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ABSTRACT
Investigating wave propagation in transversely isotropic saturated poroelastic material and introducing a family of stretched
coordinate transformations to be used for defining a perfectly matched layer (PML) are the main aims of this paper. To this end,
the 𝐮 − 𝑝 formulation of Biot is adopted as the governing framework of the porous media. The coupled equations of motion
and transport equation are uncoupled by means of the recently proposed two scalar potential functions in cylindrical coordinate
system. Two separated families of continuous stretched coordinate transformations are introduced for each of radial and axial
coordinates, which allows the whole half-space to be replaced by a finite cylinder surrounded by an outer cylinder/cube with both
finite height and radius. It is shown that the displacements and pore fluid pressure, determined from the analysis of the replaced
cylindrical domain, is exactly collapsed on the analytical solution in the inner cylinder, while they are, based on the stretched
coordinate transformation, attenuated very fast in the outer cylinder to prevent the reflection from the most exterior boundaries.
The results of this study may be used in any wave propagation analysis containing either isotropic or transversely isotropic half-
or full-space.

1 Introduction

The subject of wave propagation in unbounded/semiunbounded
domains has been of great interest for engineers and mathe-
maticians. Researchers have widely used Biot’s theory and its
simplified formulations to investigate the interaction between
structures and their supporting soil. Different shapes of both
internal and surface loading foundations, including circular [1–
3], rectangular [4, 5] and arbitrary shape [6, 7] foundations,
and either pure elastic or porous media have been considered
to analyze the dynamic responses of single/multi-layered elas-
tic/poroelastic media. To solve the boundary value problem
(BVP) of wave propagation in transversely isotropic porousmedia

different strategies have been employed among them one can
mention the potential-functionmethod [8–12] and the cylindrical
system of vector functions [13–15] for decoupling the governing
partial differential equations and converting them to sets of
ordinary differential equations. In the case of layered media,
Zhang and Pan [14, 15] employed the dual variable and position
method to establish a recursive relation for the field quantities.
Chen [16] studied a saturated layered half-space subjected to
the vibration of a flexible foundation by means of the Hankel
transform technique. Moreover, the poroelastic media under
different loads have been investigated by utilizing a discretization
technique and the influence functions obtained from the stiffness
matrix method [6, 17–19].
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The geometry attenuation of the energy transmitted by the waves
in these types of domains, denoted as radiation condition, is one
of the challenging physical phenomena in the investigation of
the wave propagation in unbounded/semiunbounded domains.
Based on the rule of the radiation condition, no incoming wave
from the remote boundary exists in unbounded/semiunbounded
domains. Although deriving analytical solutions for complex
BVPs is not easy, considering the radiation condition in the
analytical solution is not complicated. However, many related
BVPs cannot be treated analytically; thus, a numerical approach
should be followed. On the other hand, satisfying the radiation
condition in a numerical approach needs special attention. The
subject has been studied for many years with the use of different
numerical-based approaches [20–27].

One of the methods for imposing the radiation condition is to
use the perfectly matched layer (PML) concept [28–32]. A PML
is a finite thickness layer that quickly attenuates the energy
transmitted by the wave traveling toward infinity. The amplitudes
of different functions are smoothly limiting to zero along this
layer in such a way that no wave reflects from the far boundary
of PML. By this explanation, an unbounded/semiunbounded
domain is divided into two subdomains, namely, near field and
far field. The near field is defined as a subdomain, where the
accuracy of different response functions is important, and the far
field is the remaining part, where the accuracy of the solutions is
not important at all, while the speed of attenuation of different
functions at the outer boundary is important. By replacing the
whole unbounded/semiunbounded domain with the union of
near field and PML, a bounded domain is resulted, which is
appropriate for numerical analysis of wave propagation.

The main idea to satisfy the radiation condition in a PML is
to model the far field as close as possible to the near field
without affecting the actual physical behavior of any interested
functions in the near field. Since different functions involved
in wave propagation in unbounded/semiunbounded domain
are completely radiated at infinity, one may use a one-by-one
continuous transformation function to map the unbounded far
field approximately to a finite thickness layer, where the end of
the layer is an approximate image for infinity. In this way, the
values of different functions at the far boundary of the PML are
approximately equal to their values at infinity (as close as possible
to zero based on radiation condition). The PML may make a
platform for increasing the accuracy and decreasing the cost of
numerical analysis of soil-structure-interaction (SSI) as one of the
applications of the theory of wave propagation in solids.

Givoli defined high-order nonreflecting boundary conditions to
be used in finite element analysis of either infinite or semiinfinite
domain boundary value wave propagation problems [20, 33, 34],
ensuring the energy traveling to infinity would not return to
the domain, as it is in real physics. However, inventing the
PML concept was a revolution in the subject, which was first
introduced by Berenger [30] in the context of electromagnetic
wave propagation. Other researchers extended the subject to
electromagnetics and electrodynamics [32, 35, 36], as well as in
elastic wave propagation in Cartesian, cylindrical, and spherical
coordinate systems. Basu and Chopra [28, 29] have made precise
and applicable formulations for time harmonic and transient
wave propagation in unbounded elastic media. They clearly

explained the problem for one dimensional wave propagation
and extended the procedure to the three-dimensional case.
Zeng et al., combined the finite difference method with PML
to study the wave propagation in poroelastic materials in the
framework of 𝐮 − 𝐮 formulation derived from the Biot’s theory
[37]. The mathematical requirement for this problem was based
on the concept of wave propagation in infinite domains [38, 39].
Numerical solution for this kind of problems in the framework
of general domain-based numerical methods, such as finite
element method (FEM), would need inclusion of an absorbing
boundary at the far field [21–23]. Recently, based on the meshless
method, Shaker et al. have been used the PML to study the
wave propagation in the poroelastic transversely isotropic half-
space [40].

This paper presents a family of stretching functions to define the
stretched coordinate system. With the use of the new family of
stretching functions, the infinite domain can be modeled as a
finite domain to be used in any domain-based numerical analysis
such as finite element and meshless methods. To investigate
various aspects of the presented family of stretched coordinate
system, stress wave propagation due to an arbitrary time-
harmonic finite patch surface load in a half-space containing
either elastic or poroelastic transversely isotropic material in
both mechanical- and transport-points of view, in which SV- and
different P-waves are coupled, is considered. Thus, this study
prepares a framework to deal with radiation conditions with
the use of PML in these complicated materials for the first
time. To this end, the Biot 𝐮 − 𝑝 formulation is accepted as
the governing equations for the whole half-space. A potential
function method introduced in [8] is applied to uncouple the
partial differential equations as a transformation of the originally
coupled equations of motion and transport in the cylindrical
coordinate system. Based on the analytical solutions for the
potential functions, and thus for the displacements and pore
fluid pressure, two separate families of continuous stretched
coordinate transformations are introduced to make PML in both
radial and vertical directions.

The gradient of the attenuation of different functions is con-
trolled with the use of some scalar parameters proposed in the
stretched coordinate transformations, which are reduced to only
one parameter in each direction based on both physical and
mathematical justifications for the attenuation of the solutions.
The analysis is first performed for an axis-symmetric case, and
then is extended to the general asymmetric case. In addition,
the controlling parameters that exist in the stretched coordinate
transformations are first investigated in detail for an outgo-
ing wave, and then they are checked for both outgoing and
incoming waves.

It is shown that the numerical results are exactly collapsed on the
analytical solutions in near field, while they are attenuated in the
far field as fast as the user desire. The procedure can be easily
used for any domain-based solution, either mesh-dependent
or mesh-free numerical analyses. The whole procedure can be
applied to any domain containing transversely isotropic material
in both mechanical and transport points of view. Since isotropic
material is a degeneration of transversely isotropic one, the
proposed procedure is directly used for isotropic material as well.
The proposed procedure may be used in any wave propagation
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analysis containing either isotropic or transversely isotropic half-
or full-space.

The structure of the paper is in the following form: In Section 2,
wave propagation due to an arbitrary time-harmonic finite sur-
face excitation applied on a half-space containing a transversely
isotropic mechanical and transport material is considered. Based
on the terms appearing in the response functions, a family
of transferring/stretching function is introduced in Section 3.
Some degenerations of the general problem are expressed in
Section 4. In addition, in Section 5, the results of this study
are compared with the analytical solutions and more simplified
forms are presented for the stretching functions by reducing their
parameters. Eventually, the conclusion is drowned in Section 6.

2 Governing Equation

A saturated poroelastic material with transversely isotropic
mechanical and transport characteristics is considered, in such a
way that the material axes of symmetry for both deformation and
flow of fluid are parallel. The governing equations of motion and
Darci’s law in the framework of𝐮 − 𝑝 formulation, as a simplified
version of Biot’s formulationmay bewritten in the form of [41, 42]

∇ ⋅ 𝝈 + 𝜌𝐛 = 𝜌�̈�

�̇� = 𝐤

𝜂
(−∇𝑝 + 𝜌𝑓𝐛 − 𝜌𝑓�̈�),

(1)

where the pore fluid acceleration with respect to the solid is
neglected. 𝝈 is the total Cauchy stress tensor, 𝐮 is the displace-
ment vector of solid skeleton, 𝐰 is the relative displacement
vector of fluid with respect to the solid skeleton, 𝑝 is the pore
fluid pressure, and 𝐛 is the body force vector. 𝜌𝑓 , 𝜌𝑠, and 𝜌 =
(1 − 𝑛)𝜌𝑠 + 𝑛𝜌𝑓 are the fluid, solid, and mixture mass densities,
respectively, with 𝑛 being the porosity. In addition, 𝐤 is the
intrinsic permeability tensor and 𝜂 is the dynamic viscosity of
fluid. It should be mentioned that 𝐤 is a diagonal matrix, with
two independent eigenvalues for a transversely isotropicmaterial.
It worth mentioning that the anisotropy behavior for mechanical
and transport properties are independent, meaning that each of
the mechanical and transport properties can be either isotropic
or transversely isotropic.

