜔)

2
− 𝛼33𝜂(𝑖𝜔))Λ33𝑢̂3(𝒙)

]
+

𝜕

𝜕𝑥1

[
𝑘11

𝜕𝑝̂(𝒙)

𝜕𝑥1
Θ11

]
+

𝜕

𝜕𝑥2

[
𝑘22

𝜕𝑝̂(𝒙)

𝜕𝑥2
Θ22

]
+

𝜕

𝜕𝑥3

[
𝑘33

𝜕𝑝̂(𝒙)

𝜕𝑥3
Θ33

]
−

𝜕

𝜕𝑥1

[
𝑘11𝜌

𝑓Λ11𝑏̂1(𝒙)
]
−

𝜕

𝜕𝑥2

[
𝑘22𝜌

𝑓Λ22𝑏̂2(𝒙)
]
−

𝜕

𝜕𝑥3
[𝑘33𝜌

𝑓Λ33𝑏̂3(𝒙)]

−
𝜂

𝑀
(𝑖𝜔)𝜆1𝜆2𝜆3𝑝̂(𝒙) = 0

(17)

In vector space, the above equation is expressed as:

∇ ⋅ [(𝜌𝑓𝑘𝑖𝑗(𝑖𝜔)
2
− 𝛼𝑖𝑗𝜂(𝑖𝜔))Λ𝑗𝑘𝑢̂𝑘(𝒙) + 𝑘𝑖𝑗Θ𝑗𝑘𝑝̂,𝑘(𝒙) − 𝑘𝑖𝑗𝜌

𝑓Λ𝑗𝑘𝑏̂𝑘(𝒙)]𝒆𝑖 −
𝜂

𝑀
(𝑖𝜔)𝜆1𝜆2𝜆3𝑝̂(𝒙) = 0 (18)

Consequently, the governing Equations (14) and (18) are used in the remaining of this study to establish the required
procedure for numerical solution.
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F IGURE 4 Ω𝑠 and Γ𝑠 are the local subdomain and its boundary, which are used for the weak form integration. The support domain Ω𝑄

corresponding to the computational point 𝒙 is used for constructing the shape functions. Different BCs are also shown. BCs, boundary
conditions.

3.3 Weak form of the equations in the stretched coordinate system

In order to obtain the weak form of the governing equations, the divergence theorem is used after integrating the inner
product of the strong form Equations (14) and (18) with the arbitrary weight vector𝒘𝑇 = {𝑤1, 𝑤2, 𝑤3} and arbitrary weight
function 𝑤𝑝, respectively, over every subset of the global domain (called local subdomain):

∫
Γ𝑠

𝒘 ⋅ (𝝈̂𝑇(𝒙)𝚲 ⋅ 𝒏)𝑑Γ − ∫
Ω𝑠

∇𝒘 ∶ (𝝈̂𝑇(𝒙)𝚲)𝑑Ω + ∫
Ω𝑠

𝒘 ⋅ (𝜌𝜆1𝜆2𝜆3𝒃̂(𝒙) − 𝜌(𝑖𝜔)
2
𝜆1𝜆2𝜆3𝒖̂(𝒙))𝑑Ω = 0 (19)

and

∫
Γ𝑠

𝑤𝑝[(𝜌
𝑓𝒌(𝑖𝜔)

2
− 𝜶𝜂(𝑖𝜔))𝚲𝑢̂(𝒙) + 𝒌Θ∇𝑝̂(𝒙) − 𝜌𝑓𝒌Λ𝑏̂(𝒙)] ⋅ 𝒏𝑑Γ

−∫
Ω𝑠

(∇𝑤𝑝)
𝑇
⋅ [(𝜌𝑓𝒌(𝑖𝜔)

2
− 𝜶𝜂(𝑖𝜔))𝚲𝑢̂(𝒙) + 𝒌Θ∇𝑝̂(𝒙) − 𝜌𝑓𝒌Λ𝑏̂(𝒙)]𝑑Ω

−∫
Ω𝑠

𝑖𝜔𝜂

𝑀
𝑤𝑝𝜆1𝜆2𝜆3𝑝̂(𝒙)𝑑Ω = 0

(20)

in whichΩ𝑠 represents the local subdomain inside the global domainΩ, and Γ𝑠 is its boundary (see Figure 4 for the global
domain and the local subdomain). The weak forms for the near field in the physical and stretched coordinate systems are
the same.
On the other hand, the total stress can be decomposed into effective stress on solid particles and fluid pressure as Biot

introduced:

𝝈̂(𝒙) = 𝝈̂𝑠(𝒙) − 𝑝̂(𝒙)𝜶 (21)

In this equation, 𝝈̂𝑠(𝒙) = 𝝈̂′′(𝒙) (𝝈̂′′(𝒙) is the Biot’s effective stress. Substituting (21) in (19) leads to:

∫
Γ𝑠

𝒘 ⋅ ((𝝈̂𝑠(𝒙))
𝑇
𝚲 − 𝑝̂(𝒙)𝜶Λ) ⋅ 𝒏𝑑Γ − ∫

Ω𝑠

∇𝒘 ∶ ((𝝈̂𝑠(𝒙))
𝑇
𝚲 − 𝑝̂(𝒙)𝜶Λ)𝑑Ω

+∫
Ω𝑠

𝒘 ⋅ (𝜌𝜆1𝜆2𝜆3𝒃̂(𝒙) − 𝜌(𝑖𝜔)
2
𝜆1𝜆2𝜆3𝒖̂(𝒙))𝑑Ω = 0

(22)
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In these weak form equations, there are some integral terms defined on the boundaries of the local subdomains.
According to the location of each subdomain, its appropriate BCs are defined.

3.4 Definition of BCs

In the previous section, the weak form Equations (19) and (20) have been written on the local subdomains. The number
of degrees of freedom of each node is four. Also, in order to increase the accuracy of the solutions, the local subdomains
should have a suitable dispersion in the whole domain. Then, appropriate BCs should be defined and applied on each
of these subdomains. It is known that the displacement and stress BCs are coupled; however, they are independent from
the pore fluid pressure and hydraulic flux BCs. Thus, the boundary of the local subdomain is divided into the following
subsets:

∙ Γ𝑢: on which the displacements are known,
∙ Γ𝑡: on which the stresses are known,
∙ Γ𝑢𝑡 = Γ𝑡𝑢: on which some components of the stress tensor and some other components of the displacement vector are
known. If 𝒏, 𝒕, and 𝒖 be the unit normal vector to the surface, the traction vector and the displacement on the surface,
respectively, then two conditions are considerable:
1. 𝒕𝑛 = 𝒕 ⋅ 𝒏 is known and 𝒕𝑡 = 𝒕 − 𝒕 ⋅ 𝒏 is unknown. So, 𝒖𝑡 = 𝒖 − 𝒖 ⋅ 𝒏 is known.
2. 𝒕𝑡 = 𝒕 − 𝒕 ⋅ 𝒏 is known and 𝒕𝑛 = 𝒕 ⋅ 𝒏 is unknown. So, 𝒖𝑛 = 𝒖 ⋅ 𝒏 is known.

