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a b s t r a c t 

The problem of dynamic interface crack propagation in layered composites is addressed in this paper. Recently 

developed dynamic orthotropic bi-material enrichment functions are utilized to allow for accurate capturing of 

the oscillatory stress and displacement fields near the interface crack tip and proper evaluating of the crack tip 

velocity. The time discontinuous finite element and balance of recovery methods are employed during the crack 

propagation process in order to increase the stability and accuracy of the solution in dynamic crack propaga- 

tion problems. Also, a suitable crack propagation criterion and an iterative algorithm are used to determine the 

interface crack tip velocity in each time step. Fracture mechanics parameters, such as dynamic stress intensity 

factor, phase angle and energy release rate are accurately predicted using the interaction integral method and the 

crack velocity dependent auxiliary fields. Numerical simulations of dynamic crack propagation in a homogeneous 

isotropic material, dynamic interface crack propagation in an isotropic bi-material, and dynamic interface crack 

propagation in an orthotropic bi-material are performed and the predictions are compared with the reference 

experimental and analytical results and the numerical data available in the literature. 
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. Introduction 

Today, thin layer orthotropic composite materials are extensively

eing used in various industries due to their high strength-to-weight

atio. However, intrinsic defects present in these materials may limit

heir use in sensitive applications, making fracture analysis an impor-

ant part of reliability estimation of structures made from these com-

osites. Interface cracks are among the most critical defects as they can

asily contribute to catastrophic failure. Impact loading, in particular,

an cause progressive interface crack propagation and structural failure

uring manufacture and service of composite materials. Hence, this pa-

er is dedicated to present a novel and accurate simulation of dynamic

nterface crack propagation in composite materials. 

Several analytical, experimental and numerical techniques are avail-

ble for modeling of dynamic fracture problems [ 1 –7 ]. Analytical

olutions have limitations in treating problems with realistic complex

eometries and loading conditions [ 3 , 7 ]. Experimental methods for an-

lyzing dynamic crack propagation under impact loading require spe-

ial expensive equipment for applying the load and recording the re-

ults. On the other hand, numerical methods in general and the finite

lement method (FEM) in particular are very efficient and capable of

ccurate modeling of complex geometries and loadings. In problems of

rack growth, however, the efficiency and accuracy of conventional FEM

ecrease as adaptive remeshing and fine meshes are generally required.
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Increasing the number of elements in the crack tip region and

emeshing techniques substantially increase the computational cost in a

ynamic simulation; requiring development of new approaches. 

The extended finite element method (XFEM), developed to over-

ome the shortcomings of FEM [8] , employs the enrichment functions to

odel the discontinuities within a cracked element and singularity near

 crack tip. Alternatively, the extended isogeometric analysis (XIGA)

dopts the conventional enrichment functions within the NURBS-based

sogeometric formulation to capture the discontinuities within a cracked

lement and the singularity near a crack tip [ 9 –12 ]. 

Another approach, the phase field model is an efficient method for

rediction of strong discontinuity (crack) nucleation and direction of

rack extension [ 13 , 14 ]. The rate-dependent phase field approach, by

hich the crack tip velocity is accurately evaluated [14] , can be used to

olve dynamic crack propagation problems. 

In this study, the extended finite element method is utilized to sim-

late the dynamic interface crack growth in orthotropic bi-materials.

n the case of stationary crack, several studies have been conducted

n the static and dynamic fracture analysis of composites using XFEM

 15 –23 ]. In the work by Asadpoure and Mohammadi [15] , new en-

ichment functions were presented for XFEM analysis of crack in or-

hotropic media. Esna Ashari and Mohammadi introduced oscillatory

nrichment functions for static analysis of interface cracks in orthotropic

i-materials [16] , and Afshar et al. [24] used these functions to analyze
arch 2018 
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tationary interface cracks in orthotropic bi-materials under dynamic

oadings. Also, Afshar et al. recently investigated the fracture response

f interface crack tip in shape memory alloy/elastic bi-materials [25] .

n addition, several XFEM simulations have been performed to study

he dynamic fracture of piezoelectric and magnetoelectroelastic solids

 26 –28 ]. Bui and Zhang used XFEM analysis to investigate the dynamic

tress intensity factors for stationary cracks in piezoelectric and magne-

oelectroelastic materials [ 26 , 27 ]. For the case of functionally graded

iezoelectric solids, Liu et al. developed an XFEM model to transiently

nalyze stationary cracks in these materials [28] . 

In the case of static crack propagation, quite a number of works,

ll of which present an XFEM approach to reproduce the displace-

ent and stress fields near the crack tip, are available in the literature

 29 –31 ]. XFEM has also performed quite well in dynamic crack propa-

ation problems. Belytschko et al. presented an XFEM method for dy-

amic crack propagation based on the loss of hyperbolicity criterion

32] . Chessa and Belytschko presented an XFEM formulation in time

nd space for dynamic problems with arbitrary discontinuities [ 33 , 34 ].

lso, Belytschko and Chen introduced a singular element for dynamic

rack growth problems [35] . Moreover, the problem of crack arrest was

ddressed by Grégoire et al. [36] , and Haboussa et al. [37] investi-

ated the effects of crack-hole interaction. In another interesting study,

ombescure et al. [38] studied the concept of energy conservation in

ynamic XFEM. Finally, Menouillard et al. [39] proposed a novel mass

umping strategy for explicit integration in dynamic XFEM. While the

entioned studies were all conducted on homogeneous isotropic mate-

ials, Motamedi and Mohammadi [ 40 , 41 ] applied the dynamic XFEM

or analysis of dynamic crack propagation in orthotropic materials. In

ddition, Kumar et al. [42] proposed new XFEM enrichment functions

o study the dynamic fracture behavior of cracked homogeneous solids

nd bi-material composites. They concluded that using Heaviside and

ubic ramp enrichment functions would result in better solution than

sing other enrichment functions in the cases of stationary and moving

ynamic cracks. 

A difficulty in the analysis of dynamic crack propagation is the choice

f time integration method in order to solve the dynamic equations in a

table manner. The widely used Newmark method is suitable for dynam-

cs problems with stationary cracks [24] ; however, it results in spurious

umerical oscillations in dynamic crack propagation problems. These

scillations substantially increase the possibility of instability in the so-

ution. An effective method for stable solutions is the time discontinu-

us finite element method, proposed by Li et al. [ 43 ] and Rethore et al.

 44 ]. In this method, enriched shape functions are added to the time

nite element method in order to consider the time discontinuity in the

ynamic equation, resulting in more stable solutions. Therefore, this in-

egration method is chosen here to deal with the problem of interface

rack growth. 

Another crucial issue in simulating dynamic crack propagation prob-

ems is the estimation of crack tip velocity. While many studies assume

rack velocity a priori, a suitable criterion and an iterative algorithm

re used here to determine the interface crack tip velocity during the

imulation. To our best knowledge, this is the first time that such an ac-

urate simulation is adopted for modeling interface crack propagation

ithout requiring the crack tip velocity in advance. 

The present study is indeed an extension of the work conducted by

fshar et al. [24] in order to investigate dynamic crack propagation in

omogeneous isotropic materials, dynamic interface crack propagation

n isotropic bi-materials, and dynamic interface crack propagation in

rthotropic bi-as. New velocity dependent oscillatory crack-tip enrich-

ent functions are proposed in the framework of XFEM methodology

o reproduce the exact distribution of oscillatory crack velocity depen-

ent fields around the interface crack tip, resulting in improvement in

tability and accuracy of the solution. Moreover, a suitable crack prop-

gation criterion and an iterative algorithm are presented to determine

he interface crack tip velocity. 

𝐊  
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Organization of this paper is as follows: in Section 2 , the mechanical

ehavior of composite materials is provided. Dynamic interface frac-

ure mechanics formulation, based on linear elastic fracture mechanic

LEFM), is discussed in Section 3 . Section 4 describes the criteria for

stimating the interface crack velocity and Section 5 briefly discusses

FEM formulation in space and crack velocity dependent enrichment

unctions. Moreover, the time discontinuous finite element method for

ime integration of dynamic equation, numerical implementations of the

terative algorithm for estimating the crack velocity, and the balance of

ecovery algorithm are presented to complete the formulation. Finally,

ection 6 presents the numerical examples of dynamic crack propaga-

ion in different materials: homogeneous, isotropic and orthotropic bi-

aterials, along with the investigation of effects of the oscillatory crack

ip fields and the stabilizing algorithms. The paper closes with the con-

luding remarks. 