The continuity condition for the fluid in a volume control may be
expressed in the form of [43]

𝜕𝜁

𝜕𝑡
+ ∇ ⋅ �̇� = 0 (2)

where 𝜁 represents the change of fluid content in the control
volume. In addition, the constitutive law, in the form of stress-
displacement-pore pressure relationships (as it is in the Biot’s
𝐮 − 𝑝 formulation), in a cylindrical coordinate system attached
at the free surface of the half-space with a depth-wise 𝑧-axis (as
seen in Figure 1 (Left)) is written as [43]

𝜎𝑟𝑟 = 𝐶11

𝜕𝑢𝑟

𝜕𝑟
+ 𝐶12

(
𝑢𝑟

𝑟
+ 1

𝑟

𝜕𝑢𝜃

𝜕𝜃

)
+ 𝐶13

𝜕𝑢𝑧

𝜕𝑧
− 𝛼1𝑝

𝜎𝜃𝜃 = 𝐶12

𝜕𝑢𝑟

𝜕𝑟
+ 𝐶11

(
𝑢𝑟

𝑟
+ 1

𝑟

𝜕𝑢𝜃

𝜕𝜃

)
+ 𝐶13

𝜕𝑢𝑧

𝜕𝑧
− 𝛼1𝑝

𝜎𝑧𝑧 = 𝐶13

𝜕𝑢𝑟

𝜕𝑟
+ 𝐶13

(
𝑢𝑟

𝑟
+ 1

𝑟

𝜕𝑢𝜃

𝜕𝜃

)
+ 𝐶33

𝜕𝑢𝑧

𝜕𝑧
− 𝛼3𝑝

𝜎𝑟𝑧 = 𝐶44

(
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟

)
𝜎𝜃𝑧 = 𝐶44

(
𝜕𝑢𝜃

𝜕𝑧
+ 1

𝑟

𝜕𝑢𝑧

𝜕𝜃

)
𝜎𝑟𝜃 = 𝐶66

(
1

𝑟

𝜕𝑢𝑟

𝜕𝜃
+

𝜕𝑢𝜃

𝜕𝑟
−

𝑢𝜃

𝑟

)
𝑝 = −𝛼1𝑀

(
𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
+ 1

𝑟

𝜕𝑢𝜃

𝜕𝜃

)
− 𝛼3𝑀

𝜕𝑢𝑧

𝜕𝑧
+ 𝑀𝜁 (3)

where 𝐶𝑖𝑗 (𝑖, 𝑗 = 1 − 6) is the drained elasticity coefficient tensor
of material in Voigt notation and 𝑀 is the Biot’s modulus. In
addition

𝛼 1 = 1 −
𝐶11 + 𝐶12 + 𝐶13

3𝐾𝑠

, 𝛼3 = 1 −
2𝐶13 + 𝐶33

3𝐾𝑠

(4)

in which 𝐾𝑠 is the bulk moduli of solid matrix. Rewriting Equa-
tion (1) by substituting the stresses in terms of the displacements
and pore fluid pressure, as given in Equation (3), results in the
equations of motion and Darci’s law in terms of displacements
and pore fluid pressure as

(1 + 𝛽1)

(
𝜕2𝑢𝑟

𝜕𝑟2
+ 1

𝑟

𝜕𝑢𝑟

𝜕𝑟
−

𝑢𝑟

𝑟2

)
+ 𝛽2

𝜕2𝑢𝑟

𝜕𝑧2
+ 1

𝑟2

𝜕2𝑢𝑟

𝜕𝜃2

+ 𝛽1

(
1

𝑟

𝜕2𝑢𝜃

𝜕𝑟𝜕𝜃
+ 1

𝑟2

𝜕𝑢𝜃

𝜕𝜃

)
− 2(1 + 𝛽1)

1

𝑟2

𝜕𝑢𝜃

𝜕𝜃
+ 𝛽3

𝜕2𝑢𝑧

𝜕𝑟𝜕𝑧

− �̄�1

𝜕𝑝

𝜕𝑟
+ �̄�𝑏𝑟 = �̄�

𝜕2𝑢𝑟

𝜕𝑡2

𝛽1

(
1

𝑟

𝜕2𝑢𝑟

𝜕𝑟𝜕𝜃
− 1

𝑟2

𝜕𝑢𝑟

𝜕𝜃

)
+ 2(1 + 𝛽1)

1

𝑟2

𝜕𝑢𝑟

𝜕𝜃
+
(

𝜕2𝑢𝜃

𝜕𝑟2
+ 1

𝑟

𝜕𝑢𝜃

𝜕𝑟
−

𝑢𝜃

𝑟2

)
+ (1 + 𝛽1)

1

𝑟2

𝜕2𝑢𝜃

𝜕𝜃2
+ 𝛽2

𝜕2𝑢𝜃

𝜕𝑧2
+ 𝛽3

1

𝑟

𝜕2𝑢𝑧

𝜕𝜃𝜕𝑧

− �̄�1
1

𝑟

𝜕𝑝

𝜕𝜃
+ �̄�𝑏𝜃 = �̄�

𝜕2𝑢𝜃

𝜕𝑡2

𝛽3

(
𝜕2𝑢𝑟

𝜕𝑟𝜕𝑧
+ 1

𝑟

𝜕𝑢𝑟

𝜕𝑧
+ 1

𝑟

𝜕2𝑢𝜃

𝜕𝜃𝜕𝑧

)
+ 𝛽2

(
𝜕2𝑢𝑧

𝜕𝑟2
+ 1

𝑟

𝜕𝑢𝑧

𝜕𝑟
+ 1

𝑟2

𝜕2𝑢𝑧

𝜕𝜃2

)
+ 𝛽4

𝜕2𝑢𝑧

𝜕𝑧2
− �̄�3

𝜕𝑝

𝜕𝑧
+ �̄�𝑏𝑧 = �̄�

𝜕2𝑢𝑧

𝜕𝑡2(
𝜌𝑓�̄�1

𝜕2

𝜕𝑡2
− �̄�1𝜂

𝜕

𝜕𝑡

)(
𝑢𝑟

𝑟
+

𝜕𝑢𝑟

𝜕𝑟
+ 1

𝑟

𝜕𝑢𝜃

𝜕𝜃

)
+ (𝜌𝑓�̄�3

𝜕2

𝜕𝑡2
− �̄�3𝜂

𝜕

𝜕𝑡
)
𝜕𝑢𝑧

𝜕𝑧

+ �̄�1

(
𝜕2𝑝

𝜕𝑟2
+ 1

𝑟

𝜕𝑝

𝜕𝑟
+ 1

𝑟2

𝜕2𝑝

𝜕𝜃2

)
+ �̄�3

𝜕2𝑝

𝜕𝑧2
− 𝛽5

𝜕𝑝

𝜕𝑡

− �̄�1𝜌𝑓

(
𝑏𝑟

𝑟
+

𝜕𝑏𝑟

𝜕𝑟
+ 1

𝑟

𝜕𝑏𝜃

𝜕𝜃

)
− �̄�3𝜌𝑓

𝜕𝑏𝑧

𝜕𝑧
= 0 (5)
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FIGURE 1 In PML approach, the original half-space (left) is truncated and the stretched coordinate system for the truncated domain (right) is
defined in such a way that the response functions in the near field are equal to the original domain and they are attenuated in PML. (left) The original
half-space undergoing some arbitrary traction on a finite part at the surface of the domain, (right) the truncated domain consists of the near field (the
cylinder with radius 𝑟𝑁 and height 𝑧𝑁) and PML (the hollow cylinder surrounding the near field which is specified by 𝑟𝑃 and 𝑧𝑃) in the stretched
coordinate system 𝑜�̃��̃��̃�. PML, perfectly matched layer.

where

𝛽1 =
𝐶12 + 𝐶66

𝐶66

, 𝛽2 =
𝐶44

𝐶66

, 𝛽3 =
𝐶13 + 𝐶44

𝐶66

, 𝛽4 =
𝐶33

𝐶66

,

𝛽5 =
𝜂

𝑀𝐶66

, �̄� =
𝜌

𝐶66

,

�̄�𝑙 =
𝑘𝑙

𝐶66

, �̄�𝑙 =
𝛼𝑙

𝐶66

, 𝑙 = 1, 3 (6)

Equations (5) are known as 𝐮 − 𝑝 formulation for transversely
isotropic saturated poroelastic materials [8]. These equations are
solved for a half-space containing transversely isotropic saturated
poroelasticmaterials, under some time-harmonic surface traction
applied on a finite patch. Since the relative fluid acceleration with
respect to solid is neglected, the governing equations are valid to
frequencies limited by [44]

𝑓𝑡 =
𝜋𝜈

4𝑑2
(7)

in which 𝑑 is the order of pore diameter and 𝜈 is the kinematic
viscosity of fluid [45]. The restriction given inEquation (7) implies
that the larger the pore size and the smaller the viscosity results in
the smaller the upper bound of the valid frequency of excitation.

3 PML Formulations

The half-space under consideration is divided into two separated
parts, namely near field and far field (see Figure 1). The near
field is defined as a bounded region subjected to the external
excitation, where the accuracy of the displacements, stresses and
pore fluid pressure due to wave propagation are important. On
the other hand, the far field is defined as an unbounded domain
surrounding the near field and extended to infinity, where only
outgoing waves are propagated in. The far field is replaced with
a finite region, so that the whole half-space is modeled with a
bounded domain. In this way, one maymake a framework for the

BVP to be solved based on an adopted domain-related numerical
procedure, such as the FEM. The accuracy of the solutions in
the far field is not important, and one only needs to be aware of
the continuity conditions from the near field to the far field, and
zero amplitude reflected wave from the far boundary of the finite
region replaced for the far field.

The PML formulation is one approach which uses a bounded
near field surrounded by a finite-thickness layer in replace of
the unbounded remaining domain to reduce the computational
cost in domain-based numerical methods. Outgoing waves are
absorbed, almost perfectly, through this layer with no reflection
from its boundary. So, the near field solution remains as accurate
as the analytical method. On the other hand, while the solution
in far field is not correct, it does not affect the accuracy of the
solution in the near field. In this way, with the use of a frequency-
independent complex stretching function, one may produce the
standard PML formulation. The frequency-independent complex
coordinate stretching function is defined as [46]:

𝑟 ∶= ∫
𝑟

0

𝜆𝑟(𝑠)𝑑𝑠, �̃� ∶= ∫
𝜃

0

𝜆𝑧(𝑠)𝑑𝑠, �̃� ∶= ∫
𝑧

0

𝜆𝑧(𝑠)𝑑𝑠 (8)

where the so-called complex-valued coordinate stretching func-
tions 𝜆𝑟, 𝜆𝜃 , and 𝜆𝑧 are defined on the far field, which are nowhere
zero and continuous everywhere. Accordingly, the stretched coor-
dinate system (𝑟, �̃�, �̃�) is used to rewrite the governing equations.

3.1 Governing Equations in the Stretched
Coordinate System

By virtue of potential functions, one may uncouple the cou-
pled equations of motion and the transport equation to derive
some equivalent separated partial differential equations for the
potential functions. The proposed stretched coordinate system is
applied on the decoupled equations governing the potential func-
tions as transformations of the motion and transport equations.
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Adopting the two recently introduced scalar potential functions
denoted as 𝐹 and 𝜒 (see [8]) the displacements and the pore
fluid pressure are written in terms of these two scalar potential
functions in the stretched coordinate system as

𝑢𝑟 = −�̄�1𝛽3

𝜕2

𝜕𝑟𝜕�̃�

(
□𝑝

2 +
�̄�1�̄�3

𝛽3�̄�1

𝜌𝑓

𝜕2

𝜕𝑡2
− 𝜂

�̄�1�̄�3

𝛽3�̄�1

𝜕

𝜕𝑡

)
𝐹 − 1

𝑟

𝜕𝜒

𝜕�̃�

𝑢𝜃 = −�̄�1𝛽3

1

𝑟

𝜕2

𝜕�̃�𝜕�̃�

(
□2

𝑝 +
�̄�1�̄�3

𝛽3�̄�1

𝜌𝑓

𝜕2

𝜕𝑡2
− 𝜂

�̄�1�̄�3

𝛽3�̄�1

𝜕

𝜕𝑡

)
𝐹 +

𝜕𝜒

𝜕�̃�

𝑢𝑧 = �̄�1

[(
□2

0 + 𝛽1∇
2
𝑟�̃�

)
□2

𝑝 + �̄�1∇
2
𝑟�̃�

(
𝜌𝑓

𝜕2

𝜕𝑡2
− 𝜂

�̄�1

�̄�1

𝜕

𝜕𝑡

)]
𝐹

𝑝 = − 𝜕2

𝜕𝑡𝜕�̃�

[
−𝜂�̄�3

(
□2

0 +
(

𝛽1 − 𝛽3

�̄�1

�̄�3

)
∇2

𝑟�̃�

)
+�̄�3𝜌𝑓

𝜕

𝜕𝑡

(
□2

0 +
(

𝛽1 − 𝛽3

�̄�1

�̄�3

)
∇2

𝑟�̃�

)]
𝐹 (9)

where

∇2
𝑟�̃�
= 𝜕2

𝜕𝑟2
+ 1

𝑟

𝜕

𝜕𝑟
+ 1

𝑟2

𝜕2

𝜕�̃�2

□2
0 = ∇2

𝑟�̃�
+ 𝛽2

𝜕2

𝜕�̃�2
− �̄�

𝜕2

𝜕𝑡2

□2
𝑝 = ∇2

𝑟�̃�
+ 1

𝑠2
𝑘

𝜕2

𝜕�̃�2
− 𝛽𝑘

𝜕

𝜕𝑡

1

𝑠2
𝑘

=
�̄�3

�̄�1

, 𝛽𝑘 =
𝛽5

�̄�1

=
𝜂

𝑀𝑘1

(10)

