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ABSTRACT

Fracture analysis of orthotropic cracked media is investigated by applying the recently developed
extended isogeometric analysis (XIGA) (Ghorashi et al., 2012) using the T-spline basis functions. The
signed distance function and orthotropic crack tip enrichment functions are adopted for extrinsically
enriching the conventional isogeometric analysis approximation for representation of strong discontinu-
ity and reproducing the stress singular field around a crack tip, respectively. Moreover, by applying the T-
spline basis functions, XIGA is further developed to make the local refinement feasible. For increasing the
integration accuracy, the 'sub-triangle’ and 'almost polar’ techniques are adopted for the cut and crack tip
elements, respectively. The interaction integral technique developed by Kim and Paulino (2003) is
applied for computing the mixed mode stress intensity factors (SIFs). Finally, the proposed approach is
applied for analysis of some cracked orthotropic problems and the mixed mode SIFs are compared with

those of other methods available in the literature.

© 2014 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Orthotropic materials such as composites have been increas-
ingly applied in many engineering applications e.g. aerospace,
automobile and marine structures because of their high strength
and stiffness to weight ratios. Considering their strength, they
are applied in thin shell forms with the possibility of crack initia-
tion and propagation. As a result, fracture analysis of such media
has been the center of attention for many researchers in the past
few decades.

Analytical solution of stress and displacement fields for an
orthotropic plate with a crack has already been obtained by Sih
et al. [3]. Some other analytical investigations on fracture behavior
of composites can be found in [4-10]. As the analytical methods
are not feasible in resolving practical engineering problems,
numerical methods are better alternatives.

The remeshing requirement and the existence of singular fields
around crack tips in simulation of crack propagation problems led
to the development of several computational approaches such as
meshfree methods [11-21] and the extended finite element
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method (XFEM) [22-24]. Problems involving with moving
discontinuities such as crack propagation can be analyzed by these
methods without the requirement of remeshing or rearranging of
the nodal points. Some applications of these methods can be found
in [25-31]. In XFEM, a priori knowledge of the solution is locally
added to the approximation space. This enrichment allows for
accurate capture of particular features such as discontinuities
and singularities which are present in the solution.

In order to analyze the problem of cracked orthotropic bodies
different approaches have been applied such as the hybrid-
displacement finite element method [32], the boundary element
method (BEM) [33], finite elements and the modified crack closure
method [34]. Asadpoure et al. [35-37] succeeded in developing
three sets of orthotropic enrichment functions for different types
of composites using the analytical solutions and implemented
them within an XFEM framework. The general form of orthotropic
enrichment functions [37] have also been adopted in the enriched
element free Galerkin (EFG) method [38]. Further developments
have been reported for dynamics and moving cracks in orthotropic
media [39,40] and delamination analysis of composites [41].

Although cracked orthotropic media have been studied by
several different methods, the new developments in the promising
computational approach of the extended isogeometric analysis
(XIGA) [42,1] have attracted new investigations to further apply
it for such problems.
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XIGA takes the advantages of its two origins: the extended finite
element method (XFEM) and the isogeometric analysis (IGA) [43].
IGA integrates the computer aided design (CAD) into the finite
element method (FEM) using the concept of isoparametric
elements, in which the same shape functions are used to represent
the geometry and to approximate the solution. Its superiorities
over conventional FEM are: capability of exact representation of
complex geometries regardless of the mesh coarseness, simplifica-
tion of the refinement process and improvement of the solution
accuracy. A large variety of problems [44-46] have already been
solved by IGA. XIGA has been successfully applied for simulation
of stationary and propagating cracks in 2D linear-elastic isotropic
media [1]. Ghorashi et al. have further enhanced XIGA for analysis
of curved cracks [47]. In addition, more results have been reported
on crack detection using the XIGA [48]. Recently, the XIGA has
been also applied for analysis of material interface problems and
the techniques for achieving optimal convergence rates have been
addressed [49].

The current XIGA method adopts the conventional NURBS basis
function which has a considerable drawback. The local refinement
cannot be defined within it because it is based on a tensor-product
structure which requires the control points to lie topologically in a
rectangular grid. In other words, when a control point needs to be
added, several superfluous control points should be defined. One
solution is to use multiple patches, which has also some limita-
tions. The compatibility of adjacent NURBS patches on their inter-
faces has to be maintained. Generally, the refinement extends from
one patch to another unless the compatibility between patches are
enforced in a different way. One can weakly enforce it by the
variational formulation applying the discontinuous Galerkin
formulation. Another alternative is to enforce C° continuity on
the interfaces between patches [50] by utilizing constraint equa-
tions for the control points and variables. IGA formulations based
on triangular splines [51] might be an interesting alternative as they
simplify the mesh generation and adaptive refinement procedure.