. Governing equation 

The strong form of the governing equation for a two-dimensional

ynamic problem of an orthotropic layered medium ( Ω) with an initial

nterface crack ( Γc ) can be written as: 

 . 𝛔 + 𝜌𝐛 = 𝜌�̈� in Ω (1)

here 𝜌 is the density, 𝝈 is the stress tensor and b is the body force

ector. As presented in Fig. 1 , the boundary and initial conditions are

onsidered as, 

 ( 𝐱, 𝑡 ) = �̄� ( 𝐱, 𝑡 ) on Γ𝑢 (2)

. 𝐧 = 𝐭 on Γ𝑡 (3)

. 𝐧 = 0 on Γ𝑐 (4)

 ( 𝐱, 0) = 𝐮 0 (5)

̇
 ( 𝐱, 0) = �̇� 0 (6)

The linear stress–strain relationship for an orthotropic material can

e written as [45] : 

 

 

 

 

 

𝜀 11 
𝜀 22 
2 𝜀 12 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎡ ⎢ ⎢ ⎣ 
𝑎 11 𝑎 12 𝑎 16 
𝑎 21 𝑎 22 𝑎 26 
𝑎 61 𝑎 62 𝑎 66 

⎤ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜎11 
𝜎26 
𝜎12 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎡ ⎢ ⎢ ⎣ 
𝐷 1111 𝐷 1122 2 𝐷 1112 
𝐷 2211 𝐷 2222 2 𝐷 2212 
2 𝐷 1211 2 𝐷 1222 4 𝐷 1212 

⎤ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜎11 
𝜎22 
𝜎12 

⎫ ⎪ ⎬ ⎪ ⎭ → for plane stress (7) 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 11 
𝜀 22 
2 𝜀 12 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎡ ⎢ ⎢ ⎣ 
𝑏 11 𝑏 12 𝑏 16 
𝑏 21 𝑏 22 𝑏 26 
𝑏 61 𝑏 62 𝑏 66 

⎤ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜎11 
𝜎22 
𝜎12 

⎫ ⎪ ⎬ ⎪ ⎭ 
𝑏 𝑖𝑗 = 𝑎 𝑖𝑗 − 

𝑎 𝑖 3 − 𝑎 3 𝑖 
𝑎 33 

𝑖, 𝑗 = 1 , 2 , 6 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
→ for plane strain (8) 

here 𝜀 ij , 𝜎ij and D ijkl are the components of strain, stress, and compli-

nce tensors, respectively. 

. Interface fracture mechanics 

Dynamic stress intensity factors K 1 and K 2 for an interface crack are

efined as a complex number K [46] : 

 = 𝐾 1 +i 𝐾 2 = lim 

𝑟 →0 

√
2 𝜋𝑟 𝑟 −i 𝜀 

( 

𝜎𝑦 + i 1 
𝜂
𝜏𝑥𝑦 

) 

𝜃=0 
(9)
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Fig. 1. An orthotropic bi-material domain Ω including an interface crack: geometry and boundary conditions. 

Fig. 2. Nodal values of q in the finite element mesh. 
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here 𝜀 and 𝜂 are the oscillatory index and the resolution factor, respec-

ively, 

 = 

1 
2 𝜋

ln 
( 

1 − 𝛽

1 + 𝛽

) 

(10)

= 

√ 

ℎ 22 
ℎ 11 

(11) 

= 

ℎ 11 √
ℎ 12 ℎ 21 

(12) 

𝛽 is Dundur’s parameter, which is defined in terms of the Hermitian

atrix components h ij , comprehensively discussed by Nakamura et al.

47] . 

The energy release rate G is related to the dynamic complex stress

ntensity factor by 

 = 

ℎ 21 |𝐊 |2 
4 cosh 2 ( 𝜋𝜀 ) 

(13)

The phase angle 𝜓 , which is an index of the mode-mixity, can be

ritten as: 

 ( 𝐿 ) = Arctan 
( 

𝜏xy 

𝜂𝜎y 

) 

𝑟 = 𝐿 
= Arctan 

( 

Im 

[
𝐊 𝐿 

i 𝜀 ]
Re 
[
𝐊 𝐿 

i 𝜀 
]) 

(14)
559 
here L is the characteristic length. 

The dynamic stress intensity factors K 1 and K 2 can be determined

sing the interaction integral method [ 16 , 47 –49 ]. In this study, the

nteraction integral formulation proposed by Nakamura et al. [47] is

dopted: 

 = ∫
Γ

[ ( 

𝛔 ∶ 𝛆 aux + 𝜌
𝜕𝐮 
𝜕𝑡 

⋅
𝜕 𝐮 aux 
𝜕𝑡 

) 

𝑛 1 − 

( 

𝛔 ⋅
𝜕 𝐮 aux 
𝜕 𝑥 1 

+ 𝛔aux ⋅ 𝜕𝐮 
𝜕 𝑥 1 

) 

⋅ 𝐧 
] 
dΓ

(15) 

here the superscript aux corresponds to the auxiliary case and n is

he unit normal to the integration path Γ. The auxiliary stress and dis-

lacement fields are selected to satisfy the equilibrium equation and the

raction-free conditions on the crack surfaces. These fields for the case

f an interface crack between two orthotropic materials are reported in

ppendix A . The final equivalent domain form of Eq. (15) can be written

s [50] , 

𝑀 = ∫
A 

[ ( 

𝛔 ⋅
𝜕 𝐮 aux 
𝜕 𝑥 1 

+ 𝛔aux ⋅ 𝜕𝐮 
𝜕 𝑥 1 

) 

𝜕𝑞 

𝜕𝐱 
− 

( 

𝛔 ∶ 𝛆 aux + 𝜌
𝜕𝐮 
𝜕𝑡 

⋅
𝜕 𝐮 aux 
𝜕𝑡 

) 

𝜕𝑞 

𝜕 𝑥 1 

+ 

( 

𝜌
𝜕 2 𝐮 
𝜕 𝑡 2 

⋅
𝜕 𝐮 aux 
𝜕 𝑥 

+ 

𝜕 𝛔aux 
𝜕𝐱 

⋅
𝜕𝐮 
𝜕 𝑥 

− 

𝜕 2 𝐮 
𝜕 𝑡𝜕 𝑥 

⋅
𝜕 𝐮 aux 
𝜕𝑡 

− 

𝜕𝐮 
𝜕𝑡 

⋅
𝜕 2 𝐮 aux 
𝜕 𝑡𝜕 𝑥 

) 

𝑞 

] 
dA (16) 
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Fig. 3. Typical dependence of the energy release rate on the crack velocity 

(stable and unstable crack propagation modes). Note that the behavior changes 

at about half of the shear wave speed. 
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here A is the surface around the crack tip surrounded by contour Γ, as

epicted in Fig. 2 . q is an arbitrary smooth function, which is zero for

he nodes located on or outside of Γ, and is unity for other nodes (see

ig. 2 ). Values of q at gauss points of elements are determined using the

lement shape functions, 

( 𝐱) = 

𝑛𝑛 ∑
𝑖 =1 

𝑁 𝑖 ( 𝐱 ) 𝑞 𝑖 (17)

here nn is the number of nodes of the element, and N i is the standard

nite element shape function. 

After calculating the interaction integral (16) , the dynamic stress in-

ensity factors are determined from, 

 

 

 

 

 

𝑀 = 

ℎ 21 
2 cosh 2 ( 𝜋𝜀 ) 

𝐾 1 ( 𝐾 

aux 
1 = 1; 𝐾 

aux 
2 = 0) 

𝑀 = 

ℎ 21 
2 cosh 2 ( 𝜋𝜀 ) 

𝐾 2 ( 𝐾 

aux 
1 = 0; 𝐾 

aux 
2 = 1) 

(18)

. Dynamic interface crack propagation criteria 

Crack tip velocity is an important parameter which determines the

rack tip position at any time of a crack propagation analysis. In addi-

ion, interface crack tip fields depend on crack tip velocity. Therefore, an

ccurate prediction of crack tip velocity is crucial for a dynamic fracture

nalysis. 