Thus, the whole boundary may be shown as Γ = Γ𝑢 ∪ Γ𝑡 ∪ Γ𝑢𝑡𝑡𝑛 ∪ Γ𝑢𝑛𝑡𝑡 in which Γ𝑢, Γ𝑡, Γ𝑢𝑡𝑡𝑛 and Γ𝑢𝑛𝑡𝑡 are disjoint sets.
For the BCs related to p and q there are:

∙ Γ𝑝: on which the pressure is known.
∙ Γ𝑞: on which the fluid flow is known.

Thus, Γ = Γ𝑝 ∪ Γ𝑞.
In general, the combination of these two sets of BCs can be experienced by the surface of the sub-domains

Γ𝑠 = Γ𝑠
𝑖
∪ Γ𝑠

𝑢𝑝 ∪ Γ𝑠
𝑢𝑞 ∪ Γ𝑠

𝑡𝑝 ∪ Γ𝑠
𝑡𝑞 ∪ Γ𝑠

𝑢𝑡𝑡𝑛𝑝
∪ Γ𝑠

𝑢𝑡𝑡𝑛𝑞
∪ Γ𝑠

𝑢𝑛𝑡𝑡𝑝
∪ Γ𝑠

𝑢𝑛𝑡𝑡𝑞
(23)

where Γ𝑠
𝑖
is the boundary of the local subdomain which does not coincide with any previously defined BCs (embraced in

the global domain). Note that, in the regions where the local subdomain does not share a surface with the boundary of
the problem domain, the condition is Γ𝑠 = Γ𝑠

𝑖
.

Therefore, in the most comprehensive form, the BCs are summarized as follows:

𝒖 = 𝒖◦ and 𝑝 = 𝑝◦ on Γ𝑠
𝑢𝑝

𝒖 = 𝒖◦ and 𝒒 = 𝒒◦ on Γ𝑠
𝑢𝑞

𝒕 = 𝒕◦ and 𝑝 = 𝑝◦ on Γ𝑠
𝑡𝑝

𝒕 = 𝒕◦ and 𝒒 = 𝒒◦ on Γ𝑠
𝑡𝑞

𝒖𝑡 = 𝒖◦
𝑡 , 𝒕𝑛 = 𝒕◦𝑛, and 𝑝 = 𝑝◦ on Γ𝑠

𝑢𝑡𝑡𝑛𝑝

𝒖𝑛 = 𝒖◦
𝑛, 𝒕𝑡 = 𝒕◦𝑡 , and 𝑝 = 𝑝◦ on Γ𝑠

𝑢𝑛𝑡𝑡𝑝

𝒖𝑡 = 𝒖◦
𝑡 , 𝒕𝑛 = 𝒕◦𝑛, and 𝒒 = 𝒒◦ on Γ𝑠

𝑢𝑡𝑡𝑛𝑞

𝒖𝑛 = 𝒖◦
𝑛, 𝒕𝑡 = 𝒕◦𝑡 , and 𝒒 = 𝒒◦ on Γ𝑠

𝑢𝑛𝑡𝑡𝑞

(24)

in which the terms .◦ are known functions on a subset of the boundary.

4 MLPGMETHOD

In the last two decades, meshless approaches due to the compatibility, construction of approximate solution in terms of
nodal values without the requirement of connectivity information, the flexibility in adding/deleting nodes, ease of the
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treatment of discontinuities, and large deformation, have been regarded for the numerical analysis of various problems
in continuum mechanics. Meshless methods have been developed to establish the system of algebraic equations over
the domain on interest without generating or using elements. In these methods, the collection of scattered nodes on the
entire domain and its boundary is used to express (not discretize) the domain of the problem and its boundary. Since these
nodes do not form any element, information about the relationship between the nodes in the form of the relationship that
is involved in element-based methods is not required.
As mentioned before, various expressions of meshless methods have been presented so far, each of which has specific

characteristics and assumptions.44,48 Many of these methods use the weak form formulation on the global domain or on
the subsets of the whole domain as subdomains. In the formulation defined over the global domain, background cells are
usually required for the weak form integration. So, these methods cannot be called completely meshless. Alternatively,
the methods that use the local subdomains may not need the global generation of cells. In this paper, MLPG method is
used for creating the required equations.
Inmeshless approaches, each of the shape function generationmethodsmay have specific features, which are the parti-

tion of unity, the property of Kronecker’s delta function, the linear field reproduction, stability, consistency, compatibility,
and the flexibility in choosing the distribution of nodes inside the domain and its boundary. Themore the features satisfied
by the method the more the accurate numerical results achieve. In FEM, the shape functions are generated based on the
elements, and the calculations related to the shape functions are easily performed. On the other hand, the construction
of shape functions in meshless methods has certain complications. For instance, in some meshless methods, contrary to
FEM, the property of Kronecker’s delta function does not exist.
There are various methods for constructing shape functions among them one can mention SPH,49,50 RKPM,51,52

MLS,44,53 PIM,46 RPIM.52 The shape functions constructed by the RPIM are not consistent. But there is no severe con-
cern in the regard of convergency for continuous function approximations.63 To escape from inconsistency of the shape
functions, polynomial basis functions can be added to the radial basis functions in the RPIM method.54 Furthermore, by
adding the polynomial basis functions to the radial basis functions, the accuracy dependence of the numerical results on
the shape function parameters in the RPIM method is significantly reduced. The P-RPIM method, which is presented in
the following subsection, is used to generate shape functions.

4.1 P-RPIM for generation of the shape functions

In this section, the process of constructing shape functions using the P-RPIM is described briefly. SupposeΩ𝑄 is the support
domain corresponding to the computing point 𝒙 = (𝑥1, 𝑥2, 𝑥3). This area is used to estimate the response functions at 𝒙
(see Figure 4). To interpolate/extrapolate the approximation function 𝑣 in the support domain Ω𝑄, 𝑛 nodal points

𝝃 = {𝝃 1, 𝝃 2, … , 𝝃𝑛}, 𝝃 𝑖 = (𝑥1, 𝑥2, 𝑥3), 𝑖 = 1, 2, … , 𝑛, (25)

which are selected based on a suitable distribution, are used. The estimated function under the condition
𝑛∑

𝑗=1

𝑃𝑘(𝝃𝑗)𝑎𝑗= 0, 1 ≤ 𝑘 ≤ 𝑚 (26)

is equal to:

𝑣ℎ(𝒙) =

𝑛∑
𝑘=1

𝑅𝑘(𝒙, 𝝃 )𝑎𝑘 +

𝑚∑
𝑗=1

𝑃𝑗(𝒙)𝑏𝑗 = 𝑹(𝒙, 𝝃 )𝒂 + 𝑷(𝒙)𝒃 (27)

where 𝑅𝑘 and 𝑃𝑗 are, respectively, the radial and the polynomial basis functions. The condition (26) guarantees the inde-
pendence of the polynomial basis functions from the radial ones and thus results in some unique values for 𝒂 and 𝒃. The
set of radial basis functions inside Ω𝑄 centered at 𝒙 is equal to:

𝑹(𝒙, 𝝃 ) = {𝑅(𝒙, 𝝃1), 𝑅(𝒙, 𝝃2), … , 𝑅(𝒙, 𝝃𝑛)} (28)