A more enchanting solution for the aforementioned problem is
to use the so-called T-splines [52-54], which are a generalization
of NURBS, by allowing a row of control points to terminate before
reaching the patch boundary. This feature enables the truly local
refinement without extending the entire row of control points. Fur-
thermore, by using the T-splines several NURBS patches that have
different knot vectors can be efficiently merged into a single gap-
free model of C° or higher order continuity [53]. Recently, a subset
class of T-splines called “analysis-suitable T-splines”, which are
linearly independent, has been introduced in the IGA framework
[55] and a highly localized refinement algorithm which meets
the demands of both design and analysis has been presented [56].

Another alternative to T-splines are PHT-splines or RHT-splines
that are based on hierarchical T-meshes [57]. Continuum and
structural element formulations based on PHT- and RHT-splines
have been developed in [58-60], respectively.

In this contribution, XIGA is further extended and the T-spline
basis functions which belong to the analysis-suitable T-splines
are adopted to make the local refinement for feasible adaptive
procedure. Furthermore, based upon the work of Ghorashi et al.
[61], the orthotropic enrichment functions [37] are adopted to
investigate cracked orthotropic bodies.

In Section 2, important formulations of orthotropic materials
are introduced. Basis functions including NURBS and T-splines
are then described in Section 3. Thereafter, the proposed XIGA
method including orthotropic enrichment functions is presented
in Section 4. The results obtained from the present orthotropic
XIGA and those available in the literature are compared in Section
5 to demonstrate the accuracy and efficiency of the proposed
approach. This is achieved by implementing the interaction inte-
gral technique, developed by Kim and Paulino [2], for computation

of mixed mode stress intensity factors. This section is followed by
some concluding remarks in Section 6.

2. Fracture mechanics in orthotropic media

The stress-strain law in an arbitrary linear elastic material can
be written as
g=co (1)

where ¢ and ¢ are the strain and stress vectors, respectively, and c is
the compliance matrix,
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where E,v and G are Young’s modulus, Poisson’s ratio and shear
modulus, respectively. For a plane stress case, the compliance
matrix is reduced to the following form:
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and for a plane strain state,
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Now assume an anisotropic body is subjected to arbitrary forces
with general boundary conditions and a crack. The global Cartesian
coordinate (X;,X>), the local Cartesian coordinate (x,y) and the
local polar coordinate (r, 0), defined on the crack tip, are illustrated
in Fig. 1. A fourth-order partial differential equation with the
following characteristic equation can be obtained from the equilib-
rium and compatibility conditions [5],

c118* — 2¢165% 4 (2C12 + Co6)5? — 2C268 + €220 =0 (5)

where ¢; (i,j = 1,2,6) are the components of ¢?P. According to [5],
the roots of Eq. (5) are always complex or purely imaginary
(Sk =Sk +isky, k=1,2) and occur in conjugate pairs as si,$

Fig. 1. An arbitrary orthotropic cracked body subjected to body force b and traction
t
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and s;, $;. The two-dimensional displacement and stress fields in
the vicinity of the crack-tip can then be derived as [3]
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where Re denotes the real part of the statement and K; and Ky
are stress intensity factors for modes I and II, respectively. p;
and g; can be defined by

bi = C115,-2 +ci2—CeSi, (1=1,2) (10

qi:C125,’+%2*C267 (i:172) (11)

3. Basis functions
3.1. NURBS

Non-uniform rational B-splines (NURBS) are a generalization of
piecewise polynomial B-spline curves. The B-spline basis functions
are defined in a parametric space on a knot vector =. A knot vector
in one dimension is a non-decreasing sequence of real numbers:

E:{élvéb"wénﬂﬁrl} (12)

where ¢; is the ith knot, i is the knot index,i=1,2,....,n+p+1,pis
the degree of the B-spline, and n is the number of basis functions.
The half open interval [¢;, &) is called the ith knot span and it
can have zero length since knots may be repeated more than once,
and the interval [, &n,,41] is called a patch. In the isogeometric
analysis, always open knot vectors are employed. A knot vector is
called open if it contains p + 1 repeated knots at the two ends.

With a certain knot span, the B-spline basis functions are
defined recursively as,

1 if & <E<ién
NQ _ Si i+ 13
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wherei=1,2,...,n.
A B-spline curve of degree p is defined by:
n
(o) =Y N (P, (15)
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where NP(¢) is the ith B-spline basis function of degree p and {P;}
are the control points, given in d-dimensional space R’

The non-uniform rational B-spline (NURBS) curve of degree p is
defined as:

C¢) = zn:Rf (&)P; (16)
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where {R'} are the NURBS basis functions and w; is the ith weight
that must be non-negative. In the two dimensional parametric

space [0,1]%>, NURBS surfaces are constructed by tensor product

through knot vectors B = {g’}, a...., g’}HPH} and
2= {gf,g;, . ‘,cfrznwﬂ}. It yields to:
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For more details on NURBS, refer to [62].