In order for a crack to start propagation, the energy release rate G

ust be greater than a critical value, associated with the dynamic crack

nitiation toughness. This initiation toughness is related to the physical

roperties of the interface between the two materials. According to [36] ,

he dynamic interface crack growth criterion can be stated as, 

 

 

 

 

 

𝐺 < 𝐺 

∗ 
c Stationary crack 

𝐺 = 𝐺 

∗ 
c Init iat ion 

𝐺 > 𝐺 

∗ 
c → 𝐺 ( 𝑉 ) = 𝐺 c ( 𝑉 ) Propagation 

(19)

here V is the crack velocity. 

As long as the energy release rate G is less than its corresponding crit-

cal dynamic crack initiation value ( 𝐺 

∗ 
c ), the crack remains stationary.

s more energy is provided by the external loading, the energy release

ate increases to the initiation toughness, starting the crack propagation.

uring the crack propagation state, the energy release rate at any mo-

ent remains equal to the critical dynamic energy release rate G ( V ).
c 

560 
t should be noted that both the energy release rate and the toughness

re functions of the crack velocity, and the crack tip velocity at each

ime step is calculated by equating the energy release rate and the cor-

esponding critical value. 

The function G c ( V ) must be selected properly to accurately predict

he crack velocity in a numerical simulation. For a crack in a homoge-

eous body, the following form is widely used: 

 𝑐 ( 𝑉 ) = 

𝐺 

∗ 
c 

1 − 

(
𝑉 

𝐶 R 

) (20)

here C R is the Rayleigh wave velocity. 

According to the research conducted by Singh et al. [51] and Ka-

aturu and Shukla [52] , the dynamic energy release rate can be an as-

ending or descending function of the crack velocity. As shown in Fig. 3 ,

f the energy release rate is an ascending function of the crack velocity

d G /d V > 0), the crack propagation is stable, whereas if the energy re-

ease rate is a descending function of the crack velocity (d G /d V < 0), the

rack propagation becomes unstable. The function G c ( V ) must contain

oth the stable and unstable modes to correctly predict the crack veloc-

ty in numerical simulations. Different forms of the function G c ( V ) for an

nterface crack are available in the literature. Nakamura et al. presented

he following function G c ( V ) for the interface crack [47] : 

 c ( 𝑉 ) = 

𝐺 

∗ 
c 

(
1 − 

√
𝑉 ∕ 𝐶 𝑠 

)𝛾
1 + ( 𝜆 − 1 ) sin 2 ( Ψ) 

(21)

here C s is the shear wave velocity, and Ψ is the phase angle. Constants

and 𝜆 are obtained from fitting with available experimental data, as

efined in [47] . 

It should be noted that Nakamura et al. [47] selected this form with-

ut any experimental basis, solely due to its descending dependence on

he crack velocity. This form cannot correctly predict the crack velocity,

s will be shown in the numerical examples. 

Another function, based on impact experiments, is proposed by Lam-

ros and Rosakis [53] : 

 c ( 𝑉 ) = 𝐶 2 1 

(
1 + 4 𝜀 2 

)
4 ℎ 21 

( 

𝜋

2 𝑎 𝑐 

) 

(22)

here a c is the characteristic length, and C 1 is a constant. This relation-

hip is based on the assumption of constant ratio of shearing to opening

isplacement at distance a c behind the crack tip (see Fig. 4 ): 

Δ1 
Δ2 

||||𝑟 = 𝑎 𝑐 = Constant (23)

The main disadvantage of function (22) is that it is only a descending

unction of the crack velocity. Therefore, it cannot accurately predict the

rack velocity at the beginning of the crack propagation, i.e., when the

rack velocity is roughly less than half the shear wave velocity. 

Kavaturu and Shukla [52] changed the fundamental assumption of

he form in Eq. (23) (Lambros and Rosakis [53] ) and proposed an expo-

ential increase in the opening displacement at distance a c behind the

rack tip with the crack velocity: 

Δ2 ||𝑟 = 𝑎 𝑐 = 𝐶 2 
(
𝑉 ∕ 𝐶 𝑠 

)𝑛 
(24)

here C 2 and n are constants. As a result, Eq. (22) can then be rewritten

s: 

 c ( 𝑉 ) = 𝐶 2 
( 

𝑉 

𝐶 𝑠 

) 2 𝑛 (1 + 4 𝜀 2 
)

4 ℎ 21 

( 

𝜋

2 𝑎 𝑐 

) 

(25)

This experimentally supported function, which includes both stable

nd unstable crack growths, is adopted in this study for the first time.

umerical examples in Section 6 prove the accuracy of this function

ompared with other functions used in previous numerical simulations

vailable in the literature. 
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Fig. 4. Horizontal and vertical displacements at the distance a c behind the crack tip. 

Fig. 5. Selecting the three types of enriched nodes for an interface crack problem. 
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. Numerical implementation 

.1. Spatial discretization with XFEM 

XFEM modeling of interface crack consists of three parts of captur-

ng the crack tip singularity, modeling the strong discontinuity across

he crack surfaces and simulating the weak discontinuity (discontinu-

us strain field) across the material interface. Therefore, approximation

f the displacement field is enhanced by three enrichment functions: 

 ( 𝐱) = 

𝑛 ∑
𝑖 =1 

𝑁 𝑖 ( 𝐱) 
⏟⏟⏟

Φd 
𝑖 

𝐝 𝑖 + 

𝑚 ∑
𝑗=1 

𝑁 𝑗 ( 𝐱 ) 𝐻( 𝐱 ) 
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Φa 
𝑗 

𝐚 𝑗 

+ 

𝑝 ∑
𝑙=1 

𝑁 𝑙 ( 𝐱 ) 
( ∑

𝑡 

𝐹 𝑡 ( 𝐱 ) 
) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Φb 
𝑙 

𝐛 𝑙 + 

𝑞 ∑
𝑘 =1 

𝑁 𝑘 ( 𝐱 ) 𝜒𝑘 ( 𝐱 ) 
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Φc 
𝑘 

𝐜 𝑘 (26) 

here n, m, p and q are the number of conventional, crack surface, crack

ip, and interface nodes, respectively (see Fig. 5 ). d i is the vector of reg-

lar degrees of freedom. In addition, a j , b l and c k are the vectors of

dditional degrees of freedom associated with the crack surface, crack

ip, and material interface, respectively. H ( x ) and 𝜒k ( x ) are the Heav-

side and weak discontinuity enrichment functions, respectively. More

etails about these functions are available in Refs. [ 24 , 54 ]. F t ( x ) is the

scillatory enrichment function for the interface crack tip between two

rthotropic materials [16] , 

 ( 𝑟, 𝜃) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑒 − 𝜀 𝜃𝑙 cos ( 𝜀𝑙𝑛 ( 𝑟 𝑙 ) + 

𝜃𝑙 
2 ) 
√
𝑟 𝑙 𝑒 − 𝜀 𝜃𝑙 sin ( 𝜀𝑙𝑛 ( 𝑟 𝑙 ) + 

𝜃𝑙 
2 ) 
√
𝑟 𝑙 

𝑒 𝜀 𝜃𝑙 cos ( 𝜀𝑙𝑛 ( 𝑟 𝑙 ) − 

𝜃𝑙 
2 ) 
√
𝑟 𝑙 𝑒 𝜀 𝜃𝑙 cos ( 𝜀𝑙𝑛 ( 𝑟 𝑙 ) − 

𝜃𝑙 
2 ) 
√
𝑟 𝑙 

𝑒 − 𝜀 𝜃𝑠 cos ( 𝜀𝑙𝑛 ( 𝑟 𝑠 ) + 

𝜃𝑠 
2 ) 
√
𝑟 𝑠 𝑒 − 𝜀 𝜃𝑠 sin ( 𝜀𝑙𝑛 ( 𝑟 𝑠 ) + 

𝜃𝑠 
2 ) 
√
𝑟 𝑠 

𝑒 𝜀 𝜃𝑠 cos ( 𝜀𝑙𝑛 ( 𝑟 𝑠 ) − 

𝜃𝑠 
2 ) 
√
𝑟 𝑠 𝑒 𝜀 𝜃𝑠 cos ( 𝜀𝑙𝑛 ( 𝑟 𝑠 ) − 

𝜃𝑠 
2 ) 
√
𝑟 𝑠 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(27)
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here r l , r s , 𝜃l and 𝜃s are determined from Eqs. ( A.10 )–( A.12 ) of

ppendix A . It should be noted that Eqs. ( A.10 )-( A.18 ) and so the en-

ichment function (27) depend on the crack velocity. Esna Ashari and

ohammadi [16] studied the effects of two cases of crack tip enrich-

ent functions (the oscillatory crack tip enrichment functions and the

riginal isotropic crack tip enrichment functions) and concluded that us-

ng the original isotropic crack tip enrichment functions could result in

ignificant errors in computing the stress intensity factors in orthotropic

i-material problems. 