Substituting Equation (9) into Equation (5) results in the follow-
ing PDEs for the potential functions 𝐹 and 𝜒 in terms of the
stretched coordinate system:

𝛽2

[
�̄�1(1 + 𝛽1)□

2
𝑝

(
□2

1□
2
2 − �̄�𝛿3

𝜕2

𝜕𝑡2

𝜕2

𝜕�̃�2

)
+ �̄�1�̄�1𝜌𝑓

𝜕2

𝜕𝑡2

(
□2

𝑠1□
2
3 + 𝛿1∇

2
𝑟�̃�

𝜕2

𝜕�̃�2

)
− 𝜂�̄�2

1

𝜕

𝜕𝑡

(
□2

𝑠2□
2
3 + 𝛿2∇

2
𝑟�̃�

𝜕2

𝜕�̃�2

)]
𝐹 = 0

□2
0𝜒 = 0 (11)

where

□2
1 = ∇2

𝑟�̃�
+ 1

𝑠2
1

𝜕2

𝜕�̃�2
−

�̄�

1 + 𝛽1

𝜕2

𝜕𝑡2

□2
2 = ∇2

𝑟�̃�
+ 1

𝑠2
2

𝜕2

𝜕�̃�2
−

�̄�

𝛽2

𝜕2

𝜕𝑡2

□2
3 = ∇2

𝑟�̃�
+ 𝜕2

𝜕�̃�2
−

�̄�

𝛽2

𝜕2

𝜕𝑡2

□2
𝑠1 = ∇2

𝑟�̃�
+

�̄�3

�̄�1𝑠
2
𝑘

𝜕2

𝜕�̃�2

□2
𝑠2 = ∇2

𝑟�̃�
+

�̄�2
3

�̄�2
1

𝜕2

𝜕�̃�2

𝛿1 = − 1

�̄�1�̄�1𝛽2

[�̄�1�̄�1(𝛽2 − 𝛽4)

+ (�̄�1�̄�3 + �̄�3�̄�1)𝛽3 + �̄�3�̄�3(𝛽2 − 1 − 𝛽1)]

𝛿2 =
1

�̄�2
1𝛽2

[�̄�2
3(1 + 𝛽1 − 𝛽2) + �̄�2

1(𝛽4 − 𝛽2) − 2�̄�1�̄�3𝛽3]

𝛿3 =
1

1 + 𝛽1

(
1 − 1

𝑠2
2

)
+ 1

𝛽2

(
𝛽4

1 + 𝛽1

− 1

𝑠2
1

)

1

𝑠2
1

+ 1

𝑠2
2

=
𝛽2

2 − 𝛽2
3 + 𝛽4(1 + 𝛽1)

𝛽2(1 + 𝛽1)
,

1

𝑠2
1𝑠

2
2

=
𝛽4

1 + 𝛽1

. (12)

Substituting the resulted 𝐹 and 𝜒 from PDEs 11 in Equations (9),
the displacements and the pore fluid pressure are obtained [8].

3.2 Complete Solution to PML Problem

The free-surface of the half-space is assumed to be completely
permeable; meaning that the fluid pore pressure is zero every-
where on the plane �̃� = 0. Considering an arbitrarily distributed
and arbitrarily oriented time-harmonic patch load, 𝜋0, located at
the free surface of the half-space, the boundary condition can be
written as follows:

𝜎𝑟�̃�(𝑟, �̃�, 0, 𝑡) = −�̄�(𝑟, �̃�) exp(𝑖𝜔𝑡),

𝜎�̃��̃�(𝑟, �̃�, 0, 𝑡) = −�̄�(𝑟, �̃�) exp(𝑖𝜔𝑡),

𝜎�̃��̃�(𝑟, �̃�, 0, 𝑡) = −�̄�(𝑟, �̃�) exp(𝑖𝜔𝑡), (𝑟, �̃�) ∈ 𝜋0

𝜎𝑟�̃� = 𝜎�̃��̃� = 𝜎�̃��̃� = 0, (𝑟, �̃�) ∉ 𝜋0

𝑝(𝑟, �̃�, 0, 𝑡) = 0, ∀(𝑟, �̃�) (13)

where the components of the patch load in 𝑟-, �̃�-, and �̃�-directions
are expressed as �̄�(𝑟, �̃�), �̄�(𝑟, �̃�), and �̄�(𝑟, �̃�), respectively. The
regularity condition at the far field should be satisfied

lim√
𝑟2+�̃�2→∞

(𝑢𝑟, 𝑢�̃�, 𝑢�̃�, 𝑝) = 0 (14)

As mentioned earlier, the unbounded domain is modeled by a
near field surrounded by a PML. As seen in Figure 1, the near
field is considered as a finite cylinder of radius 𝑟𝑁 and depth
𝑧𝑁 . The rest of the half-space is replaced by a cylindrical shell
with thicknesses 𝑟𝑃 and height 𝑧𝑃 along 𝑟- and �̃�- directions,
respectively. To completely define the problem, one should
consider proper boundary conditions on the far boundaries of
PML. Here, all displacements and the flux at the far boundary of
PML, i.e., Γ𝑝 = {(𝑟, 𝜃, 𝑧)|(𝑧 = 𝑧𝑁 + 𝑧𝑃 = 𝑧𝑇) ∪ (𝑟 = 𝑟𝑁 + 𝑟𝑃 = 𝑟𝑇)},
are considered to be zero. It should be mentioned that these
boundary conditions do not affect the response functions in the
near field duo to zero amplitude of responses on Γ𝑝. So, in
addition to the boundary conditions 13, the boundary conditions
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for this problem at the truncated surface are as follows:

𝑢𝑟(𝑟, 𝜃, 𝑧, 𝑡) = 𝑢𝜃(𝑟, 𝜃, 𝑧, 𝑡) = 𝑢𝑧(𝑟, 𝜃, 𝑧, 𝑡) = 0, (𝑟, 𝜃, 𝑧) on Γ𝑃

𝑝(𝑟𝑇, 𝜃, 𝑧, 𝑡) = 0, ∀(𝜃, 𝑧)

𝑞𝑧(𝑟, 𝜃, 𝑧𝑇, 𝑡) = − 1

𝜇
�̄�3

𝜕𝑝

𝜕𝑧
− 𝜌𝑓

𝜕2𝑢𝑧

𝜕𝑡2
= 0, ∀(𝑟, 𝜃)

(15)

When the excitation is time-harmonicwith the circular frequency
of 𝜔, the responses will be time-harmonic with the same circular
frequency [41]. In addition, one can write these functions in
the Fourier form in terms of circumferential coordinate �̃�. If
the domain is finite along the 𝑟-direction, one can apply the
finite Hankel integral transform. As we expect the amplitude
of functions attenuated along PML, and the far boundary of
PML plays the role of infinity, thus the infinite Hankel integral
transform can be applied. So, after applying the Hankel integral
transform of order 𝑚 in terms of the radial coordinate 𝑟 on the
𝑚th component of the Fourier series, one reaches to the following
relationship for the functions 𝐮, 𝑝, 𝝈, 𝐹, and 𝜒:

[𝐮, 𝑝, 𝝈, 𝐹, 𝜒](𝑟, �̃�, �̃�, 𝑡)

= exp(𝑖𝜔𝑡)

+∞∑
𝑚=−∞

exp(im�̃�)

×∫
∞

0

𝜉 [ˆ̄𝐮
𝑚

𝑚, ˆ̄𝑝
𝑚

𝑚, ˆ̄𝝈
𝑚

𝑚, ̃̄𝐹
𝑚

𝑚, ˆ̄𝜒
𝑚

𝑚](𝜉, �̃�)𝐽(𝑟𝜉)𝑑𝜉 (16)

In Equation (16), ∙̄𝑚 denotes the 𝑚th component of the Fourier
series, and ̂̄∙𝑚

𝑚 is the Hankel integral transform of order 𝑚 after
applying the Fourier transform. In addition, with the use of
the boundary conditions 13, the relationships among the stress
components and the surface tractions in transformed domain can
be written in the following form:

− ̂̄𝑃𝑚+1
𝑚 − 𝑖 ̂̄𝑄𝑚+1

𝑚 = ̂̄𝜎𝑚+1
𝑧𝑟𝑚 + 𝑖 ̂̄𝜎𝑚+1

𝑧𝜃𝑚
,

− ̂̄𝑃𝑚−1
𝑚 + 𝑖 ̂̄𝑄𝑚−1

𝑚 = ̂̄𝜎𝑚−1
𝑧𝑟𝑚 − 𝑖 ̂̄𝜎𝑚−1

𝑧𝜃𝑚
,

− ̂̄𝑅𝑚
𝑚 = ̂̄𝜎𝑚

𝑧𝑧𝑚, − ̂̄𝑝𝑚
𝑚 = 0, on 𝑧 = 0 (17)

and

ˆ̄𝑢
𝑚+1

rm + 𝑖ˆ̄𝑢
𝑚+1

𝜃𝑚 = 0, ˆ̄𝑢
𝑚−1

rm − 𝑖ˆ̄𝑢
𝑚−1

𝜃𝑚 = 0, ˆ̄𝑢
𝑚

zm = 0,

−ˆ̄𝑞
𝑚

zm = 0, on Γ𝑃 (18)

In addition to relations 17 and 18 where the displacements,
stresses, and pore pressure are given in terms of the potential
functions ̂̄𝐹𝑚

𝑚(𝜉, �̃�) and ̂̄𝜒𝑚
𝑚(𝜉, �̃�), the flux in the Hankel–Fourier

transformed space can be written as

̂̄𝑞𝑚
𝑧𝑚 = − 1

𝜇
�̄�3

𝑑 ̂̄𝑝𝑚
𝑚

𝑑�̃�
+ 𝜌𝑓𝜔2 ̂̄𝑢𝑚

𝑧𝑚 (19)

To solve the BVP in the Fourier–Hankel domain, Equation (9)
and the relation between stresses and potential functions are
rewritten in terms of ̂̄𝐹𝑚

𝑚(𝜉, �̃�) and ̂̄𝜒𝑚
𝑚(𝜉, �̃�). After some algebraic

manipulations it leads to the following relationships in the

Hankel–Fourier transformed space:

�̄�𝑚+1
𝑟𝑚 + 𝑖�̄�𝑚+1

�̃�𝑚
= �̄�1𝛽3𝜉

𝑑

𝑑�̃�

(
̃̄□2

𝑝𝑚 −
�̄�1�̄�3

𝛽3�̄�1

𝜌𝑓𝜔2 − 𝜂
�̄�1�̄�3

�̄�1𝛽3

𝑖𝜔

)
�̄�𝑚

𝑚 − 𝑖𝜉�̄�𝑚
𝑚

�̄�𝑚−1
𝑟𝑚 − 𝑖�̄�𝑚−1

�̃�𝑚
= −�̄�1𝛽3𝜉

𝑑

𝑑�̃�

(
̃̄□2

𝑝𝑚 −
�̄�1�̄�3

𝛽3�̄�1

𝜌𝑓𝜔2 − 𝜂
�̄�1�̄�3

�̄�1𝛽3

𝑖𝜔

)
�̄�𝑚

𝑚 − 𝑖𝜉�̄�𝑚
𝑚

�̄�𝑚
�̃�𝑚 = �̄�1

[(
̃̄□2

0𝑚 − 𝛽1𝜉
2
)

̃̄□2
𝑝𝑚 + �̄�1𝜉

2

(
𝜌𝑓𝜔2 + 𝜂

�̄�1

�̄�1

𝑖𝜔

)]
�̄�𝑚

𝑚

�̄�𝑚
𝑚 = 𝑖𝜔

𝑑

𝑑�̃�

[
𝜂�̄�3

(
̃̄□2

0𝑚 −
(

𝛽1 − 𝛽3

�̄�1

�̄�3

)
𝜉2

)

−�̄�3𝜌𝑓𝑖𝜔

(
̃̄□2

0𝑚 −
(

𝛽1 − 𝛽3

�̄�1

�̄�3

)
𝜉2

)]
�̄�𝑚

𝑚

�̄�𝑚
�̃��̃�𝑚 = 𝐶1133

(
�̄�1𝛽3𝜉

2 𝑑

𝑑�̃�
̃̄□2

𝑎𝑚�̄�𝑚
𝑚

)
+ 𝐶3333

(
�̄�1

𝑑

𝑑�̃�
̃̄□2

𝑐𝑚�̄�𝑚
𝑚

)

�̄�𝑚+1
�̃�𝑟𝑚 + 𝑖�̄�𝑚+1

�̃��̃�𝑚
= −𝐶1313𝜉

[
�̄�1

(
̃̄□2

𝑐𝑚 − 𝛽3
𝑑2

𝑑�̃�2
̃̄□2

𝑎𝑚

)
�̄�𝑚

𝑚 + 𝑖
𝑑

𝑑�̃�
�̄�𝑚

𝑚

]

�̄�𝑚−1
�̃�𝑟𝑚 − 𝑖�̄�𝑚−1

�̃��̃�𝑚
= 𝐶1313𝜉

[
�̄�1

(
̃̄□2

𝑐𝑚 − 𝛽3
𝑑2

𝑑�̃�2
̃̄□2

𝑎𝑚

)
�̄�𝑚

𝑚 − 𝑖
𝑑

𝑑�̃�
�̄�𝑚

𝑚

]
(20)

where

̃̄□2
0𝑚 = 𝛽2

𝑑2

𝑑�̃�2
− 𝜉2 + �̄�𝜔2,

̃̄□2
𝑝𝑚 = 1

𝑠2
𝑘

𝑑2

𝑑�̃�2
− 𝜉2 − 𝑖𝜔𝛽𝑘, ̃̄□2

1𝑚 = 1

𝑠2
1

𝑑2

𝑑�̃�2
− 𝜉2 +

�̄�𝜔2

1 + 𝛽1

,

̃̄□2
2𝑚 = 1

𝑠2
2

𝑑2

𝑑�̃�2
− 𝜉2 +

�̄�𝜔2

𝛽2

, □̄2
3𝑚 = 𝑑2

𝑑�̃�2
− 𝜉2 +

�̄�𝜔2

𝛽2

,

□̃2
𝑠1𝑚 =

�̄�3

�̄�1𝑠
2
𝑘

𝑑2

𝑑�̃�2
− 𝜉2, □̃2

𝑠2𝑚 =
�̄�2

3

�̄�2
1

𝑑2

𝑑�̃�2
− 𝜉2, (21)

In this way, the following ordinary differential equations derived
from Equation (11) should be solved for determining ̂̄𝐹𝑚

𝑚(𝜉, �̃�) and
̂̄𝜒𝑚
𝑚(𝜉, �̃�):(

𝑑6

𝑑�̃�6
+ 𝐼3(𝜉)

𝑑4

𝑑�̃�4
+ 𝐼2(𝜉)

𝑑2

𝑑�̃�2
+ 𝐼1(𝜉)

)
̂̄𝐹𝑚
𝑚(𝜉, �̃�) = 0,

(
𝑑2

𝑑�̃�2
+ 𝐼4(𝜉)

)
�̄�𝑚

𝑚(𝜉, �̃�) = 0, (22)

in which the coefficients 𝐼𝑖 (𝑖 = 1 − 4) are as follows:

𝐼4(𝜉) = 1

𝛽2

(
�̄�𝜔2 − 𝜉2

)
,

𝜙1𝐼3(𝜉) = −𝜙2𝜉
2 + 𝜙3

− 𝑖𝜔

(
𝛽𝑘

𝑠2
1𝑠

2
2

+
𝜂�̄�2

3

�̄�1(1 + 𝛽1)

)
−

�̄�3𝜌𝑓𝜔2

𝑠2
𝑘
(1 + 𝛽1)

,

𝜙1𝐼2(𝜉) = 𝜙4𝜉
4 + 𝜙5𝜉

2 + 𝜙6

+
𝑖𝜔𝜂

�̄�1(1 + 𝛽1)

[
�̄�2

1(1 + 𝛿2)𝜉
2 + �̄�2

3

(
𝜉2 −

�̄�𝜔2

𝛽2

)]

+
𝜌𝑓𝜔2

�̄�1(1 + 𝛽1)

[
�̄�1�̄�1(1 + 𝛿1)𝜉

2 + �̄�3�̄�3

(
𝜉2 −

�̄�𝜔2

𝛽2

)]
,
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𝜙1𝐼1(𝜉) = −𝜉6 + 𝜙7𝜉
4 + 𝜙8𝜉

2 + 𝜙9

−
�̄�1𝜉

2

(1 + 𝛽1)

(
𝜉2 −

�̄�𝜔2

𝛽2

)(
𝑖𝜔𝜂

�̄�1

�̄�1

+ 𝜌𝑓𝜔2

)
, (23)

and 𝜙𝑖 (𝑖 = 1 − 9) are defined as

𝜙1 =
1

(𝑠1𝑠2𝑠𝑘)2
, 𝜙2 =

1

𝑠2
1𝑠

2
2

+ 1

𝑠2
𝑘

(
1

𝑠2
1

+ 1

𝑠2
2

)
,

𝜙3 =
�̄�𝜔2

𝑠2
𝑘

(
𝛽2 + 𝛽4

𝛽2(1 + 𝛽1)

)
, 𝜙4 =

1

𝑠2
1

+ 1

𝑠2
2

+ 1

𝑠2
𝑘

,

𝜙5 = −�̄�𝜔2

[
1

𝑠2
𝑘

(
1

(1 + 𝛽1)
+ 1

𝛽2

)
+

𝛽2 + 𝛽4

𝛽2(1 + 𝛽1)

]

+ 𝑖𝜔𝛽𝑘

(
1

𝑠2
1

+ 1

𝑠2
2

)
,

𝜙6 = −𝑖𝜔3�̄�𝛽𝑘

(
𝛽2 + 𝛽4

𝛽2(1 + 𝛽1)

)
+

�̄�2𝜔4

𝑠2
𝑘
𝛽2(1 + 𝛽1)

,

𝜙7 = �̄�𝜔2

(
1

1 + 𝛽1

+ 1

𝛽2

)
− 𝑖𝜔𝛽𝑘,

𝜙8 =
�̄�𝜔2

𝛽2(1 + 𝛽1)
[𝑖𝜔𝛽𝑘(1 + 𝛽1 + 𝛽2) − �̄�𝜔2], 𝜙9 = −

𝑖𝜔5𝛽𝑘�̄�2

𝛽2(1 + 𝛽1)
,

(24)

The characteristic equations of Equations (22) are given as

𝜆6
𝑖 + 𝐼3(𝜉)𝜆4

𝑖 + 𝐼2(𝜉)𝜆2
𝑖 + 𝐼1(𝜉) = 0, 𝑖 = 1, 2, 3

𝜆2
4 + 𝐼4(𝜉) = 0,

(25)

which lead to the following solution for Equations (22):

̂̄𝐹𝑚
𝑚(𝜉, �̃�) = 𝐴𝑚(𝜉) exp(−𝜆1�̃�) + 𝐵𝑚(𝜉) exp(−𝜆2�̃�)

+ 𝐶𝑚(𝜉) exp(−𝜆3�̃�)

+ 𝐷𝑚(𝜉) exp(𝜆1�̃�) + 𝐸𝑚(𝜉) exp(𝜆2�̃�) + 𝐺𝑚(𝜉) exp(𝜆3�̃�),

̂̄𝜒𝑚
𝑚(𝜉, �̃�) = 𝐻𝑚(𝜉) exp(−𝜆4�̃�) + 𝐾𝑚(𝜉) exp(𝜆4�̃�) (26)

It is clear that in a semiinfinite space there is no reflected wave
from infinity. When the half-space is truncated by considering a
PML around the near field, the wave will not reflect from the far
boundary of PML if the amplitudes of outgoing waves attenuate
enough through the PML.

The problem is completely solved if eight unknown coefficient
functions of the potential functions 26 which are related to
the forward wave propagation and their reflection from the far
boundary of PML, are obtained via the boundary conditions 13
and 15. One can rewrite the boundary conditions 17 and 18 as
27 in order to the solutions are simply inverted from the Hankel

transformed space

𝜈1𝑚 = 1

2

[(
̂̄𝑢𝑚+1
𝑟𝑚 + 𝑖 ̂̄𝑢𝑚+1

𝜃𝑚

)
−
(

̂̄𝑢𝑚−1
𝑟𝑚 − 𝑖 ̂̄𝑢𝑚−1

𝜃𝑚

)]
,𝜈2𝑚 = ̂̄𝑢𝑚

𝑧𝑚

𝜈3𝑚 = 1

2

[(
̂̄𝑢𝑚+1
𝑟𝑚 + 𝑖 ̂̄𝑢𝑚+1

𝜃𝑚

)
+
(

̂̄𝑢𝑚−1
𝑟𝑚 − 𝑖 ̂̄𝑢𝑚−1

𝜃𝑚

)]
, 𝜈4𝑚 = ̂̄𝑝𝑚

𝑚

𝜏1𝑚 = 1

2

[(
̂̄𝜎𝑚+1
𝑧𝑟𝑚 + 𝑖 ̂̄𝜎𝑚+1

𝑧𝜃𝑚

)
−
(

̂̄𝜎𝑚−1
𝑧𝑟𝑚 − 𝑖 ̂̄𝜎𝑚−1

𝑧𝜃𝑚

)]
, 𝜏2𝑚 = ̂̄𝜎𝑚

𝑧𝑧𝑚

𝜏3𝑚 = 1

2

[(
̂̄𝜎𝑚+1
𝑧𝑟𝑚 + 𝑖 ̂̄𝜎𝑚+1

𝑧𝜃𝑚

)
+
(

̂̄𝜎𝑚−1
𝑧𝑟𝑚 − 𝑖 ̂̄𝜎𝑚−1

𝑧𝜃𝑚

)]
, 𝜏4𝑚 = ̂̄𝑞𝑚

𝑧𝑚

(27)