3.2. T-splines

T-splines functions are a generalization of NURBS which allow
termination of a row of control points before reaching the patch
boundary [52-54]. T-spline basis functions are defined in a
trimmed index space entitled “T-mesh”. Trimmed index space is
similar to the index space representing the NURBS where the first
and last n, knots of the global knot vectors are neglected. n, equals
to (p+1)/2 and p/2 for odd and even polynomial degrees, respec-
tively. T-mesh is a trimmed index space where T-junctions, which
are vertices connecting three edges, are allowed. An example of
T-mesh is illustrated in Fig. 2. It is noted that each line in the mesh
corresponds to a knot value of the trimmed global knot vector.
Then, anchors are defined on the T-mesh to identify the location
of each basis function. In each parametric direction, anchors are
located on the lines if the corresponding polynomial degree is
odd. Otherwise, their locations are assumed in the middle of the
lines. Regardless of the degree, an anchor location is at the center
of the support of a function in the index space.

For definition of T-splines, local knot vectors are defined instead
of using the global knot vectors since each basis function has the
compact support of (p+1)x (q+1) knots. As illustrated in
Fig. 3, local knot vectors in each direction are defined by
horizontally or vertically marching from the anchors backward
and forward [53]. Afterwards, each basis function T2?(¢', &%) can
be defined using Eqs. (13), (14) and (18)its corresponding local
knot vectors Z, and Z2.

In order to refine the mesh, the knot insertion process is
performed. It consists of adding new knots to the present (T-) mesh
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1 2 3 4 5 6 7 8 9

Fig. 2. A sample of T-mesh.

(b)®

1
1 2 3 4 5 6 7 8 9

Fig. 3. Schematic view of defining local knot vectors for the anchor S,: (a) quadratic
polynomial degrees: =} = {&),¢},¢8, &3} and B2 = {&,&2,¢2,82} 5 (b) cubic poly-

H .=l 21 21 21 1 1 =2 £2 g2 2 g2 g2
nomial degrees: &, = {&;. &3, 86, &7, ¢} and B = {&, &, &6, &5 )

and correspondingly, modifying and adding some control points.
For more information about T-spline and local refinement, readers
are referred to [52-54].

The T-splines applied in this paper are analysis-suitable
T-splines [55]. Analysis-suitable T-splines are a set of T-splines
whose T-mesh satisfies some topological conditions. It can contain

g,=1
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A
< w -
< > 0
2
a
I Y
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Y
VYV
UO

Fig. 4. Geometry and loading of the orthotropic rectangular plate with an edge
crack.
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Fig. 5. Discretization of the globally refined model of the rectangular orthotropic
plate.

T-junctions but L-junctions, I-junctions and isolated nodes are not
allowed and their extension graphs should be empty [55,56].
Satisfying the above conditions, assures linear independence of
T-spline’s blending functions [55]. Readers are referred to [55,56]
for more details.
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Fig. 6. Discretization of the locally refined model of the rectangular orthotropic plate.

4. Extended isogeometric analysis

The extended isogeometric analysis (XIGA) [42,1] is a newly
developed computational approach which uses the superior
concepts of the extended finite element method (XFEM) [22,23]
within the isogeometric analysis method [43]. As a result, a crack
can be modeled independently of the mesh and can propagate
without the necessity of remeshing since the computational domain
discretization is defined independently of the crack location.

While applying the NURBS basis functions has some limitations
in the local refinement, adopting the T-spline basis functions in the
XIGA allows for efficient introductions of local refinement and
avoiding refining the unnecessary parts [63].

The geometry description is then defined as,

Nen

X(&, &)= "I &P (19)
i=1

where 1., is the number of nonzero basis functions for a given knot
span and {T??(¢', #%)Jare the T-Spline basis functions of degrees p
and g in ¢' and & directions, respectively, at the point (¢',¢?) in
the parametric space [0, 1] x [0, 1].