It should be noted that although the ramp enrichment function has

ot been used for the elements in the vicinity of the tip element, a

mooth transition has been considered in order to avoid sharp changes

etween the tip element and its neighboring elements. This is achieved

y enriching some nodes of the neighboring elements, as similarly per-

ormed by a number of references with reportedly acceptable results

 16 , 21 , 24 , 40 , 41 , 55 ]. As a result, in the neighboring elements of a tip

lement, standard shape functions vary from a nonzero value on one

ide of the element to zero on the other side. Therefore, multiplying

tandard shape functions by oscillatory enrichment functions introduces

ew functions which not only possess the desired behavior but also van-

sh smoothly in the outer edges of the neighboring elements. 

.2. Discretization of momentum equation 

The discretized weak form of the governing Eq. (1) based on the

FEM approximation at time n can be written as (neglecting the effects

f damping), 

 ̈𝐮 n + 𝐊 𝐮 n = 𝐟 n (28) 

here u n is composed of the standard and enriched vectors of nodal

egrees of freedom: 

 n = 

{
𝐝 𝐚 𝐛 𝐜 

}T 
𝐝 ∶ vect or of standar d nodal degrees of f reedom 
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Fig. 6. Schematic procedure of balance of recovery. 
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Also, f n is the external force vector, and M and K are the mass and

tiffness matrices, respectively. For an element e , they can be computed

rom, 

 

𝑟𝑠 
𝑖𝑗 = ∫Ωe 

𝜌
(
Φ𝑟 
𝑖 

)(
Φ𝑠 
𝑗 

)
𝑑Ω ( 𝑟, 𝑠 = 𝑑, 𝑎, 𝑏, 𝑐) (30)

 

𝑟𝑠 
𝑖𝑗 = ∫Ωe 

(
𝐁 

𝑟 
𝑖 

)T 𝐂 

(
𝐁 

𝑠 
𝑗 

)
𝑑Ω ( 𝑟, 𝑠 = 𝑑, 𝑎, 𝑏, 𝑐) (31)

 

𝑟 
𝑖 = ∫𝜕 Ω∩𝜕 Ω

(
Φ𝑟 
𝑖 

)
𝐓 𝑑Γ ( 𝑟 = 𝑑, 𝑎, 𝑏, 𝑐) (32)

here T is the vector of external traction. Φ represents the standard and

nriched shape functions (see Eq. (26) ) and B is the matrix of derivatives

f shape functions Φ, all comprehensively defined in Ref. [54] . The sub-

riangulation technique is used to integrate Eq. (31) (more details are

vailable in the work by Esna Ashari and Mohammadi [16] ). 

.3. Time integration method 

Different time integration methods are available for solving the sys-

em of Eq. (28) . In problems where the external loading is dynamic and

he crack does not propagate, the Newmark time integration method re-

ains sufficiently accurate, whereas in crack propagation problems the

ewmark method results in numerical oscillations as the stiffness ma-

rix varies in two consecutive time steps. These oscillations increase over

ime and may even lead to an unstable response. To overcome this diffi-

ulty in the present study, the time discontinuous finite element method

s adopted [ 43 , 44 ]. This method, based on the weighted residual form

roposed by Zienkiewicz [56] , uses the finite element method approxi-

ation in time instead of the finite difference approach. For a velocity

ased formulation, a linear velocity approximation is adopted, 

 = �̇� = 

∑
𝑖 = 𝑛,𝑛 +1 

𝑁 𝑖 ( 𝑡 ) 𝐯 𝑖 (33)

here N i is the shape function of 2-node one-dimensional element (time

pan). 
562 
According to the time discontinuous finite element method, the

eaviside enrichment function is added to the velocity approximation

 in the time span I n = ] t n , t n + 1 [ [44] : 

 ( 𝑡 ) = 𝐯 s 𝑛 𝑁 𝑛 ( 𝑡 ) + 𝐯 s 
𝑛 +1 𝑁 𝑛 +1 ( 𝑡 ) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐯 s ( 𝑡 ) 

+ 𝐯 e 𝑛 𝑁 𝑛 ( 𝑡 ) H 

( 𝑡 − 𝑡 𝑛 ) 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐯 e ( 𝑡 ) 

(34)

here 𝐯 s 𝑛 and 𝐯 s 
𝑛 +1 are the vectors of standard velocity degrees of free-

om and 𝐯 e 𝑛 is the vector of additional velocity degrees of freedom. 

The third term in Eq. (34) ensures the velocity discontinuity before

nd after each time level: 

𝐯 + 𝑛 = 𝐯 s 𝑛 + 𝐯 e 𝑛 
𝐯 − 𝑛 = 𝐯 s 𝑛 

} 

→ 𝐯 + 𝑛 − 𝐯 − 𝑛 = 𝐯 e 𝑛 (35)

Having known the variables 𝐮 s 𝑛 , 𝐯 
s 
𝑛 , 𝐮 

e 
𝑛 , 𝐯 

e 
𝑛 −1 , the following system of

quations can be solved for unknowns 𝐯 + 𝑛 , 𝐯 
− 
𝑛 +1 , 

 

 

 

 

 

𝐌 − 

Δ𝑡 2 
12 

𝐊 − 

Δ𝑡 2 
12 

𝐊 

+ 

Δ𝑡 2 
3 

𝐊 𝐌 − 

Δ𝑡 2 
6 

𝐊 

⎤ ⎥ ⎥ ⎥ ⎦ 
[ 
𝐯 + 𝑛 
𝐯 − 
𝑛 +1 

] 
= 

[ 
𝐅 1 − 𝐅 2 + 𝐌𝐯 − 𝑛 

𝐅 1 + 𝐅 2 + 𝐌𝐯 − 𝑛 − 𝐊𝐮 − 𝑛 Δ𝑡 

] 
(36)

here F 1 and F 2 are defined in terms of the external load, 

 1 = 

Δ𝑡 
3 
𝐟 𝑛 + 

Δ𝑡 
6 
𝐟 𝑛 +1 (37)

 2 = 

Δ𝑡 
6 
𝐟 𝑛 + 

Δ𝑡 
3 
𝐟 𝑛 +1 (38)

Finally, continuous displacement and acceleration fields can be de-

ermined from, 

 

+ 
𝑛 +1 = 𝐮 − 

𝑛 +1 = 𝐮 𝑛 + 

Δ𝑡 
2 
(
𝐯 − 
𝑛 +1 + 𝐯 + 𝑛 

)
(39)

 𝑛 +1 = 

(
𝐯 − 
𝑛 +1 − 𝐯 + 𝑛 

)
Δ𝑡 

(40)

Based on Eqs. (36 )–( 40 ), while the displacement remains continuous

n each time level, the velocity becomes discontinuous. This discontin-

ous velocity allows for a more stable simulation of crack propagation,

specially at later stages of crack propagation when the crack speed be-

omes close to the shear wave speed. 