Note that, in this problem, 𝑣𝑗𝑚 (𝑗 = 1 to 4), are related to the
conditions at the boundary of PML �̃�(𝑧 = 𝑧𝑇), and 𝜏𝑗𝑚 with 𝑗 =
1 to 4 are for the near field boundary condition �̃�(𝑧 = 0). By virtue
of the boundary conditions 13 and 15, the following system of
linear algebraic equations may be established, whose solutions
are the unknown functions 𝐴𝑚(𝜉) to 𝐾𝑚(𝜉):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜈1𝑚

𝜈2𝑚

𝜈4𝑚

𝜏1𝑚

𝜏2𝑚

𝜏4𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Φ1 −Φ2 −Φ3 Φ1 Φ2 Φ3

Ψ1 Ψ2 Ψ3 Ψ1 Ψ2 Ψ3

−Γ1 −Γ2 −Γ3 Γ1 Γ2 Γ3

Ω1 Ω2 Ω3 Ω1 Ω2 Ω3

−Λ1 −Λ2 −Λ3 Λ1 Λ2 Λ3

Θ1 Θ2 Θ3 Θ1 Θ2 Θ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴𝑚(𝜉)𝑒−𝜆1�̃�

𝐵𝑚(𝜉)𝑒−𝜆2�̃�

𝐶𝑚(𝜉)𝑒−𝜆3�̃�

𝐷𝑚(𝜉)𝑒𝜆1�̃�

𝐸𝑚(𝜉)𝑒𝜆2�̃�

𝐺𝑚(𝜉)𝑒𝜆3�̃�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

and [
𝜈3𝑚

𝜏3𝑚

]
=

[
−𝑖𝜉 −𝑖𝜉

𝑖𝜉𝐶1313𝜆4 −𝑖𝜉𝐶1313𝜆4

][
𝐻𝑚(𝜉)𝑒−𝜆4�̃�

𝐾𝑚(𝜉)𝑒𝜆4�̃�

]
(29)

where

Φ𝑖(𝜉) = �̄�1𝛽3𝜉𝜆𝑖

[
̂̄□2

𝑝𝑚,𝑖 −
�̄�1�̄�3

𝛽3�̄�1

(
𝜌𝑓𝜔2 + 𝜂

�̄�3

�̄�3

𝑖𝜔

)]
Ψ𝑖(𝜉) = �̄�1

[(
̂̄□2

0𝑚,𝑖 − 𝛽1𝜉
2
)

̂̄□2
𝑝𝑚,𝑖 + �̄�1𝜉

2

(
𝜌𝑓𝜔2 + 𝜂

�̄�1

�̄�1

𝑖𝜔

)]
Γ𝑖(𝜉) = 𝜆𝑖

[
�̄�3𝜂𝑖𝜔

(
̂̄□2

0𝑚,𝑖 −
(

𝛽1 − 𝛽3

�̄�1

�̄�3

)
𝜉2

)
+�̄�3𝜌𝑓𝜔2

(
̂̄□2

0𝑚,𝑖 −
(

𝛽1 − 𝛽3

�̄�1

�̄�3

)
𝜉2

)]
Ω𝑖(𝜉) = −𝐶1313�̄�1𝜉

(
̂̄□2

𝑐𝑚,𝑖 − 𝛽3𝜆
2
𝑖

̂̄□2
𝑎𝑚,𝑖

)
Λ𝑖(𝜉) = 𝐶1133�̄�1𝛽3𝜉

2𝜆𝑖
̂̄□2

𝑎𝑚,𝑖 + 𝐶3333�̄�1𝜆𝑖
̂̄□2

𝑐𝑚,𝑖

Θ𝑖(𝜉) =
�̄�3

𝜂
(−𝜆𝑖Γ𝑖(𝜉) + 𝜌𝑓𝜔2Ψ𝑖(𝜉))

̂̄□2
𝑝𝑚,𝑖 =

1

𝑠2
𝑘

𝜆2
𝑖 − 𝜉2 − 𝑖𝜔𝛽𝑘

̂̄□2
0𝑚,𝑖 = 𝛽2𝜆

2
𝑖 − 𝜉2 + �̄�𝜔2

̂̄□2
𝑎𝑚,𝑖 = ̂̄□2

𝑝𝑚,𝑖 −
�̄�1�̄�3

𝛽3�̄�1

(
𝜌𝜔2 + 𝑖𝜔𝜂

�̄�3

�̄�3

)
̂̄□2

𝑐𝑚,𝑖 =
(

̂̄□2
0𝑚,𝑖 − 𝛽1𝜉

2
)

̂̄□2
𝑝𝑚,𝑖 + �̄�1𝜉

2

(
𝜌𝑓𝜔2 + 𝑖𝜔𝜂

�̄�1

�̄�1

)
(30)
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Substituting the solution of Equations (28) into Equations (20)
and doing some algebraic manipulations, results in the displace-
ments, pore fluid pressure and stresses in the Hankel–Fourier
transformed space. Then, applying the theorem of inverseHankel
integral transforms to these functions, the Fourier components
of the displacements, pore fluid pressure and the stresses are
obtained as follows:

𝑢𝑟 =
1

2

1∑
𝑚=−1

exp(im𝜃)

{
∫

∞

0

𝜉[(𝜈3𝑚 − 𝜈1𝑚)𝐽𝑚−1(𝑟𝜉)

+ (𝜈3𝑚 + 𝜈1𝑚)𝐽𝑚+1(𝑟𝜉)]𝑑𝜉

}

𝑢�̃� = 𝑖

2

1∑
𝑚=−1

exp(im𝜃){∫
∞

0

𝜉[(𝜈3𝑚 − 𝜈1𝑚)𝐽𝑚−1(𝑟𝜉)

− (𝜈3𝑚 + 𝜈1𝑚)𝐽𝑚+1(𝑟𝜉)]𝑑𝜉}

𝑢�̃� =
1∑

𝑚=−1

exp(im𝜃)

{
∫

∞

0

𝜉𝜈2𝑚𝐽𝑚(𝑟𝜉)𝑑𝜉

}

𝑝 =
1∑

𝑚=−1

exp(im𝜃)

{
∫

∞

0

𝜉𝜈4𝑚𝐽𝑚(𝑟𝜉)𝑑𝜉

}

𝜎𝑟�̃� = 1

2

1∑
𝑚=−1

exp(im𝜃)

{
∫

∞

0

𝜉[(𝜏3𝑚 − 𝜏1𝑚)𝐽𝑚−1(𝑟𝜉)

+ (𝜏3𝑚 + 𝜏1𝑚)𝐽𝑚+1(𝑟𝜉)]𝑑𝜉

}

𝜎�̃��̃� = 𝑖

2

1∑
𝑚=−1

exp(im𝜃)

{
∫

∞

0

𝜉[(𝜏3𝑚 − 𝜏1𝑚)𝐽𝑚−1(𝑟𝜉)

+ (𝜏3𝑚 + 𝜏1𝑚)𝐽𝑚+1(𝑟𝜉)]𝑑𝜉

}

𝜎�̃��̃� =
1∑

𝑚=−1

exp(im𝜃)

{
∫

∞

0

𝜉𝜏2𝑚𝐽𝑚(𝑟𝜉)𝑑𝜉

}

𝑞�̃� =
1∑

𝑚=−1

exp(im𝜃)

{
∫

∞

0

𝜉𝜏4𝑚𝐽𝑚(𝑟𝜉)𝑑𝜉

}
(31)

3.3 Family of Stretched Coordinate System

As it can be seen fromEquations (31), the displacements and pore
fluid pressure due to the patch load consist of some exponential
functions exp(−𝜆𝑗�̃�) and Bessel functions 𝐽𝑚(𝑟𝜉). The stretched
coordinate system should be chosen in such a way that the
coordinates remain unchanged in the near field, i.e., �̃� = 𝑧 and
𝑟 = 𝑟, and forcing the outgoing waves to be attenuated in PML.
One should notice that 𝜃 varies in a finite interval, meaning that
no attenuation needs to be considered in terms of 𝜃. Thus, �̃� is
considered to be equal to 𝜃 everywhere. Based on these reasons,
the stretching functions are proposed to be in the form of

𝜆𝑟(𝑟) = 1 + 𝑓𝑟(𝑟)𝐻(𝑟 − 𝑟𝑁), 𝜆𝜃(𝜃) = 1,

𝜆𝑧(𝑧) = 1 + 𝑓1𝑧(𝑧)𝐻(𝑧 − 𝑧𝑁) − 𝑖𝑓2𝑧(𝑧)𝐻(𝑧 − 𝑧𝑁)
(32)

in which, 𝑟𝑁 and 𝑧𝑁 represent the radius and depth of open
cylindrical region that define the near field and𝐻 is the unit-step
(Heaviside step) function. The functions 𝑓𝑟(𝑟), 𝑓1𝑧(𝑧), and 𝑓2𝑧(𝑧),
in 32, are selected in such a way that their definite integration in
any interval from 𝑏 ≥ 0 to 𝑐 > 𝑏 to be positive. 𝐹𝑟(𝑟), 𝐹1𝑧(𝑧), and
𝐹2𝑧(𝑧) are defined as the finite integration of 𝑓𝑟(𝑟), 𝑓1𝑧(𝑧), and
𝑓2𝑧(𝑧) in the form of

𝐹𝑟(𝑟) = ∫
𝑟

0

𝑓𝑟(𝑠)𝑑𝑠, 𝐹𝑗𝑧(𝑧) = ∫
𝑧

0

𝑓𝑗𝑧(𝑠)𝑑𝑠, 𝑗 = 1, 2

(33)
Thus, the functions 𝐹𝑟(𝑟), 𝐹1𝑧(𝑧), and 𝐹2𝑧(𝑧) are always positive.