𝒂 = {𝑎1, 𝑎2, … , 𝑎𝑛} is the vector of unknown coefficients related to radial basis functions. Also, the set of polynomial
basis functions inside Ω𝑄 is in the form

𝑷(𝒙) = {𝑃1(𝒙), 𝑃2(𝒙), … , 𝑃𝑚(𝒙)} (29)
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and 𝒃 = {𝑏1, 𝑏2, … , 𝑏𝑚} is the unknown coefficients associated with it. Considering 𝑛 nodal values
⌢

𝒗 = {
⌢

𝑣1,
⌢

𝑣2, … ,
⌢

𝑣𝑛} in
Ω𝑄, the set of linear Equations (26) and (27) are written in the following form:

𝑹𝑄𝒂 + 𝑷𝑄𝒃 =
⌢

𝒗, 𝑷𝑇
𝑄
𝒂 = 0 (30)

where

𝑹𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑅(𝝃1, 𝝃1) 𝑅(𝝃1, 𝝃2) … 𝑅(𝝃1, 𝝃𝑛)

𝑅(𝝃2, 𝝃1) 𝑅(𝝃2, 𝝃2) … 𝑅(𝝃2, 𝝃𝑛)

. . … .

. . … .

𝑅(𝝃𝑛, 𝝃1) 𝑅(𝝃𝑛, 𝝃2) … 𝑅(𝝃𝑛, 𝝃𝑛)

⎤⎥⎥⎥⎥⎥⎥⎦
(31)

𝑷𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑃1(𝝃1) 𝑃2(𝝃1) … 𝑃𝑚(𝝃1)

𝑃1(𝝃2) 𝑃2(𝝃2) … 𝑃𝑚(𝝃2)

. . … .

. . … .

𝑃1(𝝃𝑛) 𝑃2(𝝃𝑛) … 𝑃𝑚(𝝃𝑛)

⎤⎥⎥⎥⎥⎥⎥⎦
(32)

Solving (30) for the unknown coefficient vectors 𝒂 and 𝒃 yields

𝒂 = 𝑺𝑎

⌢

𝒗, 𝒃 = 𝑺𝑏

⌢

𝒗 (33)

in which

𝑺𝑎 = 𝑹−1
𝑄

[
𝑰 − 𝑷𝑄

(
𝑷𝑇

𝑄
𝑹𝑄𝑷𝑄

)−1

𝑷𝑇
𝑄
𝑹−1

𝑄

]
, 𝑺𝑏 =

(
𝑷𝑇

𝑄
𝑹𝑄𝑷𝑄

)−1

𝑷𝑇
𝑄
𝑹−1

𝑄
, (34)

and 𝑰 is the unit diagonal matrix. Substituting 𝒂 and 𝒃 in (27), the approximation of the desired function is obtained in
terms of the nodal values:

𝑣ℎ(𝒙) =

𝑛∑
𝑘=1

𝜑𝑘(𝒙, 𝝃 )
⌢
𝑣

𝑘

= 𝝋(𝒙, 𝝃 )
⌢
𝒗 (35)

so that the vector of shape functions is written as:

𝝋(𝒙, 𝝃 ) = 𝑹(𝒙, 𝝃 )𝑺𝑎 + 𝑷(𝒙)𝑺𝑏 = {𝜑1(𝒙, 𝝃 ), 𝜑2(𝒙, 𝝃 ), … , 𝜑𝑛(𝒙, 𝝃 )} (36)

Thus, 𝑛 shape functions are obtained from Equation (36) to estimate 𝑣ℎ(𝒙). In addition to the approximation function
(35), the derivative of that is calculated as:

𝑣ℎ
,𝑖
(𝒙) =

𝑛∑
𝑘=1

𝜑𝑘,𝑖(𝒙, 𝝃 )
⌢

𝑣
𝑘
= 𝝋,𝑖(𝒙, 𝝃 )

⌢

𝒗 (37)

where

𝜑𝑘,𝑙(𝒙, 𝝃 ) =

𝑛∑
𝑖=1

𝜕𝑅𝑖(𝒙, 𝝃 )

𝜕𝑥𝑙
𝑺𝑎
𝑖𝑘

+

𝑚∑
𝑗=1

𝜕𝑃𝑗(𝒙)

𝜕𝑥𝑙
𝑺𝑏
𝑗𝑘

(38)

In the three-dimensional problem, the shape functions may be assumed to be the same in all three directions, in which
the shape functions in each direction are obtained using (36).
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4.2 Discretized equations in the stretched coordinate system

The weak forms of the governing equations in the stretched coordinate system have been given as Equations (19) and
(20) in Section 3.3. All terms in these equations are in tensor form. To easily manipulate with these terms, they should be
rewritten in matrix form (see Appendix A for more details). Inserting (A.1–A.16) from Appendix A in Equations (19) and
(20) results in:

∫
Γ𝑠

𝒘(𝒙)𝑵̄(𝒙)𝑪𝐵̄(𝒙)
⌢

𝒖̂𝑑Γ − ∫
Γ𝑠

𝒘(𝒙)𝑵̄(𝒙)𝜶̄𝜑(𝒙)
⌢

𝒑̂𝑑Γ

−∫
Ω𝑠

(𝚲(𝒙)𝑾𝑇(𝒙)𝑪𝐵(𝒙)
⌢

𝒖̂ − 𝚲(𝒙)𝜶𝑤̄(𝒙)𝝋(𝒙)
⌢

𝒑̂)𝑑Ω

+∫
Ω𝑠

𝜌𝜆1(𝒙)𝜆2(𝒙)𝜆3(𝒙)𝒘(𝒙)(𝒃̂(𝒙) − (𝑖𝜔)
2
𝚽(𝒙)

⌢

𝒖̂)𝑑Ω = 0

(39)

∫
Γ𝑠

𝑤𝑝(𝒙)𝒏
𝑇(𝜌𝑓(𝑖𝜔)

2
𝒌 − 𝜂(𝑖𝜔)𝜶)𝚲(𝒙)𝚽(𝒙)

⌢

𝒖̂𝑑Γ

+∫
Γ𝑠

𝑤𝑝(𝒙)𝒏
𝑇𝒌(𝚯(𝒙)𝑫̄(𝒙)

⌢

𝒑̂ − 𝜌𝑓𝚲(𝒙)𝒃̂(𝒙))𝑑Γ

−∫
Ω𝑠

𝒘̄𝑇
𝑝(𝒙)𝚲(𝒙)(𝜌𝑓(𝑖𝜔)

2
𝒌 − 𝜂(𝑖𝜔)𝜶)𝚽(𝒙)

⌢

𝒖̂𝑑Ω

−∫
Ω𝑠

𝒘̄𝑇
𝑝(𝒙)(𝚯(𝒙)𝒌𝐷̄(𝒙)

⌢

𝒑̂ − 𝜌𝑓𝚲(𝒙)𝒌𝑏̂(𝒙))𝑑Ω

−∫
Ω𝑠

𝑖𝜔𝜂

𝑀
𝑤𝑝(𝒙)𝜆1(𝒙)𝜆2(𝒙)𝜆3(𝒙)𝝋(𝒙)

⌢

𝒑̂𝑑Ω = 0

(40)