A. Afshar et al. International Journal of Mechanical Sciences 140 (2018) 557–580 

Fig. 7. Detailed procedure for projecting the degrees of freedom of the n th time step on the new configuration. 
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.4. Iterative algorithm for determination of crack velocity 

According to Eq. (19) , both the energy release rate G and the critical

ynamic fracture energy release rate G c depend on the crack velocity

t each time step, and the crack velocity is calculated in such a way

hat G ( V ) becomes equal to G c ( V ); G ( V ) − G c ( V ) = 0. The secant iterative

ethod is employed here to solve this nonlinear equation. At the begin-

ing of each time step, an initial value is selected for the crack velocity,
e  

563 
nd then it is modified by 

 

𝑘 +1 
𝑛 = 𝑉 𝑘 𝑛 + 

(
𝑉 𝑘 −1 𝑛 − 𝑉 𝑘 𝑛 

)
𝑓 ( 𝑉 𝑘 𝑛 ) 

𝑓 ( 𝑉 𝑘 𝑛 ) − 𝑓 ( 𝑉 𝑘 −1 𝑛 ) 
(41)

ith 

 

(
𝑉 𝑛 
)
= 𝐺 

(
𝑉 𝑛 
)
− 𝐺 c 

(
𝑉 𝑛 
)

(42)

here n is the number of time steps, and k is the iteration number at

ach time step. At each time step, the secant iterative algorithm requires



A. Afshar et al. International Journal of Mechanical Sciences 140 (2018) 557–580 

Fig. 8. Iterative algorithm of balance of recovery method. 
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𝐮  
wo initial guesses for the crack velocity: the crack velocity in the pre-

ious step and an arbitrary guess are the two initial estimations. If the

rack velocity does not satisfy Eq. (41) , the crack position and other

elds (displacement, velocity, acceleration, etc.) are returned to the ini-

ial values of the time step, and a new guess is then made using Eq. (42) .

teration continues until the following convergence criterion is satisfied:

𝐺 

(
𝑉 𝑛 
)
− 𝐺 c 

(
𝑉 𝑛 
)|||∕ 𝐺 

∗ 
c < TOL (43)

In this paper, TOL is considered 2% and four iterations, on average,

re needed for each time step. 

.5. Balance of recovery method 

In an XFEM formulation, due to the crack propagation and the move-

ent of the crack tip position, new degrees of freedom should be added

o the nodes. These degrees of freedom have null values before solv-

ng Eq. (28) , which leads to an invalid geometry for crack [57] (see

igs. 6 and 7 ). In other words, by projecting the degrees of freedom of

he n th time step on the new configuration ( n + 1th configuration), out

f balance forces R are generated in the equilibrium equation, which

esults in numerical oscillations: 

 n ̈𝐮 n + 𝐊 n 𝐮 n = 𝐟 n (44)

 n +1 ̈𝐮 n +1 + 𝐊 n +1 𝐮 n +1 − 𝐟 n+1 = 𝐑 ≠ 0 (45)
n n 

564 
here 𝐮 n +1 n and �̈� n +1 n are the projection of the degrees of freedom of

he n th configuration on the n + 1th configuration. Different approaches

re available for removing the unbalanced forces in crack propagation

roblems. One approach is the load relaxation phase analysis, suitable

n material nonlinearity cases [31] . The method has a procedure for

ata transfer of the history variables from old crack geometry to new

rack geometry, and the traction forces are gradually released from the

xtended crack surface using an iterative algorithm. Another approach,

he balance of recovery method [58] , is applied for linear elastic frac-

ure analysis to iteratively remove the unbalancing forces in Eq. (45) .

ccordingly, the unbalanced state of the system ( Eq. (45) ) is solved after

rojection of the degrees of freedom and before solving the system of

quations for time n + 1, leading to the removal of the residual (45) (see

ig. 8 ). It should be noted that all variables in Eq. (45) are nodal vari-

bles ( 𝐮 n +1 n , ̈𝐮 n +1 n ). Therefore, no data transfer procedure is required from

auss points to nodal points, and vice versa. Figs. 6 –8 show the detailed

rocedure of the adopted balance of recovery method. 

With a simple assumption for Δ𝐮 n +1 n , 

𝐮 n +1 n = Δ𝑡 2 𝛽Δ�̈� n +1 n (46)

nd solving Eq. (45) for Δ�̈� n +1 n , 

�̈� n +1 n = 

(
𝐌 n +1 + Δ𝑡 2 𝛽𝐊 n+1 

)−1 𝐑 (47)

The modified values of displacement and acceleration are calculated

 

n +1 = 𝐮 n +1 + Δ𝐮 n +1 (48)
n n n 
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Fig. 9. General algorithm of dynamic interface crack growth. 
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Table 1 

Material properties of the problem. 

Parameter Value 

E (GPa) 210 

𝜈 0.3 

𝜌(kg/m 

3 ) 8000 

T  

r

𝛔  

w  

t

𝑡

w  
̈
 

n +1 
n = �̈� n +1 n + Δ�̈� n +1 n (49)

In order to accurately predict the fracture parameters in this study,

oth the balance of recovery method and the time discontinuous finite

lement integration algorithm are employed, considerably stabilizing

he otherwise oscillating solution, as will be discussed in the numerical

xamples. 

The general procedure of dynamic interface crack growth is pre-

ented in Fig. 9 . This algorithm is applied for the numerical simulations

n Section 6 . 

. Numerical results 

.1. Dynamic crack growth in an infinite isotropic plate 

In order to verify the proposed method for calculating the interaction

ntegral ( M -integral), the time discontinuous finite element method and

he balance of recovery method, an infinite homogeneous plate with a

emi-infinite crack [ 40 , 44 , 59 ], for which the analytical solution is avail-

ble, is simulated. An isotropic plate is assumed to be under a tensile

oading on its top edge, with plane strain condition, as shown in Fig. 10 .
565 
he material properties are listed in Table 1 . In this example, all results

elated to the dynamic stress intensity factor are normalized by 𝛔
√
H . 

The external traction applied on the top edge is: 

( 𝑡 ) = 

{ 

𝑡 ∕(0 . 2 𝑡 c ) 0 ≤ 𝑡 ≤ 0 . 2 𝑡 c 
1 0 . 2 𝑡 c ≥ t (50)

here t c is the time that the longitudinal wave travels half the height of

he plate, and is equal to: 

 c = 

ℎ 

𝑐 L 
(51) 

here c is the longitudinal wave speed and is equal to 5944 m/s [59] .
L 
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Fig. 10. Geometry and boundary conditions of the problem. 

Fig. 11. Comparison of dynamic stress intensity factor for a moving crack in the infinite isotropic plate. 
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In this problem, the crack tip velocity is assumed to be known, and

he crack propagates with the velocity reported by Liu et al. [59] : 

 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 𝑡 ≤ 1 . 5 𝑡 c 
𝑉 0 sin 

(
( 𝑡 −1 . 5 𝑡 c ) 𝜋

1 . 4 𝑡 c 

)
1 . 5 𝑡 c ≤ 𝑡 ≤ 2 . 2 𝑡 c 

𝑉 0 𝑡 ≥ 2 . 2 𝑡 c 

(52)

here V 0 is equal to 1500 m/s. The analytical solution of the problem

as presented by Freund [60] , 

( 𝑉 , 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 
2 𝛔( 𝑡 ) ( 1− 𝑉 ∕ 𝑐 R ) 

1− 𝜐

√ 

𝑐 L ( 𝑡 − 𝑡 c ) ( 1−2 𝜐) 
𝜋( 1− 𝑉 ∕ 𝑐 L ) 

(53)

This analytical solution is associated with an infinite plate; therefore,

he numerical simulation is carried out only until t = 3 t c , i.e. when the

eflected longitudinal wave from the bottom boundary reaches the crack

ip (see Fig. 10 ). 

Simulation is performed with a uniform 40 × 80 finite element mesh,

he domain integral of 0.5 mm, the time discontinuous finite element

ethod with a time step of Δt = 0.2 t c , and the balance of recovery

ethod. The calculated dynamic stress intensity factor is presented in
566 
ig. 11 and is compared with those obtained by Liu et al. [59] , which

tilized the spectral element method. A good agreement is clearly ob-

erved between the analytical and numerical results, which confirms

he validity of adopted techniques, including the interaction integral

ethod with the auxiliary fields. 

To evaluate the effect of time integration method on the stability of

he solution, the problem is also solved by the Newmark method. The

esults of dynamic stress intensity factor are given in Fig. 12 , which

hows that the time discontinuous finite element method considerably

educes the existing oscillations in the numerical solution. It is also ob-

erved that, as long as the crack is stationary, the results of the Newmark

ethod are in agreement with those obtained by the analytical and the

ime discontinuous finite element methods; however, when the crack

ropagates, oscillations appear and increase. In a real analysis, where

he crack tip velocity is not an input data of the problem, similar to

hat comes in the next example, the increasing numerical oscillations

ver the time make the prediction of quantities such as crack tip veloc-

ty, energy release rate and dynamic stress intensity factor practically

mpossible. Hence, adopting a stable numerical solution is an essential

equirement for accurate prediction of crack tip velocity. 
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Fig. 12. Effect of time integration method in the stability of the solution. 