To investigate the forms for the functions 𝐹1𝑧(𝑧) and 𝐹2𝑧(𝑧), first
the complex valued function 𝜆𝑗 is written in terms of its real and
imaginary parts in a Cartesian complex coordinate system as 𝜆𝑗 =
𝛾𝑗 + 𝑖𝜅𝑗 , with the properties of 𝛾𝑗 > 0 and 𝜅𝑗 > 0. Then, with the
use of Equation (32), the exponential function exp(−𝜆𝑗�̃�) can be
written as

exp(−𝜆𝑗�̃�) = exp(−(𝛾𝑗 + 𝑖𝜅𝑗)(𝑧 + 𝐹1𝑧(𝑧) − 𝑖𝐹2𝑧(𝑧)))

= exp(−(𝛾𝑗 + 𝑖𝜅𝑗)𝑧) exp(−𝛾𝑗𝐹1𝑧(𝑧)

− 𝜅𝑗𝐹2𝑧(𝑧)) exp(−𝑖(𝜅𝑗𝐹1𝑧(𝑧) − 𝛾𝑗𝐹2𝑧(𝑧))) (34)

Clearly, the exponential function is attenuated by
exp(−𝛾𝑗𝐹1𝑧(𝑧) − 𝜅𝑗𝐹2𝑧(𝑧)); the larger the values of 𝛾𝑗 and
𝜅𝑗 , the faster the exponential function attenuates. Accordingly,
the following families of functions for 𝑓1𝑧(𝑧) and 𝑓2𝑧(𝑧) are
employed:

𝑓𝑗𝑧(𝑧) = 𝛽𝑗𝑧

(𝑧 − 𝑧𝑁)𝑚𝑗

𝑧
𝑚𝑗

𝑃

, 𝑗 = 1, 2 (35)

in which 𝑧𝑃 is the depth of PML along 𝑧-direction, 𝛽𝑗𝑧 and 𝑚𝑗

are parameters to be used to speed up/down the attenuation. It
is clear that the functions 𝑓1𝑧(𝑧) and 𝑓2𝑧(𝑧) are defined for 𝑧 >

𝑧𝑁 . In this way, one may introduce a family of complex valued
coordinate stretching functions in the 𝑧-direction as

𝜆𝑧(𝑧) = 1 + 𝛽𝑗𝑧

(𝑧 − 𝑧𝑁)𝑚𝑗

𝑧
𝑚𝑗

𝑃

𝐻(𝑧 − 𝑧𝑁) (36)

It may be recognized that the larger the values of 𝛽𝑗𝑧 > 0,
the faster the exponential function attenuates. It should be
mentioned that the function 𝐹𝑗𝑧 at �̃� = 𝑧𝑁 + 𝑧𝑃 is given by
𝐹𝑗𝑧(𝑧𝑁 + 𝑧𝑃) = 𝛽𝑗𝑧𝑧𝑃∕(𝑚𝑗 + 1). Thus, the wave amplitude at the
far boundary of PML, where �̃� = 𝑧𝑁 + 𝑧𝑃, increases by choosing
the larger values for 𝑚𝑗 and the accuracy of the results then
decreases. Note that, to guarantee the positivity of 𝐹𝑗𝑧(𝑧), 𝑚𝑗

should be larger than −1. On the other hand, the larger values
for 𝑧𝑃 improves the accuracy of the results. It is also worth
mentioning that the stretching function 𝜆𝑧 at 𝑧 = 𝑧𝑁 equals
unity, which means that the 𝑧−coordinate is not stretched at
the interface of the near field and far field, while the larger the
distance from this interface, the larger the stretched coordinate
happens in the far field. In the same way, the function 𝑓𝑟(𝑟)

and the coordinate stretching functions in the 𝑟-direction are
considered as

𝑓𝑟(𝑟) = (𝑟 − 𝑟𝑁) exp(𝛽𝑟(𝑟 − 𝑟𝑁)) (37)

and

𝜆𝑟(𝑟) = 1 + (𝑟 − 𝑟𝑁) exp(𝛽𝑟(𝑟 − 𝑟𝑁))𝐻(𝑟 − 𝑟𝑁) (38)
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respectively. In fact, substituting the function 38 in the argument
of the Bessel function results in

𝐽𝑚(𝑟) = 𝐽𝑚(1 + 𝐹𝑟(𝑟)H(𝑟 − 𝑟𝑁)) = 𝐽𝑚(𝑟 + ∫
𝑟

0

𝑓𝑟(𝑟)H(𝑟 − 𝑟𝑁)𝑑𝑠)

= 𝐽𝑚

(
𝑟 +

[(
𝑟 − 𝑟𝑁

𝛽𝑟

− 1

𝛽𝑟
2

)
exp(𝛽𝑟(𝑟 − 𝑟𝑁)) + 1

𝛽𝑟
2

]
H(𝑟 − 𝑟𝑁)

)
(39)

which makes the Bessel function, due to existing of exponential
function with 𝛽𝑟 > 0, to be evaluated at points very far from
the origin compared with the physical coordinate 𝑟, meaning
that the larger the value of 𝛽𝑟 leads to the response functions
approach zero as fast as the Bessel function does. Eventually,
substituting 37 and 38 into 8 yields the stretched coordinates in
𝑧− and 𝑟-directions as

�̃� = 𝑧 + 𝛽1𝑧

(𝑧 − 𝑧𝑁)𝑚1+1

(𝑚1 + 1)𝑧
𝑚1

𝑃

𝐻(𝑧 − 𝑧𝑁) − 𝑖𝛽2𝑧

(𝑧 − 𝑧𝑁)𝑚2+1

(𝑚2 + 1)𝑧
𝑚2

𝑃

𝐻(𝑧 − 𝑧𝑁)

𝑟 = 𝑟 +
[(

𝑟 − 𝑟𝑁

𝛽𝑟

− 1

𝛽𝑟
2

)
exp(𝛽𝑟(𝑟 − 𝑟𝑁)) + 1

𝛽𝑟
2

]
𝐻(𝑟 − 𝑟𝑁)

(40)

respectively. It is worth mentioning that, in comparison with
the physical coordinate system, using stretched coordinates (40)
in the kernel of the Hankel transform, which is the Bessel
function, causes faster attenuation of the integrands of Equation
(31). Thus, the proposed stretched coordinates can enhance the
computational efficiency and reduce the time cost.

4 Degenerated Cases

In this section, some useful degenerations of the general formu-
lation are investigated.

4.1 Torsion-Less Axisymmetric Problems

In this section, the degeneration of the previously given formu-
lations for the case of torsion-less axis- symmetric is presented.
This case happens if the external time-harmonic load is vertical
and independent of 𝜃, and the patch of the load is itself axis-
symmetric. Under these conditions, the nonzero components of
the external excitation, which are independent of the coordinate
�̃� = 𝜃, are given as

𝑃 = 𝑄 = 0, 𝑅(𝑟, �̃�, 𝑡) = 𝑅(𝑟) exp(𝑖𝜔𝑡), (𝑟, �̃�) ∈ 𝜋0

(41)
and its Fourier series contain only one term related to 𝑚 = 0,
which is equal to 𝑅(𝑟) exp(𝑖𝜔𝑡):

𝑅0(𝑟) = 𝑅(𝑟) (42)

Due to the symmetry of both excitation and geometry, the Fourier
series of the solutions also contain only one term related to
𝑚 = 0, and that term equals the solution itself. In this case all
boundary conditions are equal to zero except 𝜏2𝑚 = −𝐽1(𝜉𝑎)∕𝜋𝜉𝑎.
The displacements, pore fluid pressure and stresses for this case
are presented in Appendix A.

4.2 Half-Space Under Asymmetric Patch Load

A saturated poroelastic half-space is considered to be under a
uniform surface horizontal circular patch load of radius 𝑎 and of
magnitude 𝑓ℎ =

√
𝑃2 + 𝑄2, in which

𝑃(𝑟, �̃�, 𝑡) =
𝑓ℎ cos �̃�

𝜋𝑎2
exp(𝑖𝜔𝑡),

𝑄(𝑟, �̃�, 𝑡) = −
𝑓ℎ sin �̃�

𝜋𝑎2
exp(𝑖𝜔𝑡),

𝑅(𝑟, �̃�, 𝑡) = 0, (𝑟, �̃�) ∈ 𝜋0 (43)

Since, the sum of a vertical axis-symmetric and a horizontal force
make an arbitrary load, this case can be considered as a general
asymmetric case for the problem in hand. The displacements,
pore fluid pressure and stresses for this case are presented in
Appendix B.

4.3 Dry Transversely Isotropic Elastic Material

To degenerate the solution for the problems in transversely
isotropic elastic half-space from the solution presented for the
wave propagation in poroelastic transversely isotropic half-space,
one can set 𝜌𝑓 = 𝜂 = 𝛼1 = 𝛼3 = 0. Then defining �̆� = �̄�1□

2
𝑝𝐹 (see

[8]), Equations (9) and 11 are reduced to

𝑢𝑟 = −𝛽3

𝜕2�̆�

𝜕𝑟𝜕�̃�
− 1

𝑟

𝜕𝜒

𝜕�̃�
, 𝑢�̃� = −𝛽3

1

𝑟

𝜕2�̆�

𝜕�̃�𝜕�̃�
−

𝜕𝜒

𝜕�̃�
,

𝑢�̃� =
(

□2
0 + 𝛽1∇

2
𝑟�̃�

)
�̆� (44)

and

𝛽2

[
(1 + 𝛽1)

(
□2

1□
2
2 − �̄�𝛿3

𝜕2

𝜕𝑡2

𝜕2

𝜕�̃�2

)]
�̆� = 0, □2

0𝜒 = 0 (45)

Transferring Equation (45) into the Hankel–Fourier space results
in [

□1𝑚□2𝑚 − �̄�𝜔2 𝑑2

𝑑�̃�2

]
�̆�𝑚

𝑚(𝜉, �̃�) = 0, □0𝑚𝜒𝑚
𝑚(𝜉, �̃�) = 0 (46)

where

□0𝑚 = �̄�𝜔2 − 𝜉2 + 𝛽2

𝑑2

𝑑�̃�2
, □1𝑚 =

�̄�𝜔2

1 + 𝛽1

− 𝜉2 + 1

𝑠2
1

𝑑2

𝑑�̃�2
,

□2𝑚 =
�̄�𝜔2

𝛽2

− 𝜉2 + 1

𝑠2
2

𝑑2

𝑑�̃�2
(47)

Because of regularity condition, the displacements and stresses
approach zero at infinity, with the same conditions for the
potential functions. Thus, the potential functions should be zero
at the PML boundary. In this way, the solutions to ODEs 46 can
be written in the following form:

�̆�𝑚
𝑚(𝜉, �̃�) = 𝐴𝑚(𝜉) exp(−𝜆1�̃�) + 𝐵𝑚(𝜉) exp(−𝜆2�̃�),

𝜒𝑚
𝑚(𝜉, �̃�) = 𝐶𝑚(𝜉) exp(−𝜆3�̃�) (48)

where
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TABLE 1 Material coefficients of saturated porous transversely isotropic half-space [47].

𝑪𝟏𝟏 𝑪𝟑𝟑 𝑪𝟒𝟒 𝑪𝟔𝟔 𝑪𝟏𝟑 𝒏 𝑲𝒔 𝑲𝒇 𝝆𝒔 𝝆𝒇 𝒌𝟏 𝒌𝟑 𝜼

N/𝐦𝐦𝟐 N/𝐦𝐦𝟐 N/𝐦𝐦𝟐 N/𝐦𝐦𝟐 N/𝐦𝐦𝟐 % N/𝐦𝐦𝟐 N/𝐦𝐦𝟐 Kg/𝐦𝟑 Kg/𝐦𝟑 𝐦𝟐 𝐦𝟐 𝑷𝒂𝑺

9570 8320 3000 4190 2330 20 35,000 2250 2600 1000 10−12 10−13 10−3

FIGURE 2 Comparison of the displacements in the physical and stretched coordinate systems for the axisymmetric problem. In the case 𝜆𝑟 = 𝜆𝑧 =
1, the response functions in the stretched coordinate system are not attenuated.

FIGURE 3 The effect of parameter 𝛽𝑟 on the attenuation of functions along the 𝑟-axis. The power of amplitude attenuation is directly related to 𝛽𝑟 .