Thus, the sets of Equations (39) and (40) are the required equations at each subdomain for obtaining the unknown
functions, which are three displacement components and pressure.
In this analysis, the local subdomain Ω𝑠 centered at node I is considered a sphere with radius 𝑟𝑠 = 𝛿𝑠𝑑𝐼 , where 𝛿𝑠 is

a dimensionless size for the spherical subdomain, and 𝑑𝐼 is the characteristic length that is the average nodal spacing
between neighboring nodes in the vicinity of node I and node I. The support domainΩ𝑄 used for construction of P-RPIM
shape functions is also a sphere with radius 𝑟𝑄, which is given by 𝑟𝑄 = 𝛿𝑄𝑑𝐼 , where 𝛿𝑄 is a dimensionless size of the
spherical support domain.
The discretized weak forms (39) and (40) for the saturated porous medium via Biot’s formulation can be rewritten in

the form of stiffness matrix, unknown, and force vectors as follows:

[
𝑲11

𝑗
𝑲12

𝑗

𝑲21
𝑗

𝑲22
𝑗

]⎧⎪⎨⎪⎩
⌢

𝒖̂
⌢

𝒑̂

⎫⎪⎬⎪⎭ =

{
𝑭1
𝑗

𝑭2
𝑗

}
(41)

where

𝑲11
𝑗

= ∫
Γ𝑠

𝒘(𝒙)𝑵̄(𝒙)𝑪𝐵̄(𝒙)𝑑Γ − ∫
Γ𝑠

𝒘(𝒙)𝑵̄(𝒙)𝜶̄𝜑(𝒙)𝑑Γ

− ∫
Ω𝑠

(𝚲(𝒙)𝑾𝑇(𝒙)𝑪𝐵(𝒙))𝑑Ω − ∫
Ω𝑠

𝜌(𝑖𝜔)
2
𝜆1(𝒙)𝜆2(𝒙)𝜆3(𝒙)𝒘(𝒙)𝚽(𝒙)𝑑Ω

𝑲12
𝑗

= −∫
Γ𝑠

𝒘(𝒙)𝑵̄(𝒙)𝜶̄𝜑(𝒙)𝑑Γ + ∫
Ω𝑠

𝚲(𝒙)𝜶𝑤̄(𝒙)𝝋(𝒙)𝑑Ω

𝑲21
𝑗

= ∫
Γ𝑠

𝑤𝑝(𝒙)𝒏
𝑇(𝜌𝑓(𝑖𝜔)

2
𝒌 − 𝜂(𝑖𝜔)𝜶)𝚲(𝒙)𝚽(𝒙)𝑑Γ

− ∫
Ω𝑠

𝒘̄𝑇
𝑝(𝒙)𝚲(𝒙)(𝜌𝑓(𝑖𝜔)

2
𝒌 − 𝜂(𝑖𝜔)𝜶)𝚽(𝒙)𝑑Ω
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𝑲22
𝑗

= ∫
Γ𝑠

𝑤𝑝(𝒙)𝒏
𝑇𝒌Θ(𝒙)𝑫̄(𝒙)𝑑Γ − ∫

Ω𝑠

𝒘̄𝑇
𝑝(𝒙)𝚯(𝒙)𝒌𝐷̄(𝒙)𝑑Ω

− ∫
Ω𝑠

𝑖𝜔𝜂

𝑀
𝑤𝑝(𝒙)𝜆1(𝒙)𝜆2(𝒙)𝜆3(𝒙)𝝋(𝒙)𝑑Ω

𝑭1
𝑗
= −∫

Γ𝑠−Γ𝑠
𝑖

𝒘(𝒙)𝑵̄(𝒙)𝑪𝐵̄(𝒙)
⌢

𝒖̂𝑑Γ + ∫
Γ𝑠−Γ𝑠

𝑖

𝒘(𝒙)𝑵̄(𝒙)𝜶̄𝜑(𝒙)
⌢

𝒑̂𝑑Γ

− ∫
Ω𝑠

𝜌𝜆1(𝒙)𝜆2(𝒙)𝜆3(𝒙)𝒘(𝒙)𝒃̂(𝒙)𝑑Ω

𝑭2
𝑗
= −∫

Γ𝑠−Γ𝑠
𝑖

𝑤𝑝(𝒙)𝒏
𝑇(𝜌𝑓(𝑖𝜔)

2
𝒌 − 𝜂(𝑖𝜔)𝜶)𝚲(𝒙)𝚽(𝒙)

⌢

𝒖̂𝑑Γ

− ∫
Γ𝑠−Γ𝑠

𝑖

𝑤𝑝(𝒙)𝒏
𝑇𝒌(𝚯(𝒙)𝑫̄(𝒙)

⌢

𝒑̂ − 𝜌𝑓𝚲(𝒙)𝒃̂(𝒙))𝑑Γ − ∫
Ω𝑠

𝒘̄𝑇
𝑝(𝒙)𝜌

𝑓𝚲(𝒙)𝒌𝑏̂(𝒙)𝑑Ω (42)

To numerically calculate the stiffness and force components, it would be appropriate to use the numerical integration
methods proposed in refs. 64, 65, in which the uniform distributions of computational points over the spherical shell and
planar annulus are introduced.
If thematerial is considered to be pure elastic instead of poroelastic, then themedia cannot support fluid flow inside the

solid. In this case, the governing equations for flow of fluid are independent from the deformation of the solid skeleton.
In this case, the Equations (39) and (40) will be separated, and (39) becomes the governing equation of the elastodynamic
problem. To this end, it suffices to put 𝜶 = 0 in Equation (39). So, the discretized weak forms for transversely isotropic
elastic problems can be written as:

∫
Γ𝑠 𝒘(𝒙)𝑵̄(𝒙)𝑪𝐵̄(𝒙)

⌢

𝒖̂𝑑Γ − ∫
Ω𝑠 𝚲(𝒙)𝑾𝑇(𝒙)𝑪𝐵(𝒙)

⌢

𝒖̂𝑑Ω

+ ∫
Ω𝑠 𝜌𝜆1(𝒙)𝜆2(𝒙)𝜆3(𝒙)𝒘(𝒙)(𝒃̂(𝒙) − (𝑖𝜔)

2
𝚽(𝒙)

⌢

𝒖̂)𝑑Ω = 0
(43)

In this case, there are three degrees of freedom for each nodal point.

4.3 The norm of error and problem-solving scheme

To improve the accuracy of the analysis in the near field, one can increase the density of nodes within any region with
high variation of stress/displacement such as the regions embraced the loading area or the regions containing stress sin-
gularity. The process of improving the numerical analysis can be done by an error analysis. First, by the error analysis the
regions with higher errors are distinguished and then the accuracy is improved with the use of refinement methods. The
refinement may be done by adding new nodes or using high order of interpolation (the higher order of polynomial basis
in P-RPIM) corresponding to the norm of error. The error analysis can be done by the approach proposed by Chung and
Belytschko56 where L2-norm of error is used to evaluate the error in the form of energy norm at each subdomain as

‖𝑒𝑠‖ =

[
1

2 ∫
Ω𝑠

(𝝈𝑒(𝒙))
𝑇
𝐶−1𝝈𝑒(𝒙)𝑑Ω

]1∕2
(44)

where 𝝈𝑒(𝒙) = 𝝈𝑝(𝒙) − 𝝈ℎ(𝒙) and 𝝈𝑝 is the stresses obtained either with the stresses obtained from the previous analysis
in the repetitive procedure, or the analytical stresses (if exists), and 𝝈ℎ(𝒙) is the approximated stress tensor. The energy
norm for the whole domain is obtained in the form of the sum of the square of all subdomains’ energy norms. The relative
error can be calculated as

𝑅𝑒 =
‖𝑒‖‖𝐸‖ (45)
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start 

Material properties, loading 

conditions 

Defining the near-field and PML 

geometries 

Initial node generation 

Dividing problem into local sub-

domains 

Shape function generation for 

computational points 

Local weak form integrations 

Global matrix assembly 

Imposing boundary conditions 

solving 

Error calculation 

Node refinement 

Post processing 
Is error 

acceptable? 