Fig. 13. The effect of balance of recovery method on the stability of the results. 
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Changing the standard finite element to the enriched element in the

xtended finite element (due to crack propagation in that element) and

dding new degrees of freedom to elements lead to numerical oscilla-

ions and out of balance force at the beginning of every time step. To

llustrate the effect of the balance of recovery method, the problem is

olved again by neglecting this algorithm, as depicted in Fig. 13 . Clearly,

his algorithm has a considerable impact on reducing the numerical os-

illations and stabilizing the solution. 

The results obtained from this example show that the combined use

f the balance of recovery method and the time discontinuous finite

lement method substantially improves the stability of dynamic crack

ropagation analysis. The next example extends this stable procedure

i  

567 
o a problem in which the crack propagation velocity is not known a

riori. 

.2. Dynamic crack growth along a PMMA-steel bi-material interface 

After evaluating the dynamic crack growth in a homogeneous body,

ne of the main dynamic interface crack propagation experiments is

umerically analyzed here. This experiment was carried out by Lam-

ros and Rosakis [53] and includes an impact loading on a bi-material

omposite consisting of steel and polymethylmethacrylate (PMMA). The

eometry and impact loading are shown in Fig. 14 . The mechanical

roperties of each layer are presented in Table 2 , with an oscillating

ndex of 𝜀 = 0.1037. The fracture toughness for crack propagation is
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Fig. 14. Geometry and boundary conditions. 

Table 2 

Material properties of the problem. 

Parameter Value 

steel PMMA 

E (GPa) 208 3.24 

𝜐 0.30 0.35 

𝜌(kg/m 

3 ) 7830 1190 
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Table 3 

Three unstructured meshes. 

Unstructured mesh Number of nodes and elements Size of crack tip element 

Coarse 6182 nodes, 6028 elements h ≈ 2.9 mm 

Medium 11,690 nodes, 11,420 elements h ≈ 1.8 mm 

Fine 18,402 nodes, 18,054 elements h ≈ 1.4 mm 
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t  
20N/m. This plane stress problem is simulated with a 45 × 150 fi-

ite element mesh, domain integral of 5 mm, time discontinuous finite

lement method with a time step of 1.5 μs, and the balance of recovery

ethod. 

By using High-speed photography, Lambros and Rosakis were able

o accurately measure the energy release rate, phase angle, and crack tip

elocity during their experiment [53] . Also, Nakamura et al. [47] nu-

erically analyzed this problem, which will be used for comparison. 

Here, the numerical simulation is performed in two stages. In the

rst stage, the crack tip velocity is assumed to be known, and the crack

ropagates with the velocity reported by Lambros and Rosakis [53] . The

nput velocity history is shown in Fig. 15 . In the second stage, the crack

ip velocity is not taken as an input data and instead, is calculated using

he fracture criteria presented in Section 4 ( Eqs. (19) and (25) ) and the

terative algorithm described in Section 5.4 . 

The energy release rate obtained from the numerical analysis along

ith the reference values [53] are presented in Fig. 16 . First, an at-

empt is made to investigate the effect of oscillatory crack tip enrich-

ent functions. A good agreement is observed between the reference

xperimental values and the results obtained with XFEM formulation

onsidering the oscillatory tip enrichments. It is noted that in the cases

f XFEM with standard crack tip enrichment functions and XFEM with-

ut enrichments, the highly oscillatory results gradually diverge from

he reference solution and become unstable. Fig. 16 shows that before

he crack growth, ignoring the oscillatory crack tip enrichments does

ot significantly affect the results. After the crack growth, however, it

eads to significant spurious oscillations and generates inaccurate val-

es. This clearly emphasizes the importance of the oscillatory crack tip

nrichment functions in the present dynamic crack propagation analy-

is. 

In addition, Fig. 17 shows the stress distribution near the crack tip

distance from crack tip = 0.01 mm) in the left material for the follow-

ng three cases: 1. the oscillatory crack tip enrichments, 2. the standard

rack tip enrichments, and 3. ignoring the crack tip enrichments. In this

gure, the stress is plotted for the crack length of 26.7 mm (time = 85

s and the crack tip velocity = 360 m/s). It is observed that the crack

ip singularity is accurately captured by the oscillatory crack tip en-

ichments. Standard crack tip enrichments generate far lower level of

ingular stress field. No crack tip singularity is obtained if crack tip en-

ichments are ignored. 
568 
In order to examine the convergence of the solution, the problem

s analyzed by a set of different structured meshes (25 ×100, 45 ×150,

5 ×200, 100 ×250, 200 ×400, 300 ×600, and 400 ×800 elements) and

he energy release rates are presented in Fig. 18 . Clearly, all meshes, ex-

ept the very coarse mesh, provide similar and acceptable results. Also,

t is expectedly observed that the energy release rate converges to the

olution by the finest mesh as the mesh becomes finer. 

To demonstrate the effect of mesh type (structured and unstructured

eshes), the analysis is further extended based on three new unstruc-

ured meshes (see Table 3 ). Fig. 19 shows a typical unstructured mesh

round the crack tip. Time history of energy release rate for different

eshes (150 ×45 structured mesh, 200 ×75 structured mesh, 250 ×100

tructured mesh, coarse unstructured mesh, medium unstructured mesh,

nd fine unstructured mesh) are compared in Fig. 20 . It is clearly ob-

erved that all meshes provide similar and acceptable results. 

Fig. 21 shows the effect of the time integration method on the stabil-

ty of the results. It is clearly observed that the time discontinuous finite

lement method significantly reduces the numerical oscillations in com-

arison with the Newmark method. Again, it is observed that the New-

ark method performs accurately before crack propagation, while it

auses substantial oscillations in the numerical results after crack prop-

gation. In fact, in this case, when the crack tip velocity is determined

uring the numerical analysis and based on the criterion presented in

ection 4 , the oscillations lead to divergence of the solution and instabil-

ty. The reason can be attributed to the fact that if the energy release rate

 G ) has large oscillations during the solution process, Eq. (19) cannot be

olved and, therefore, no value is obtained for the crack tip velocity. 

In the second part, the crack tip velocity is calculated using the cri-

erion presented in Section 4 ( Eqs. (19) and (25) ) and the iterative al-

orithm described in Section 5.4 . For this purpose, the constants C and

 in Eq. (25) are considered 0.04 and 0.08, respectively. 

The crack tip velocity, depicted in Fig. 22 , shows a good agreement

etween the experimental values and the obtained numerical results

with the oscillatory tip enrichment functions). In contrast to the frac-

ure criterion proposed by Nakamura et al. [47] ( Eq. (21) ), which is not

ased on experimental tests and the solution diverges at time 86μs, the

racture criterion proposed by Kavaturu and Shukla [52] ( Eq. (25) ) is

ery close to the experimental results and the solution converges in the

hole time domain. In addition, Fig. 22 illustrates that neglecting the

ffects of the oscillatory crack tip enrichments decreases the accuracy

f the solution in determining the crack tip velocity. 

The resulting energy release rate is shown in Fig. 23 along with

he reference values [53] . It can be observed that there is no differ-

nce between the case that the crack tip velocity is calculated using

qs. (19) and (25) (blue solid line in Fig. 23 ) and the case that the

rack propagates with the experimental velocity reported by Lambros

nd Rosakis [53] (green dash line in Fig. 23 ). Also, there is a good

greement between the experimental results and numerical predictions

y considering the crack tip enrichments. Furthermore, Fig. 23 shows

hat the results of ignoring the tip enrichments substantially increases

he numerical oscillations and reduces the accuracy compared with the

xperimental values. 

.3. Dynamic crack growth along a polymer composite–Homalite interface 

This example addresses the dynamic interface crack growth in or-

hotropic bi-materials, as it frequently occurs in various engineering ap-
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Fig. 15. The crack velocity recorded in the experiment by Lambros and Rosakis [53] . 