𝜆1 =
√

𝑎1𝜉2 + 𝑎2 +
1

2

√
𝑎3𝜉4 + 𝑎4𝜉2 + 𝑎5,

𝜆2 =
√

𝑎1𝜉2 + 𝑎2 −
1

2

√
𝑎3𝜉4 + 𝑎4𝜉2 + 𝑎5, 𝜆3 =

√
𝜉2 − �̄�𝜔2

𝛽2

(49)

𝑎1 =
1

2

(
𝑠2
1 + 𝑠2

2

)2
, 𝑎2 =

1

2

(
𝐶66

𝐶33

+
𝐶66

𝐶44

)
, 𝑎3 =

1

2

(
𝑠2
1 − 𝑠2

2

)2
,

𝑎4 = −2�̄�𝜔2

[(
𝐶1212

𝐶33

+
𝐶1212

𝐶44

)(
𝑠2
1 + 𝑠2

2

)
− 2

𝐶11

𝐶33

(
𝐶66

𝐶11

+
𝐶66

𝐶44

)]
,

𝑎5 = �̄�2𝜔4

(
𝐶66

𝐶33

−
𝐶66

𝐶44

)2

(50)

The process of solving the elastic problem for every arbitrary
boundary condition is straightforward.

5 Numerical Results

Some numerical results are presented for the proposed
formulations to assess the present appropriate values for
the attenuation parameters, and to examine the validity,
accuracy, and the applicability of the formulations. For
the first purpose, a homogeneous porous transversely
isotropic half-space filled by the material given in Table 1
is considered, where the material properties are borrowed
from [47].
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FIGURE 4 The effect of depth of PML on the attenuation of
functions along 𝑧-axis. As the PML depth increases the amplitude of
response function at the boundary of PML limits to zero. PML, perfectly
matched layer.

5.1 Axisymmetric Problem: Half-Space Under
Vertical Patch Load

To verify the formulations and examine their results, the numeri-
cal results evaluated in Section 4.1 for a half-space in nonstretched
coordinate system are first compared with the analytical results
reported in [8]. The displacements for the half-space can be
determined by setting 𝜆𝑟 = 𝜆𝑧 = 1. The results for real and
imaginary parts of horizontal displacement 𝑢𝑟(𝑟, 𝑧 = 0) at 𝑧 = 0

in terms of 𝑟, and vertical displacement 𝑢𝑧(𝑟 = 0, 𝑧) at 𝑟 = 0

in terms of 𝑧, are compared in Figure 2, where an excellent
agreement is observed. Note that a dimensionless frequency of
𝜔0 = 𝜔𝑎

√
𝑟∕𝐶44 = 0.5 is considered throughout the paper.

Now, a parametric study for attenuation parameters is performed
to determine their best range. For this purpose, it should be
emphasized that the stretching is applied for 𝑟- and 𝑧- coor-
dinates. On the other hand, it is noted that the difference
between the axis-symmetric and asymmetric is in the order
of Bessel functions involved in the expression of the solution.
However, different orders of Bessel functions of the first kind
behave the same at infinity. Thus, one may study the attenuation
parameters for axis-symmetric case and use the results for both
the axis-symmetric and asymmetric cases. To this end, first the
axis-symmetric vertical surface load is assumed to be applied on
a circular patch of radius 𝑎 with the origin at its center. For this
case, the open region defined by 𝑟 < 5𝑎 and 𝑧 < 5𝑎 is considered
as the near field, and the lengths of PML along 𝑟- and 𝑧-direction
are considered as 𝑟𝑃 = 5𝑎 and 𝑧𝑃 = 5𝑎, respectively. Thus, one
may expect exact results for any function in the cylinder defined
by 𝑟 ≤ 5𝑎 and 𝑧 ≤ 5𝑎, and attenuated displacements are desired
outside this cylinder.

As recognized from Equations (36) and (38), the higher values for
𝛽1𝑧, 𝛽2𝑧 and 𝛽𝑟 may speed up the attenuation of the responses,
which means that the higher values for 𝛽1𝑧, 𝛽2𝑧, and 𝛽𝑟 may
enhance the accuracy of numerical solution by reducing the

amplitude of reflected wave from the far boundary of PML. On
the other hand, the higher values of 𝑚1 and 𝑚2 deteriorate the
attenuation speed, and therefore cause the accuracy of the results
to decrease again due to reflection of the nonzero-amplitude
waves from the PML boundary.

To determine proper ranges for the attenuation parameters, a
criterion on the values of displacements determined at the PML
boundary should be selected. The criterion is defined in such a
way that, for example, the displacement at the far boundary PML
is less than 𝜖 times 𝑢ℎ𝑎𝑙𝑓−𝑠𝑝𝑎𝑐𝑒, where 𝑢ℎ𝑎𝑙𝑓−𝑠𝑝𝑎𝑐𝑒 is the value of
the same displacement at the same point determined from the
solution with 𝜆𝑟 = 𝜆𝑧 = 1. 𝜖 is a desired small parameter to define
the relative error in displacement, and it is selected as 10−5 in
this study.

Determination of the attenuation parameter along the 𝑟-axis is
pretty easy, since the attenuation in the 𝑟-direction is controlled
with only one parameter, say 𝛽𝑟. Figure 3 illustrates the horizontal
displacement 𝑢𝑟 along the 𝑟-direction for different values of
𝛽𝑟. It is observed that the displacement is attenuated very well
for 𝛽𝑟 > 3, so, 𝛽𝑟 is set to 5 for future illustrations. It should
be mentioned that other responses (not shown here) are also
attenuated very well.

Before assessing the attenuation parameters in the 𝑧-direction,
let us investigate the role of the depth of PML 𝑧𝑃. As previously
expressed, by increasing the length of PML, where the wave is
attenuated through less reflection is expected towards the near
field. The dependency of the amplitude of the reflected wave is
depicted in Figure 4. It seems that 𝑧𝑃 = 5𝑎would be good enough
for the rest of computations.

To allocate proper values for the attenuation parameters in the
𝑧-direction, first the parameters 𝛽2𝑧, 𝑚1, and 𝑚2 are fixed to
some arbitrary values, and the parameter 𝛽1𝑧 is determined. For
this purpose, 𝛽2𝑧 = 5 and 𝑚1 = 𝑚2 = 0 are set. To evaluate the
best range for 𝛽1𝑧, one may evaluate any response function at
a fixed value for 𝑟 along the 𝑧-direction. Figure 5 shows the
displacement 𝑢𝑟(𝑟 = 3, 𝑧) for some values of 𝛽1𝑧 from zero to
15. It can be inferred that 𝛽1𝑧 = 10 can be selected as a proper
lower bound. It should be mentioned that, in this case, 𝑢𝑟,PML(𝑟 =
3𝑎, 𝑧 = 10𝑎)∕𝑢𝑟,ℎ𝑎𝑙𝑓−𝑠𝑝𝑎𝑐𝑒(𝑟 = 3𝑎, 𝑧 = 10𝑎) is less than 10−6. This
means that 𝛽1𝑧 = 10 may be a good choice for the lower bound
of 𝛽1𝑧. It should be mentioned that the other responses have the
same property.

Based on the same procedure, choosing 𝛽1𝑧 = 10 and fixing 𝑚1 =
𝑚2 = 0, it can be observed from Figure 6 that the value of 10
may be a proper lower bound for 𝛽2𝑧. Eventually, considering
𝛽1𝑧 = 𝛽2𝑧 = 10, one can calculate the displacement for different
values of 𝑚1 and 𝑚2 (see Figures 7 and 8). However, bearing
in mind the restriction of 𝑚1, 𝑚2 > −1, and the fact that lower
values for these two parameters lead to faster attenuation of
displacement results in that 𝑚1 = 𝑚2 = 0 would be appropriate
values. Consequently, the parameters 𝑚1 and 𝑚2 are eliminated
from the stretching function, and by choosing 𝛽1𝑧 = 𝛽2𝑧 = 𝛽𝑧,
the stretching function is transformed to a single parameter
(variable) function in the simpler stretched coordinate in the
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FIGURE 5 The effect of parameter 𝛽1𝑧 on the attenuation of functions along the 𝑧-axis. The power of amplitude attenuation is directly related to
𝛽1𝑧 .

FIGURE 6 The effect of parameter 𝛽2𝑧 on the attenuation of functions along the 𝑧-axis. The power of amplitude attenuation is directly related to
𝛽2𝑧 .

FIGURE 7 The effect of parameter𝑚1 on the attenuation of functions along the 𝑧-axis. The power of amplitude attenuation is inversely related to
𝑚1.
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FIGURE 8 The effect of parameter𝑚2 on the attenuation of functions along the 𝑧-axis. The power of amplitude attenuation is inversely related to
𝑚2.

FIGURE 9 The displacements and pore-pressure for the axisymmetric problem. In each graph, the left and right vertical axes are respectively for
the real and imaginary parts of the function and the horizontal axis is common to them.

𝑧-direction. The final expression for the stretched coordinate in
𝑧- and 𝑟-directions may be written as

�̃� = 𝑧 + (1 − 𝑖)𝛽𝑧(𝑧 − 𝑧𝑁)𝐻(𝑧 − 𝑧𝑁)

𝑟 = 𝑟 +
[(

𝑟 − 𝑟𝑁

𝛽𝑟

− 1

𝛽2
𝑟

)
exp(𝛽𝑟(𝑟 − 𝑟𝑁)) + 1

𝛽2
𝑟

]
𝐻(𝑟 − 𝑟𝑁)

(51)

which are determined based on the criterion of

𝑢PML(𝑧𝑁 + 𝑧𝑃)∕𝑢𝐻𝑎𝑙𝑓−𝑠𝑝𝑎𝑐𝑒(𝑧𝑁 + 𝑧𝑃) < 10−5 (52)

In the following, calculation of 𝑢𝑧 and 𝑝 is proceeded based on
𝛽𝑟 = 5 and 𝛽𝑧 = 10. The results are depicted in Figure 9. Also, the
ratios of the attenuated amplitudes and the half-space amplitudes
are presented in Table 2 which confirm good agreement with the
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FIGURE 10 Variations of the displacements and pore-pressure for the half-space under the asymmetric patch load. In each graph, the left and
right vertical axes are respectively for the real and imaginary parts of the function and the horizontal axis is common to them.
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TABLE 2 The ratio of the attenuated amplitudes and the half-space amplitudes (𝛽𝑧 = 10).

Displacements ratio Real part Imaginary part

𝑢𝑟,PML(𝑟 = 3𝑎, 𝑧 = 10𝑎)∕𝑢𝑟,ℎ𝑎𝑙𝑓−𝑠𝑝𝑎𝑐𝑒(𝑟 = 3𝑎, 𝑧 = 10𝑎) −5.2 × 10−8 −10−7

𝑢𝑧,PML(𝑟 = 0, 𝑧 = 10𝑎)∕𝑢𝑧,ℎ𝑎𝑙𝑓−𝑠𝑝𝑎𝑐𝑒(𝑟 = 0, 𝑧 = 10𝑎) −7 × 10−7 −1.7 × 10−7

𝑝PML(𝑟 = 𝑎, 𝑧 = 10𝑎)∕𝑝ℎ𝑎𝑙𝑓−𝑠𝑝𝑎𝑐𝑒(𝑟 = 𝑎, 𝑧 = 10𝑎) 3 × 10−7 −2 × 10−6

criterion defined in 52.

5.2 General Problem: Half-Space Under
Asymmetric Patch Load

The solution for the half-space under asymmetric patch load is
numerically evaluated for 𝛽𝑟 = 5 and 𝛽𝑧 = 10, as determined in
previous section for PML and for 𝛽𝑟 = 𝛽𝑧 = 0, which is required
for the actual half-space. Variations of the displacements and pore
pressure, evaluated based on Section 4.2, are depicted inFigure 10.
Clearly, both displacements and fluid pore pressure are exactly
collapsed on the same functions evaluated for the half-space in
the near field, whereas they are quickly attenuated in the far
field.