No Yes 

FLOW CH ART 1 The steps to perform the PML based MLPG method. MLPG, meshless local Petrov–Galerkin; PML, perfectly
matched layer.

where ‖𝐸‖ is calculated by substituting 𝝈𝑝(𝒙) for 𝝈𝑒(𝒙) in (44). At the end of each analysis the relative error is controlled,
and the geometry is refined until 𝑅𝑒 < 𝜀 in which 𝜀 is a desired control value. The refinement would be started in the area
where its local energy norm is dominant.
In summary, according to Flow chart 1, the steps to perform the MLPG method for various problems are as follows:

1. Defining the data required for the problem
∙ Defining the domain geometry such as the near field and the PML
∙ Defining the material properties
∙ Defining the BCs
∙ Defining the transfer functions and parameters of them
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∙ Considering 𝑁 nodes inside the domain Ω and on its boundary Γ
∙ Determining the shape and size of the support domain Ω𝑄 in such a way that at least a certain number of nodal
points are located in it

∙ Dividing the domain Ω into some local subdomains Ω𝑠

∙ Defining the computational points and their corresponding weights
∙ Defining the radial and polynomial basis functions and choosing the method of generating shape functions

2. Assembling the stiffness matrix and solving the system of equations
∙ Loop over the nodes to form a stiffness matrix for each node
∙ Defining a local subdomain for each node
∙ Creating a loop for computing the integrals involved in the weak form over the Gaussian points
∙ Defining the support domain for each Gaussian point and calculating shape functions
∙ Assembling the system of stiffness equations for all Gaussian points
∙ Solving the resulting system of equations

3. Obtaining the output and postprocessing the results

In the next section, based on the presented formulation and procedure some examples are solved.

5 NUMERICAL RESULTS

Tomodel the domain of interest for performing numerical analysis, the near field, PML, transfer functions, and its appro-
priate BCs should be defined. The near field (Ω𝑁) and PML (Ω𝑃) are respectively considered as a cube and a finite band
around it as follows,

Ω𝑁 = {(𝑥1, 𝑥2, 𝑥3)| |𝑥1| < 𝑥𝑁, |𝑥2| < 𝑥𝑁, 0 < 𝑥3 < 𝑥𝑁}

Ω𝑃 = Ω− Ω𝑁

Ω = {(𝑥1, 𝑥2, 𝑥3)| |𝑥1| < 𝑥𝑁 + 𝑥𝑃, |𝑥2| < 𝑥𝑁 + 𝑥𝑃, 0 < 𝑥3 < 𝑥𝑁 + 𝑥𝑃} (46)

whereΩ is the total domain for the interested BVP and Γ denotes its corresponding boundary. In addition, 𝑥𝑁 and 𝑥𝑃 are
the sizes of the near field and the PML, respectively.
In order not to face inappropriate conditions in the process of numerical calculations such as ill conditioning, the

transfer function (3) should be defined in such a way that the responses to be attenuated smoothly along the PML. To this
end, a simple polynomial form is used to define the transfer functions. These functions are as follows:

𝜆𝑖(𝑥𝑖) = 𝛼𝑖(𝑥𝑖) +
1

𝑖𝜔
𝛽𝑖(𝑥𝑖), 𝑖 = 1, 2, 3

𝛼𝑖(𝑥𝑖) = 1 + 𝑓𝛼
𝑥𝑖

(𝑥𝑖 − 𝑥𝑁)
𝑚

𝑥𝑚
𝑃

𝛽𝑖(𝑥𝑖) = 𝑓
𝛽
𝑥𝑖

(𝑥𝑖 − 𝑥𝑁)
𝑚

𝑥𝑚
𝑃

(47)

in which 𝑓𝛼
𝑥𝑖
and 𝑓

𝛽
𝑥𝑖
are positive real constants, and 𝑚 is a non-negative integer. The functions (47) satisfy all necessary

conditions for the transferring function discussed in Section 3.1. Note that the attenuation power is directly proportional
to 𝑓𝛼

𝑥𝑖
and 𝑓

𝛽
𝑥𝑖
; however, inversely to 𝑚. Also, the PML depth, where the energy is attenuated through, would affect the

response functions in the near field. As the depth increases, the amplitude of forward wave decreases, and so, it reflects
with smaller amplitude from the far boundary of PML. But the large PML increases the cost of numerical analysis.
Furthermore, the radial base function used here is as follows:

𝑅𝑘(𝒙, 𝝃 ) =

√
𝑐20 + 𝑐21(𝑥1 − 𝑥1;𝑘)

2
+ 𝑐22(𝑥2 − 𝑥2;𝑘)

2
+ 𝑐23(𝑥3 − 𝑥3;𝑘)

2 (48)
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TABLE 1 Material coefficients of saturated porous transversely isotropic half space.66

C1111
(N/mm2)

C3333
(N/mm2)

C1313
(N/mm2)

C1212
(N/mm2)

C1133
(N/mm2) n %

Ks
(N/mm2)

Kf
(N/mm2)

ρs
(kg/m3)

ρf
(kg/m3)

k1
(m2)

k3
(m2)

η
(Pa S)

9570 8320 3000 4190 2330 20 35,000 2250 2600 1000 10−12 10−13 10−3

in which 𝑐0 is a dimensionless shape parameter, and 𝑐𝑖 s are scale factors. According to Equations (48) and (31) 𝑅𝑘 is a
symmetric matrix.
The number of local subdomains should be large enough in such a way that the unknowns of the problem are deter-

mined uniquely. It is clear that the error of the approximations depends on the number of the local subdomain Ω𝑠, their
sizes, and the gap/overlap of adjacent subdomains. Too large or too small size of subdomains would result in less accuracy.
Also, the overlap of subdomains can improve the accuracy of results (see63 for more details). On the other hand, the whole
number of nodes and subdomains for analysis may depend on the problem geometry and BCs. The process of numerical
analysis is an iterative procedure based on error analysis. After performing the analysis at the first stage with a uniform
nodal distribution and a selected set of MLPG support domains, and then advancing further by a second analysis with a
nodal refinement and new set of MLPG support domains, the total relative error of the second stage with respect to the
first one is determined, and is compared with an acceptable error, say the reference error. If the computed error is larger
than the reference error, then the refinement procedure should be repeated further until an acceptable error is reached
for the final refined nodal distribution its associated selection of support domains.
A suitable vector space for weight functions should be selected for numerical evaluations of the integrals involved

in weak forms. In the case which the size of the local subdomains Ω𝑠 is small, the constant weight function would be
appropriate, and the accuracy would not be significantly affected by that. Thus, the weight functions are considered as:

𝑤𝑖 = 𝑤𝑝 =

{
1, 𝒙 ∈ Ω𝑠 ∪ Γ𝑠

0, 𝒙 ∉ Ω𝑠
𝑖 = 1, 2, 3 (49)

The advantage of these weight functions is that their derivatives are zero, which leads to simple local weak forms.
To verify the numerical calculations, some of the numerical results obtained from the presented meshless method are

compared with the analytical solutions reported in some papers. The error analysis is done for a half-space subjected
to a uniform horizontal patch load and the resulted geometry is used for other problems. It should be noted that the
dimensionless circular frequency 𝜔0 = 𝜔𝑎

√
𝜌∕𝐶1313 is used for numerical calculations.