Fig. 16. Time history of energy release rate in the case that the crack tip velocity is an input data of the problem. 
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1  
lications. The material properties are presented in Table 4 , where E ∥
s the Young modulus in the direction of the fibers, and E ⊥ is the Young

odulus in the direction perpendicular to the fibers. Eqs. (19) and

25) are used with constants C = 0.01 and n = 0.08 to determine the crack

ip velocity. One layer is isotropic, and the other one is orthotropic. Ge-

metry and dimensions of the model and the applied loading are pre-

ented in Fig. 24 . 

The specimen has the thickness of 10 mm and the problem is sim-

lated under the plane stress condition. The dynamic analysis is per-

ormed with a 45 × 150 finite element mesh and the domain integral

f 5 mm. The problem is solved with six different time steps ( Δt = 1.5,

, 0.5, 0.2, 0.15 and 0.1 μs) to evaluate the sensitivity of the results

o the time steps. Results of energy release rate and crack length for
569 
ifferent time steps are presented in Figs. 25 and 26 , which are nearly

imilar results. Also, Figs. 25 and 26 show that the convergence in time

s obtained by decreasing the time step. 

Figs. 27 and 28 show the effect of the oscillatory crack tip enrich-

ents on the energy release rate and crack length. Clearly, ignoring the

nrichment functions leads to large oscillations and subsequent instabil-

ty. 

Fig. 29 shows the stress distribution near the crack tip in the top ma-

erial for two cases: (1) using the oscillatory crack tip enrichments and

2) ignoring the crack tip enrichments. In this graph, the stress is plotted

or the crack lengths of 30.5 mm and 40.8 mm. Since the crack tip ve-

ocity is different for the two cases, the stress near the crack tip for case

 is reported at times 61 and 65 μs, while it is reported at times 73 and
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Fig. 17. Effect of crack tip enrichment functions on the stress distribution near the crack tip. 

Fig. 18. Effect of mesh size on the time history of energy release rate. 
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8μs for case 2 (see Fig. 28 ). It is observed that the crack tip singularity

s not obtained for the case of ignoring the crack tip enrichments. 

Finally, in Fig. 30 , the stress contours ( 𝜎yy ) are plotted at different

imes to show the stress wave propagation in the body. It can be seen

hat the stress concentration remains at the crack tip while the interface

rack propagates into the domain. 

. Conclusion 

The dynamic interface crack propagation problem in a layered com-

osite material has been studied. The orthotropic bi-material dynamic

nrichment functions have been employed for reproducing the oscilla-

ory stress and displacement fields near the interface crack tip. It has
570 
een observed that before crack growth, ignoring the oscillatory crack

ip enrichments does not significantly affect the fracture mechanics pa-

ameters such as dynamic stress intensity factor and energy release rate;

owever, after crack growth, it results in spurious oscillations of the nu-

erical response and inaccurate results. Also, it has been shown that

eglecting the oscillatory crack tip enrichments decreases the accuracy

f the solution in determining the crack tip velocity. Therefore, consid-

ring the oscillatory crack tip enrichment functions is very important

n the dynamic crack propagation analysis. Moreover, it has been illus-

rated that using the time discontinuous finite element method for time

ntegration of problems that include dynamic crack propagation is nec-

ssary for stabilizing the results. In addition, the balance of recovery

lgorithm has a remarkable effect in improving the results in these set
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Fig. 19. Typical unstructured mesh around the crack tip. 

Fig. 20. Time history of energy release rate for structured and unstructured meshes. 

Table 4 

Material properties of the problem [61] . 

Parameter Value 

Homalite Composite 

E (GPa) 5.2 –

𝜐 0.34 –

𝜌(kg/m 

3 ) 7830 1478 

E ∥(GPa) – 80 

E ⊥(GPa) – 8.9 

𝜐12 – 0.25 

G 12 (GPa) – 3.6 
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f problems. Finally, numerical simulations have proved that, among all

he criteria proposed for dynamic interface crack growth, the criterion

rovided by Kavaturu and Shukla [52] is the only one that considers
571 
oth the stable and the unstable crack growth processes and can com-

letely predict the crack velocity through the solution. 

The present mythology has so far been utilized only for mechanical

oading conditions. Since the thermal shock dynamic analysis of cracked

unctionally graded piezoelectric solids was investigated using the ex-

ended finite element method [62] , therefore, as an extension of the

resent work, the dynamic interface crack propagation problem under

hermal shock loading conditions can also be studied. ”
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Fig. 21. Effect of the time integration method on the stability of the results. 

Fig. 22. The calculated crack tip velocity. 
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Fig. 23. Time variations of the energy release rate. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

(a) (b)

Fig. 24. (a) Geometry and dimensions of the model, (b) applied loading. 
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Fig. 25. Sensitivity of the energy release rate to the time step. 

Fig. 26. Sensitivity of the crack length to the time step. 
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Fig. 27. Effect of oscillatory crack tip enrichments on the energy release rate. 

Fig. 28. Effect of oscillatory crack tip enrichments on the crack length. 
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Fig. 29. Effect of oscillatory crack tip enrichments on the stress distribution near the crack tip, (a) crack length = 30.5 mm, (b) crack length = 40.8 mm. 
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Fig. 30. Stress contours ( 𝜎yy ) at different times (stress in GPa). 
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ppendix A 

The auxiliary stress and displacement fields around an interface

rack tip in the upper material are presented in Eqs. ( A.1 )–( A.5 ) [63] . It

hould be noted that for the layer below the interface, 𝜀𝜋 and − 𝜀𝜋 are

eplaced with − 𝜀𝜋 and 𝜀𝜋, respectively. 

𝜎𝑥 = 

𝐾 𝐼 

2 
√
2 𝜋𝐷 cosh ( 𝜀𝜋) 

×
[ 
− 𝑝 2 

{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑙 ) �̄� cos 
( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 
577 
+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑙 ) 𝐴 cos 
( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) } (
𝑟 𝑙 
) −1 

2 

+ 𝑞 2 
{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑠 ) �̄� cos 
( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑠 ) 𝐵 cos 
( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) } (
𝑟 𝑠 
) −1 

2 

] 
+ 

𝐾 𝐼𝐼 

2 
√
2 𝜋𝐷 cosh ( 𝜀𝜋) 

×
[ 
𝑝 2 
{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑙 ) �̄� sin 
( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 
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𝜎

𝜏

w

𝐴  

𝐴  

𝐵  

𝐵  

𝑟  

𝑟  

𝜃  

 

f  

𝛼

𝑝  
+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑙 ) 𝐴 sin 
( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) } (
𝑟 𝑙 
) −1 

2 

− 𝑞 2 
{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑠 ) �̄� sin 
( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑠 ) 𝐵 sin 
( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) } (
𝑟 𝑠 
) −1 

2 

] 
(A.1) 

𝑦 = 

𝐾 𝐼 

2 
√
2 𝜋𝐷 cosh ( 𝜀𝜋) 

×
[ { 

𝑒 𝜀 ( 𝜋− 𝜃𝑙 ) �̄� cos 
( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑙 ) 𝐴 cos 
( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) } (
𝑟 𝑙 
) −1 

2 

− 

{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑠 ) �̄� cos 
( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑠 ) 𝐵 cos 
( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) } (
𝑟 𝑠 
) −1 

2 

] 
+ 

𝐾 𝐼𝐼 

2 
√
2 𝜋𝐷 cosh ( 𝜀𝜋) 

×
[ { 

− 𝑒 𝜀 ( 𝜋− 𝜃𝑙 ) �̄� sin 
( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 

− 𝑒 − 𝜀 ( 𝜋− 𝜃𝑙 ) 𝐴 sin 
( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) } (
𝑟 𝑙 
) −1 

2 

+ 

{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑠 ) �̄� sin 
( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑠 ) 𝐵 sin 
( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) } (
𝑟 𝑠 
) −1 

2 

] 
(A.2) 

𝑥𝑦 = 

𝐾 𝐼 

2 
√
2 𝜋𝐷 cosh ( 𝜀𝜋) 

×
[ 
𝛼𝑙 

{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑙 ) �̄� sin 
( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 

− 𝑒 − 𝜀 ( 𝜋− 𝜃𝑙 ) 𝐴 sin 
( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) } (
𝑟 𝑙 
) −1 

2 

+ 𝛼𝑠 

{ 

− 𝑒 𝜀 ( 𝜋− 𝜃𝑠 ) �̄� sin 
( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑠 ) 𝐵 sin 
( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) } (
𝑟 𝑠 
) −1 