6 Conclusion

In this paper, the requirements and concepts of PML stretching
functions to be used in domain-based numerical approach for
infinite/semiinfinite BVPs have been investigated. The following
concluding remarks can be made:

∙ An appropriate family of stretching functions has been pro-
posed for each direction in the cylindrical coordinate system
to define a standard Biot’s formulation in PML. It is also
inherently useful in the Cartesian coordinate system.

∙ The behavior of response functions along any direction in a
plane parallel to the free surface of the half-space is different
from of the perpendicular one. The proposed family makes
it possible to exponentially attenuate the wave energy within
PML in any direction.

∙ The stretching functions have been derived in the both
symmetric and asymmetric problems with poroelastic media.
The number of parameters for the stretching function along
each axis is reduced to one, which is more appropriate in
engineering computations.

∙ The resulted family of the stretched coordinate system can be
used in numerical approaches, such as the meshless methods
and the FEMs, to analyze more complicated BVPs.
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Appendix A: Torsion-Less Axisymmetric Problems

In this case all boundary conditions are equal to zero except 𝜏2𝑚 = −𝐽1(𝜉𝑎)∕𝜋𝜉𝑎. Substituting these values in Equation (28) and solving the
equations result in𝐴0, 𝐵0, 𝐶0, 𝐷0, 𝐸0, and 𝐺0 in terms of 𝜏2𝑚. The other unknown coefficients are zero. Thus, with the use of 31, displacements and pore
fluid pressure for this case are obtained as follows:

�̄�𝑟 = ∫
∞

0

𝐽1(𝑟𝜉)�̄�1𝛽3𝜉2

{
− 1

𝑠2
𝑘

[
𝜆3

1(𝐴0 exp(−𝜆1�̃�) + 𝐷0 exp(𝜆1�̃�)) + 𝜆3
2(𝐵0 exp(−𝜆2�̃�) + 𝐸0 exp(𝜆2�̃�))

+ 𝜆3
3(𝐶0 exp(−𝜆3�̃�) + 𝐺0 exp(𝜆3�̃�))

]
+
[(

𝜉2 + 𝑖𝜔𝛽𝑘) +
�̄�1�̄�3

𝛽3�̄�1

(𝜌𝑓𝜔2 + 𝜂
�̄�3

�̄�3

𝑖𝜔

)]
× [𝜆1(𝐴0 exp(−𝜆1�̃�) + 𝐷0 exp(𝜆1�̃�)) + 𝜆2(𝐵0 exp(−𝜆2�̃�) + 𝐸0 exp(𝜆2�̃�)) + 𝜆3(𝐶0 exp(−𝜆3�̃�) + 𝐺0 exp(𝜆3�̃�))]}𝑑𝜉, �̄�𝜃 = 0,

�̄��̃� = ∫
∞

0

𝜉𝐽0(𝑟𝜉)

{
�̄�3𝛽2(𝜆4

1(𝐴0 exp(−𝜆1�̃�) + 𝐷0 exp(𝜆1�̃�)) + 𝜆4
2(𝐵0 exp(−𝜆2�̃�) + 𝐸0 exp(𝜆2�̃�))

+ 𝜆4
3(𝐶0 exp(−𝜆3�̃�) + 𝐺0 exp(𝜆3�̃�))) −

[
�̄�1𝛽2(𝜉2 + 𝑖𝜔𝛽𝑘) + �̄�3(1 + 𝛽1)

(
𝜉2 −

�̄�𝜔2

1 + 𝛽1

)]
× [𝜆2

1(𝐴0 exp(−𝜆1�̃�) + 𝐷0 exp(𝜆1�̃�)) + 𝜆2
2(𝐵0 exp(−𝜆2�̃�) + 𝐸0 exp(𝜆2�̃�)) + 𝜆2

3(𝐶0 exp(−𝜆3�̃�) + 𝐺0 exp(𝜆3�̃�))]

+
[
�̄�1 (1 + 𝛽1)

(
𝜉2 −

�̄�𝜔2

1 + 𝛽1

)
(𝜉2 + 𝑖𝜔𝛽𝑘) + �̄�1�̄�1𝜉2

(
𝜌𝑓𝜔2 + 𝜂

�̄�1

�̄�1

𝑖𝜔

)]

× [(𝐴0 exp(−𝜆1�̃�) + 𝐷0 exp(𝜆1�̃�)) + (𝐵0 exp(−𝜆2�̃�) + 𝐸0 exp(𝜆2�̃�)) + (𝐶0 exp(−𝜆3�̃�) + 𝐺0 exp(𝜆3�̃�))]

}
𝑑𝜉,

�̄� = ∫
∞

0

𝜉𝐽0(𝑟𝜉){−�̄�3𝛽2(𝜌𝑓𝜔2 + 𝜂
�̄�3

�̄�3

𝑖𝜔)

× [𝜆3
1(𝐴0 exp(−𝜆1�̃�) + 𝐷0 exp(𝜆1�̃�)) + 𝜆3

2(𝐵0 exp(−𝜆2�̃�) + 𝐸0 exp(𝜆2�̃�)) + 𝜆3
3(𝐶0 exp(−𝜆3�̃�) + 𝐺0 exp(𝜆3�̃�))]

+
[
�̄�3(1 + 𝛽1)

(
𝜉2 −

�̄�𝜔2

1 + 𝛽1

)
(𝜌𝑓𝜔2 + 𝜂

�̄�3

�̄�3

𝑖𝜔) − �̄�1𝛽3𝜉2

(
𝜌𝑓𝜔2 + 𝜂

�̄�1

�̄�1

𝑖𝜔

)]

[𝜆1(𝐴0 exp(−𝜆1�̃�) + 𝐷0 exp(𝜆1�̃�)) + 𝜆2(𝐵0 exp(−𝜆2�̃�) + 𝐸0 exp(𝜆2�̃�)) + 𝜆3(𝐶0 exp(−𝜆3�̃�) + 𝐺0 exp(𝜆3�̃�))]

}
𝑑𝜉. (A1)

Appendix B: Half-Space Under Asymmetric Patch Load

In this case, the boundary conditions related to stresses in 𝑟- and 𝜃- directions for 𝑚 = 1 and −1 are nonzero, and one can write

𝜏1,1 =
𝐽1(𝜉𝑎)

2𝜋𝜉𝑎
, 𝜏1,−1 = 𝜏3,1 = 𝜏3,−1 = −𝜏1,1 (B1)

The corresponding unknown coefficients are obtained by substituting B1 into 28. Finally, the displacements and fluid pore pressure are obtained from
31 as

�̄�𝑟 = cos 𝜃[∫
∞

0

(𝐽2(𝑟𝜉) − 𝐽0(𝑟𝜉))�̄�1𝛽3𝜉2{− 1

𝑠2
𝑘

(𝜆3
1𝐴1 exp(−𝜆1𝑧) + 𝜆3

2𝐵1 exp(−𝜆2𝑧) + 𝜆3
3𝐶1 exp(−𝜆3𝑧))

+
[
(𝜉2 + 𝑖𝜔𝛽𝑘) +

�̄�1�̄�3

𝛽3�̄�1

(
𝜌𝑓𝜔2 + 𝜂

�̄�3

�̄�3

𝑖𝜔

)]
(𝜆1𝐴1 exp(−𝜆1𝑧) + 𝜆2𝐵1 exp(−𝜆2𝑧) + 𝜆3𝐶1 exp(−𝜆3𝑧))}𝑑𝜉

− ∫
∞

0

(𝐽2(𝑟𝜉) + 𝐽0(𝑟𝜉))
𝐽1(𝜉𝑎)

2𝜋𝑎𝜆4𝐶1313
exp(−𝜆4𝑧)𝑑𝜉],

�̄�𝜃 = sin 𝜃[∫
∞

0

(𝐽2(𝑟𝜉) + 𝐽0(𝑟𝜉))�̄�1𝛽3𝜉2{− 1

𝑠2
𝑘

(𝜆3
1𝐴1 exp(−𝜆1𝑧) + 𝜆3

2𝐵1 exp(−𝜆2𝑧) + 𝜆3
3𝐶1 exp(−𝜆3𝑧))
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+
[
(𝜉2 + 𝑖𝜔𝛽𝑘) +

�̄�1�̄�3

𝛽3�̄�1

(𝜌𝑓𝜔2 + 𝜂
�̄�3

�̄�3

𝑖𝜔)

]
(𝜆1𝐴1 exp(−𝜆1𝑧) + 𝜆2𝐵1 exp(−𝜆2𝑧) + 𝜆3𝐶1 exp(−𝜆3𝑧))}𝑑𝜉

− ∫
∞

0

(𝐽2(𝑟𝜉) − 𝐽0(𝑟𝜉))
𝐽1(𝜉𝑎)

2𝜋𝑎𝜆4𝐶1313
exp(−𝜆4𝑧)𝑑𝜉],

�̄�𝑧 = 2 cos 𝜃[∫
∞

0

𝜉𝐽1(𝑟𝜉){�̄�3𝛽2(𝜆4
1𝐴1 exp(−𝜆1𝑧) + 𝜆4

2𝐵1 exp(−𝜆2𝑧) + 𝜆4
3𝐶1 exp(−𝜆3𝑧))

−
[
�̄�1𝛽2(𝜉2 + 𝑖𝜔𝛽𝑘) + �̄�3(1 + 𝛽1)

(
𝜉2 −

�̄�𝜔2

1 + 𝛽1

)]
(𝜆2

1𝐴1 exp(−𝜆1𝑧) + 𝜆2
2𝐵1 exp(−𝜆2𝑧) + 𝜆2

3𝐶1 exp(−𝜆3𝑧))

+
[
�̄�1(1 + 𝛽1)(𝜉2 −

�̄�𝜔2

1 + 𝛽1
)(𝜉2 + 𝑖𝜔𝛽𝑘) + �̄�1�̄�1𝜉2

(
𝜌𝑓𝜔2 + 𝜂

�̄�1

�̄�1

𝑖𝜔

)]
× (𝐴1 exp(−𝜆1𝑧) + 𝐵1 exp(−𝜆2𝑧) + 𝐶1 exp(−𝜆3𝑧))}𝑑𝜉],

�̄� = 2 cos 𝜃[∫
∞

0

𝜉𝐽1(𝑟𝜉){−�̄�3𝛽2(𝜌𝑓𝜔2 + 𝜂
�̄�3

�̄�3

𝑖𝜔)(𝜆3
1𝐴1 exp(−𝜆1𝑧) + 𝜆3

2𝐵1 exp(−𝜆2𝑧) + 𝜆3
3𝐶1 exp(−𝜆3𝑧))

+
[
�̄�3(1 + 𝛽1)(𝜉2 −

�̄�𝜔2

1 + 𝛽1
)(𝜌𝑓𝜔2 + 𝜂

�̄�3

�̄�3

𝑖𝜔) − �̄�1𝛽3𝜉2

(
𝜌𝑓𝜔2 + 𝜂

�̄�1

�̄�1

𝑖𝜔

)]
× (𝜆1𝐴1 exp(−𝜆1𝑧) + 𝜆2𝐵1 exp(−𝜆2𝑧) + 𝜆3𝐶1 exp(−𝜆3𝑧))}𝑑𝜉]. (B2)
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