In the following, in the absence of body forces, several problems are examined. For this purpose, a homogeneous satu-
rated porous transversely isotropic half-space filled by the material given in Table 1 is considered. The material properties
are borrowed from.66

5.1 Stress wave propagation

Consider a saturated porous half-spacewith transversely isotropic properties as given in Table 1. This half-space is vibrated
by a surface force tremor f and pure fluid pressure 𝑝 on Γ𝑓 ,

𝒇(𝒙, 𝑡) = 𝒇(𝒙)𝑒𝑖𝜔𝑡, 𝑝(𝒙, 𝑡) = 𝑝(𝒙)𝑒𝑖𝜔𝑡, 𝒙 ∈ Γ𝑓 (50)

According to the described procedure in Flow chart 1, the half-space is divided into two separated regions, a near field
and a far-field, and the far-field is replaced with a PML. As the responses in the PML are not desired, one may consider
either Dirichlet or Neumann BC for both skeleton and fluid at the end of the PML. Here, Dirichlet BCs 𝒖 = 0 and 𝑝 = 0

are considered at the end of the PML. Consequently, the BCs of the problem in the frequency domain are summarized as
follows:

𝒕◦(𝒙) = 𝒇̂(𝒙) , 𝑝◦(𝒙) = 𝑝̂(𝒙) , 𝒙 ∈ Γ𝑓

𝒖◦(𝒙) = 𝟎 , 𝑝◦(𝒙) = 0, 𝒙 ∈ Γ𝑃𝑀𝐿 (51)
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F IGURE 5 Refinement of nodes around the loading area for improving the meshless analysis results. Mode1: uniform node distribution,
Model 2: adding some nodes to Model 1 in the specific region, and Model 3: adding some further nodes to Model 2 in the specific region.

where Γ𝑃𝑀𝐿 is the boundary of the domain at the end of the PML,

Γ𝑃𝑀𝐿 = {(𝑥1, 𝑥2, 𝑥3)|𝑥1 = ±(𝑥𝑁 + 𝑥𝑃), 𝑥2 = ±(𝑥𝑁 + 𝑥𝑃), 𝑥3 = (𝑥𝑁 + 𝑥𝑃)} (52)

It should be noted that the amplitude of the progressive wave is sufficiently attenuated in the PML. Thus, there will
be no reflected wave from its far boundary, and the BCs (51) do not affect the accuracy of the responses in the near field.
The BCs of the problem include two parts Γ𝑢𝑝 and Γ𝑡𝑝. As a result, the boundary of each local subdomain, depending on
position of the local subdomain in the global domain, consists of three parts, Γ𝑠 = Γ𝑠

𝑖
∪ Γ𝑠

𝑢𝑝 ∪ Γ𝑠
𝑡𝑝.

In the previous section, the discretized weak forms for the saturated porous medium were obtained using Biot’s
formulation. Considering the weight function according to (49), the Equations (41) for j-th local subdomain are:[

𝑲11
𝑗

𝑲12
𝑗

𝑲21
𝑗

𝑲22
𝑗

]⎧⎪⎨⎪⎩
⌢

𝒖̂
⌢

𝒑̂

⎫⎪⎬⎪⎭ =

{
𝑭1
𝑗

𝑭2
𝑗

}
(53)

where

𝑲11
𝑗

= ∫
Γ𝑠

𝒘(𝒙)𝑵̄(𝒙)𝑪𝐵̄(𝒙)𝑑Γ − ∫
Ω𝑠

𝜌(𝑖𝜔)
2
𝜆1(𝒙)𝜆2(𝒙)𝜆3(𝒙)𝒘(𝒙)𝚽(𝒙)𝑑Ω

𝑲12
𝑗

= −∫
Γ𝑠

𝒘(𝒙)𝑵̄(𝒙)𝚲(𝒙)𝜶̄𝜑(𝒙)𝑑Γ

𝑲21
𝑗

= ∫
Γ𝑠

𝑤𝑝(𝒙)𝒏
𝑇(𝜌𝑓(𝑖𝜔)

2
𝒌 − 𝜂(𝑖𝜔)𝜶)𝚲(𝒙)𝚽(𝒙)𝑑Γ

𝑲22
𝑗

= ∫
Γ𝑠

𝑤𝑝(𝒙)𝒏
𝑇𝒌Θ(𝒙)𝑫̄(𝒙)𝑑Γ − ∫

Γ𝑠

𝑖𝜔𝜂

𝑀
𝑤𝑝(𝒙)𝜆1(𝒙)𝜆2(𝒙)𝜆3(𝒙)𝝋(𝒙)𝑑Γ

𝑭1
𝑗
= −∫

Γ𝑠−Γ𝑠
𝑖

𝒘(𝒙)𝑵̄(𝒙)𝑪𝐵̄(𝒙)
⌢

𝒖̂𝑑Γ = −∫
Γ𝑠
𝑡

𝒕◦𝑑Γ

𝑭2
𝑗
= 0 (54)

In the following, the numerical results for some special loading cases are presented. Consider the loading area in the
form of a circular patch of radius 𝑎0. If 𝒇̂ = 𝑃0𝒆3 (𝑃0 is constant), this problem is an axially symmetric and torsion free
problem due to symmetry of loading andmaterial properties with respect to the 𝑥3-axis, while for 𝒇̂ = 𝑅0𝒆1 the problem is
asymmetric. The size of near field and the PML depth are selected as 𝑥𝑁 = 𝑥𝑃 = 10𝑎0. Reducing the semi-infinite far-field
to a finite depth layer (𝑥𝑃 = 10𝑎0) is of great interest.
As the analytical solution for the half-space subjected to a uniform patch load is in hand,10 it is compared with the

corresponding numerical solution in the case of the horizontal patch load. First, the numerical analysis is done with
a uniform node distribution, and the related error is estimated. As expected, the relative error is about 20 percent,
which is not accepted, and to improve the accuracy of the numerical results, a more node density is needed in the
region near the loading area due to high stress gradient in this region. The refining procedure is done until a desired
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TABLE 2 Relative errors resulted from the different models for the uniform horizontal patch load case.