2 

] 
+ 

𝐾 𝐼𝐼 

2 
√
2 𝜋𝐷 cosh ( 𝜀𝜋) 

×
[ 
𝛼𝑙 

{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑙 ) �̄� cos 
( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 

− 𝑒 − 𝜀 ( 𝜋− 𝜃𝑙 ) 𝐴 cos 
( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) } (
𝑟 𝑙 
) −1 

2 

+ 𝛼𝑠 

{ 

− 𝑒 𝜀 ( 𝜋− 𝜃𝑠 ) �̄� cos 
( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑠 ) 𝐵 cos 
( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) } (
𝑟 𝑠 
) −1 

2 

] 
(A.3) 

𝑢 𝑥 = 

𝐾 𝐼 √
2 𝜋
(
1 + 4 𝜀 2 

)
𝐷 cosh ( 𝜀𝜋) 

×
{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑙 ) 𝑝 𝑙 �̄� 

[ 
cos 

( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 

+ 2 𝜀 sin 
( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) ] (
𝑟 𝑙 
) 1 
2 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑙 ) 𝑝 𝑙 𝐴 

[ 
cos 

( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 

+ 2 𝜀 sin 
( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) ] (
𝑟 𝑙 
) 1 
2 

] 
− 𝑒 𝜀 ( 𝜋− 𝜃𝑠 ) 𝑝 𝑠 �̄� 

[ 
cos 

( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) 

+ 2 𝜀 sin 
( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) ] (
𝑟 𝑠 
) 1 
2 
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− 𝑒 − 𝜀 ( 𝜋− 𝜃𝑠 ) 𝑝 𝑠 𝐵 

[ 
cos 

( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) 

+ 2 𝜀 sin 
( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) ] (
𝑟 𝑠 
) 1 
2 

] } 

+ 

𝐾 𝐼𝐼 √
2 𝜋
(
1 + 4 𝜀 2 

)
𝐷 cosh ( 𝜀𝜋) 

×
{ 

− 𝑒 𝜀 ( 𝜋− 𝜃𝑙 ) 𝑝 𝑙 �̄� 

[ 
sin 

( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) 

− 2 𝜀 cos 
( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) ] (
𝑟 𝑙 
) 1 
2 

− 𝑒 − 𝜀 ( 𝜋− 𝜃𝑙 ) 𝑝 𝑙 𝐴 

[ 
sin 

( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 

− 2 𝜀 cos 
( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) ] (
𝑟 𝑙 
) 1 
2 

] 
+ 𝑒 𝜀 ( 𝜋− 𝜃𝑠 ) 𝑝 𝑠 �̄� 

[ 
sin 

( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) 

− 2 𝜀 cos 
( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) ] (
𝑟 𝑠 
) 1 
2 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑠 ) 𝑝 𝑠 𝐵 

[ 
sin 

( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) 

− 2 𝜀 cos 
( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) ] (
𝑟 𝑠 
) 1 
2 

] } 

(A.4) 

𝑢 𝑦 = 

𝐾 𝐼 √
2 𝜋
(
1 + 4 𝜀 2 

)
𝐷 cosh ( 𝜀𝜋) 

×
{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑙 ) 𝑞 𝑙 �̄� 

[ 
sin 

( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) 

− 2 𝜀 cos 
( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) ] (
𝑟 𝑙 
) 1 
2 

− 𝑒 − 𝜀 ( 𝜋− 𝜃𝑙 ) 𝑞 𝑙 𝐴 

[ 
sin 

( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 

− 2 𝜀 cos 
( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) ] (
𝑟 𝑙 
) 1 
2 

] 
− 𝑒 𝜀 ( 𝜋− 𝜃𝑠 ) 𝑞 𝑠 �̄� 

[ 
sin 

( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) 

− 2 𝜀 cos 
( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) ] (
𝑟 𝑠 
) 1 
2 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑠 ) 𝑞 𝑠 𝐵 

[ 
sin 

( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) 

− 2 𝜀 cos 
( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) ] (
𝑟 𝑠 
) 1 
2 

] } 

+ 

𝐾 𝐼𝐼 √
2 𝜋
(
1 + 4 𝜀 2 

)
𝐷 cosh ( 𝜀𝜋) 

×
{ 

𝑒 𝜀 ( 𝜋− 𝜃𝑙 ) 𝑞 𝑙 �̄� 

[ 
cos 

( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) 

+ 2 𝜀 sin 
( 

𝜀 ln 
(
𝑟 𝑙 
)
+ 

𝜃𝑙 

2 

) ] (
𝑟 𝑙 
) 1 
2 

− 𝑒 − 𝜀 ( 𝜋− 𝜃𝑙 ) 𝑞 𝑙 𝐴 

[ 
cos 

( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) 

+ 2 𝜀 sin 
( 

𝜀 ln 
(
𝑟 𝑙 
)
− 

𝜃𝑙 

2 

) ] (
𝑟 𝑙 
) 1 
2 

] 
− 𝑒 𝜀 ( 𝜋− 𝜃𝑠 ) 𝑞 𝑠 �̄� 

[ 
cos 

( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) 

+ 2 𝜀 sin 
( 

𝜀 ln 
(
𝑟 𝑠 
)
+ 

𝜃𝑠 

2 

) ] (
𝑟 𝑠 
) 1 
2 

+ 𝑒 − 𝜀 ( 𝜋− 𝜃𝑠 ) 𝑞 𝑠 𝐵 

[ 
cos 

( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) 

+ 2 𝜀 sin 
( 

𝜀 ln 
(
𝑟 𝑠 
)
− 

𝜃𝑠 

2 

) ] (
𝑟 𝑠 
) 1 
2 

] } 

(A.5) 

here 

 = 𝛼𝑠 + 𝜂 (A.6)

̄
 = 𝛼𝑠 − 𝜂 (A.7)

 = 𝛼𝑙 + 𝜂 (A.8)

̄
 = 𝛼𝑙 − 𝜂 (A.9)

 𝑙 = 𝑟 

√ 

cos 2 𝜃 + 𝑝 2 sin 2 𝜃 (A.10)

 𝑠 = 𝑟 

√ 

cos 2 𝜃 + 𝑞 2 sin 2 𝜃 (A.11)

𝑗 = tan −1 
(
𝑍 𝑗 tan 𝜃

)
, 𝑗 = 𝑙, 𝑠, 𝑍 𝑙 = 𝑝, 𝑍 𝑠 = 𝑞 (A.12)

In order to calculate Eqs. ( A.6 )–( A.12 ), polar coordinates ( r , 𝜃) in

ront of the crack tip is used (see Fig. 1 ). In Eqs. ( A.6 )–( A.12 ), parameters

s , 𝛼l , p, q , 𝜂 are defined as follow: 

 = 

√ 

𝐵 12 − 

√ 

𝐵 

2 
12 − 𝐾 66 (A.13)
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 = 

√ 

𝐵 12 + 

√ 

𝐵 

2 
12 − 𝐾 66 (A.14)

 12 = 

1 
2 𝑎 11 

{
2 𝑎 12 + 𝑎 66 + 𝜌𝑉 2 

(
𝑎 2 12 − 𝑎 11 𝑎 66 − 𝑎 11 𝑎 22 

)}
(A.15) 

 66 = 

1 
𝑎 11 

{
𝑎 22 + 𝜌𝑉 2 

(
𝑎 2 12 − 𝑎 22 𝑎 66 − 𝑎 11 𝑎 22 + 𝜌𝑉 2 𝑎 66 

(
𝑎 11 𝑎 22 − 𝑎 2 12 

))}
(A.16) 

𝑠 = 𝑞 + 𝑎 22 
𝜌𝑉 2 

𝑞 
− 𝑞𝜌𝑉 2 𝑎 11 − 

(
𝜌𝑉 2 

)2 
𝑞 

(
𝑎 11 𝑎 22 − 𝑎 2 12 

)
(A.17)

𝑙 = 𝑝 + 𝑎 22 
𝜌𝑉 2 

𝑝 
− 𝑝𝜌𝑉 2 𝑎 11 − 

(
𝜌𝑉 2 

)2 
𝑝 

(
𝑎 11 𝑎 22 − 𝑎 2 12 

)
(A.18)

here a ij are the components of the compliance tensor, V is the crack

elocity, and 𝜌 is the density. 
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