Model Number of nodes The relative error
1. Uniform node distribution (𝑑𝐼 = 2) 4851 20%
2. Refinement of Model 1 (𝑙𝑖,1 = 5, 𝑑𝐼

𝑖,1 = 1, 𝑖 = 1, 2, 3) 5577 5%
3. Refinement of Model 2 (𝑙𝑖,2 = 2, 𝑑𝐼

𝑖,2 = 0.5, 𝑖 = 1, 2, 3) 5982 1.2%

F IGURE 6 The transversely isotropic poroelastic half-space subjected to circular uniform horizontal force.

numerical result achieved (see Figure 5). The corresponding relative errors for two steps are presented in Table 2. It
is seen that the relative error in the third model (the second refinement) with 5882 nodes is 1.2%, which is accept-
able. Thus, the other analysis is proceeded with the node distribution obtained from refinement of Model 2. It should
be noted that just the subdomain located in the near field is participated in the error analysis and the analysis in
each step is done independently. In addition, the analytical stresses are used to calculate the energy norm of error in
Equation (44).
The numerical results for three special cases defined as (i) vertical uniform patch load (𝒇̂ = 𝑃0𝒆3), (ii) horizontal

uniform patch load (𝒇̂ = 𝑅0𝒆1), and (iii) linear patch load (𝒇̂ = 𝑄0𝑥1𝒆1) are depicted in Figures 6–8. Considering the
values of 𝑓𝛼

𝑥𝑖
= 1, 𝑓𝛽

𝑥𝑖
= 1.5, and 𝑚 = 2 for the parameters of the stretching function (47), 𝛿𝑠 = 0.55 (which represents

5% overlap for the adjacent subdomains), and 𝛿𝑄 = 2, the graphs are presented. Also, the iso-stress curves are shown in
Figure 9.
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F IGURE 7 The transversely isotropic poroelastic half-space subjected to circular uniform vertical force.

5.2 Forced vibration of a rigid foundation

If the poroelastic half-space is excited by a permeable rigid foundation, the BCs are as:

𝑢1(𝒙) = (Δ1 − 𝑥2𝜓3)𝑒
𝑖𝜔𝑡

𝑢2(𝒙) = (Δ2 − 𝑥1𝜓3)𝑒
𝑖𝜔𝑡

𝑢3(𝒙) = (Δ3 − 𝑥1𝜓2 + 𝑥2𝜓1)𝑒
𝑖𝜔𝑡, 𝒙 ∈ ΓΔ

𝑝(𝒙) = 𝑝̂(𝒙)𝑒𝑖𝜔𝑡

(55)

and

𝜎𝑥𝑖𝑥3
(𝒙) = 0, 𝑖 = 1, 2, 3, 𝒙 ∈ Γ𝑡𝑝

𝑝(𝒙) = 0, 𝒙 ∈ Γ𝑡𝑝

(56)

where Δ𝑖 and 𝜓𝑖 (𝑖 = 1, 2, 3) are the displacements and rotations with respect to 𝑥𝑖-axis, ΓΔ is the surface of the half-space
that is in contact with the foundation, and Γ𝑡𝑝 is the rest part of the body surface. Also, the BCs for the end of the PML, as
expressed in (51), are𝒖 = 0 and 𝑝 = 0. The numerical results for the special cases (i) forced horizontal vibration (𝑢1 = Δ1),
(ii) forced vertical vibration (𝑢3 = Δ3), (iii) rocking vibration (𝑢3 = −𝑥1𝜓2), and (iv) torsion vibration (𝑢1 = −𝑥2𝜓3) of a
fully permeable rigid disk are solved, and then, depicted in Figures 10–13. As mentioned in previous section, in case
𝒖 = Δ3𝒆3, the problem is an axially symmetric and torsion-free problem.



SHAKER et al. 21

F IGURE 8 The transversely isotropic poroelastic half-space subjected to circular rocking force.

6 CONCLUSIONS

In this paper, the wave propagation in the transversely isotropic poroelastic half-space in the framework of 𝒖 − 𝑝 for-
mulation of Biot has been investigated numerically with the use of MLPG method and the following results have been
obtained:

1. A truncated subset of the original domain, namely the near field, has been considered to prepare the half-space for
domain-based numerical analysis of wave propagation and to impose the radiation condition, and the rest of the half-
space denoted as the far-field has been replaced by a PML. So, the energy propagated toward the PML is completely
attenuated through it in such a way that there is no reflection toward the near field.

2. In order for the PML to be introduced correctly, a new family of the stretched coordinate functions has been introduced,
and then, the governing equations and its weak forms have been obtained in the stretched coordinate system.

3. The global domain is divided into some subdomains, and then, the system of equations has been established by the set
of local weak forms on the subdomains in order to obtain the response functions in the nodal points distributed within
the domain and its boundary. The shape functions for each computational point are constructed with the use of the
P-RPIM to numerically calculate the local weak forms.

4. The presented numerical process has been used to extract the responses for arbitrary time-harmonic trac-
tion/displacement vibrations. To investigate the stresses in the half-space due to the applied tractions, the iso-stress
(equi-stress) surfaces have been illustrated.
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F IGURE 9 The iso-stress curves in
x1x3-plane for the half-space subjected to the
uniform horizontal patch load (A) 𝜎𝑟𝑧, 𝑤0 = 1

and (B) 𝜎𝑟𝑧, 𝜔0 = 2, the uniform vertical
patch load (C) 𝜎𝑧𝑧, 𝑤0 = 1 and (D)
𝜎𝑧𝑧, 𝜔0 = 2, and the rocking patch load (E)
𝜎𝑧𝑧, 𝑤0 = 1 and (F) 𝜎𝑧𝑧, 𝑤0 = 2.

F IGURE 10 The transversely isotropic
poroelastic half-space subjected to the
horizontal disk vibration.
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F IGURE 11 The transversely isotropic poroelastic half-space subjected to the vertical disk vibration.

F IGURE 1 2 The transversely isotropic poroelastic half-space subjected to the rocking disk vibration.
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F IGURE 13 The transversely isotropic poroelastic half-space subjected to the torsion disk vibration.

5. By the proposed approach, a wide range of dynamic boundary-value problems with infinite/semi-infinite geome-
tries filled with homogenous/layered isotropic/transversely isotropic materials can be solved in the time/frequency
domains. Note that linear terms of strain tensor (Cauchy’s strain tensor) are considered in the Biot’s theory.

NOMENCLATURE

𝑎0 radius of circular loading
𝒃 body force
𝑪 elasticity tensor

𝑒𝑠, 𝐸 errors
𝑅𝑒 relative error
𝒇 force excitation
𝑭 force vector
𝒌 intrinsic permeability tensor
𝑲 stiffness function
𝑙𝑠 size of refinement zone along s-axis
𝑀 Biot’s modulus
𝑛 porosity
𝑁 number of nodes

𝒏,𝑵 matrices consisting of normal vector components
𝑝 pore fluid pressure
𝑷 polynomial basis functions

𝑃0, 𝑅0 constant values
𝒒 fluid flow rate
𝑹 radial basis functions
𝑡 time
𝒕 traction vector
𝒖 displacement vector of solid
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w relative displacement vector
𝒘,𝑤𝑝 weight functions

𝒙 Cartesian coordinate system
𝒙̃ stretched coordinate system
𝜶 Biot’s effective stress tensor
𝛼𝑠 scale function along s-axis
𝛽𝑠 attenuation function
Γ domain boundary
Γ𝑠 sub-domain boundary
𝚫 forced displacement vector
𝜀 error control value
𝜂 dynamic viscosity of the fluid
𝝃 nodal point
𝜆𝑠 stretching function along s-axis

𝚲,𝚯 matrices consisting of stretching functions
𝜌 mass density of the mixture

𝜌𝑓 mass density of the fluid
𝜌𝑠 mass density of the solid
𝝈 total stress tensor of the solid skeleton
𝝈𝑠 effective stress tensor
𝝋 shape function vector
𝝍 forced rotation vector
𝜔 angular frequency
𝜔0 dimensionless frequency
Ω problem domain

Ω𝑁 near field
Ω𝑃 perfectly matched layer
Ω𝑄 support domain
Ω𝑠 sub-domain
·ℎ estimated value
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APPENDIX A: MATRIX FORMS OF APPROXIMATIONS
The approximation of displacement vector at each computational point x is:

𝒖̂ℎ(𝒙) =

𝑛∑
𝑘=1

𝚽𝑘(𝒙, 𝝃 )
⌢

𝒖̂𝑘 = 𝚽(𝒙, 𝝃 )
⌢

𝒖̂ (A.1)

If the stress tensor is written in the form of the following vector,

𝝈ℎ
𝑠 (𝒙) =

{
𝜎
𝑠(ℎ)
11 , 𝜎

𝑠(ℎ)
22 , 𝜎

𝑠(ℎ)
33 , 𝜎

𝑠(ℎ)
12 , 𝜎

𝑠(ℎ)
23 , 𝜎

𝑠(ℎ)
13

}
(A.2)

https://doi.org/10.1007/s004660050346
https://doi.org/10.1007/s11012-015-0340-8
https://doi.org/10.1002/nme.1620121010
https://doi.org/10.1002/nme.1620121010
https://doi.org/10.1007/s004660050286
https://doi.org/10.1002/nme.1620240206
https://doi.org/10.1016/j.enganabound.2009.06.004
https://doi.org/10.1002/nme.1620330703
https://doi.org/10.1121/1.398448
https://doi.org/10.1121/1.398448
https://doi.org/10.1002/nag.3797


28 SHAKER et al.

then, it can be approximated as:

𝝈ℎ
𝑠 (𝒙) = 𝑪𝐵̄(𝒙)

⌢

𝒖 (A.3)

where

𝑩̄(𝒙) = [𝑩̄1(𝒙), 𝑩̄2(𝒙), … , 𝑩̄𝑛(𝒙)],

𝑩̄𝑖(𝒙) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝜑𝑖

𝜕𝑥̃1
0 0

0
𝜕𝜑𝑖

𝜕𝑥̃2
0

0 0
𝜕𝜑𝑖

𝜕𝑥̃3

𝜕𝜑𝑖

𝜕𝑥̃2

𝜕𝜑𝑖

𝜕𝑥̃1
0

0
𝜕𝜑𝑖

𝜕𝑥̃3

𝜕𝜑𝑖

𝜕𝑥̃2

𝜕𝜑𝑖

𝜕𝑥̃3
0

𝜕𝜑𝑖

𝜕𝑥̃1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝜑𝑖

𝜆1𝜕𝑥1
0 0

0
𝜕𝜑𝑖

𝜆2𝜕𝑥2
0

0 0
𝜕𝜑𝑖

𝜆3𝜕𝑥3

𝜕𝜑𝑖

𝜆2𝜕𝑥2

𝜕𝜑𝑖

𝜆1𝜕𝑥1
0

0
𝜕𝜑𝑖

𝜆3𝜕𝑥3

𝜕𝜑𝑖

𝜆2𝜕𝑥2

𝜕𝜑𝑖

𝜆3𝜕𝑥3
0

𝜕𝜑𝑖

𝜆1𝜕𝑥1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑖 = 1, 2, … , 𝑛
(A.4)

Thus, the traction vector at each computational point x is approximated as:

𝒕ℎ𝑠 (𝒙) = 𝑵̄(𝒙)𝝈ℎ
𝑠 (𝒙) = 𝑵̄(𝒙)𝑪𝐵̄(𝒙)

⌢

𝒖 (A.5)

where

𝑵̄(𝒙) =
⎡⎢⎢⎣
𝑛1 0 0 𝑛2 0 𝑛3

0 𝑛2 0 𝑛1 0 𝑛3

0 0 𝑛3 0 𝑛2 𝑛1

⎤⎥⎥⎦ (A.6)

The fluid pressure at each computational point x is approximated as:

𝑝ℎ(𝒙) = 𝝋(𝒙)
⌢

𝒑 (A.7)

Eventually, the fluid pressure gradient is calculated as follows:

∇𝑝ℎ(𝒙) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝝋

𝜕𝑥̃1

𝜕𝝋

𝜕𝑥̃2

𝜕𝝋

𝜕𝑥̃3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⌢

𝒑 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝝋

𝜆1𝜕𝑥1

𝜕𝝋

𝜆2𝜕𝑥2

𝜕𝝋

𝜆3𝜕𝑥3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⌢

𝒑 = 𝑫̄(𝒙)
⌢

𝒑 (A.8)

Other values in the matrix form are as follows:

𝜶̄ = {𝛼1, 𝛼2, 𝛼3, 0, 0, 0}
𝑇 (A.9)

𝒏 = {𝑛1, 𝑛2, 𝑛3}
𝑇 (A.10)

𝒃 = {𝑏1, 𝑏2, 𝑏3}
𝑇 (A.11)

𝒘(𝒙) =
⎡⎢⎢⎣
𝑤1 0 0

0 𝑤2 0

0 0 𝑤3

⎤⎥⎥⎦ (A.12)
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𝒘̄(𝒙) =

{
𝜕𝑤1

𝜆1𝜕𝑥1

𝜕𝑤2

𝜆2𝜕𝑥2

𝜕𝑤3

𝜆3𝜕𝑥3

}𝑇

(A.13)

𝒘̄𝑝(𝒙) =

{
𝜕𝑤𝑝

𝜆1𝜕𝑥1

𝜕𝑤𝑝

𝜆2𝜕𝑥2

𝜕𝑤𝑝

𝜆3𝜕𝑥3

}𝑇

(A.14)

𝑾𝑝(𝒙) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑤1

𝜆1𝜕𝑥1
0 0

0
𝜕𝑤2

𝜆2𝜕𝑥2
0

0 0
𝜕𝑤3

𝜆3𝜕𝑥3

𝜕𝑤1

𝜆2𝜕𝑥2

𝜕𝑤2

𝜆1𝜕𝑥1
0

0
𝜕𝑤2

𝜆3𝜕𝑥3

𝜕𝑤3

𝜆2𝜕𝑥2

𝜕𝑤1

𝜆3𝜕𝑥3
0

𝜕𝑤3

𝜆1𝜕𝑥1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.15)

Also, the relationship between the total stress, the effective stress on the solid skeleton, and the fluid pressure is:

𝝈(𝒙) = 𝝈𝑠(𝒙) − 𝑝(𝒙)𝜶 (A.16)

It should be mentioned that
⌢
∙ represents a nodal value, and

⌢

∙̂ is this value in the frequency domain.
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