The solution field approximation is extrinsically enriched by the
Heaviside and branch functions for representing the crack face and
the singular stress field around the crack tip, respectively,
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The first term in the right hand side is the standard T-spline
based isogeometric analysis approximation. {a;}are the vectors
of additional degrees of freedom which are related to the modeling
of crack faces, {bj }are the vectors of additional degrees of freedom
for modeling the crack tip, nq is the number of n., basis functions
which are selected as branch enriched basis functions. They can be
selected using the topological enrichment strategy or the geomet-
rical enrichment approach. In the topological enrichment scheme,
the basis functions which contain the crack tip in their influence
domains are selected as the branch enriched basis functions while
in the geometrical enrichment method, branch enriched basis
functions consist of the basis functions chosen from the previous
strategy and the ones which are selected according to considering
a constant domain around the crack tip. In this contribution, the
topological enrichment method is adopted. ny is the number of
nen, basis functions that have crack face in their support domains
and have not been selected as branch enriched basis functions. H
is the generalized Heaviside function [23],

1 if(X-X) e, >0

21
—1 otherwise 1

H(X) = {

where e, is the unit normal vector of crack alignment in point X"on
the crack surface which is the nearest point to X(cf’, ;“Z).

In Eq. (20), Q,{e=1,2,3,4}are the crack tip enrichment
functions whose roles are to reproduce the singular field around
the crack tips. In this paper, the following orthotropic crack tip
enrichment functions, developed by Asadpoure and Mohammadi
[37], which were defined based on the analytical solution
(Egs. (6)-(9)), are adopted,
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where s;, and s;, are real and imaginary parts of s; computed by Eq.
(5). It is noted that the third and fourth functions in the right-hand
side of the Eq. (22) are discontinuous across the crack faces while
the first and second ones remain continuous.

5. Numerical example

In order to evaluate the efficiency and validity of the proposed
approach, two numerical examples are considered. The first one is
a rectangular plate with an edge crack subjected to distributed ten-
sion loads and the other one is a circular shape containing an
inclined central crack. Cubic and quadratic basis functions are
adopted for the first and second examples, respectively. The effects
of change in orientation of material elastic axes and crack inclina-
tion angle are investigated in the first and second examples, respec-
tively. Both problems are analyzed using both the NURBS and
T-spline based XIGA.

In order to increase the integration accuracy, the 'sub-triangles’
technique with 13 Gauss points is adopted for integration over ele-
ments cut by the crack, while the ’almost polar’ technique with
7 x 7 Gauss points is utilized for elements that contain the crack
tip (see [1]). Standard 4 x 4 Gauss quadrature points are used for
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Fig. 7. The effect of various inclinations of elastic material axes on the mixed mode

SIFs: (a) normalized mode I SIF (;X2) , (b) normalized mode II SIF (;Xi2).

integration of other elements. For determining the fracture proper-
ties, the stress intensity factors (SIFs) are obtained by means of the
interaction integral method, previously developed by Kim and Pau-
lino [2].

5.1. Rectangular plate with an edge crack under tension

The proposed method is applied for analysis of a finite rectan-
gular orthotropic plate with an edge crack subjected to uni-axial
tension. The plate is considered in the plane stress state and
several orientations of material elastic axes are studied. The
proportions of width to height and crack length to width are equal
to 0.5 (see Fig. 4). The plate is composed of a graphic-epoxy
material with the following orthotropic properties:

E; =1148 GPa, E, =11.7GPa, Gy =9.66 GPa, v;; =0.21
Local refinement around the crack tip is of interest. 1296 con-
trol points and 1089 elements are used for modeling the problem
in a global refined form using NURBS, as illustrated in Fig. 5. By
applying the T-spline basis functions, 960 control points and 825
elements are utilized for discretization of the locally refined model
(see Fig. 6). Note that the elements used for integration are projec-
tion of the union of knot lines and continuity reduction lines in the
physical space, while the physical mesh is defined by projection of

knot lines in the physical space (see [53] for more details). The

E, = 1.0 GPa

E, = 0.1GPa

Gz = 0.5GPa
vy, = 0.03
P, = 100
| 2R = 20 |

Fig. 8. Geometry and boundary conditions of the orthotropic disk with an inclined
central crack.

Elements

Control points

Fig. 9. Discretization of the globally refined model of cracked orthotropic disk.
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Fig. 10. Discretization of the locally refined model of cracked orthotropic disk.
Table1 o A o A (a) = 4= Enriched EFG —& -XFEM
Str.ess intensity factoors for an inclined central crack in an orthotropic disk subjected to T-spline based XIGA  NURBS based XIGA
point loads (o = 30°).
25

Method DOFs Elements Cells K; Ky F-"— o= }\‘ )

MCC [34] 5424 999 - 16.73 11.33 w 20 ”\x

M-integral [34] 5424 999 - 16.75 11.38 @ s - S

XFEM [37] 1960 920 - 17.08 11.65 < -,

Enriched EFG [38] 1507 - 641 16.98 11.95 T 10 =

NURBS based XIGA 1868 729 - 16.98 11.53 s

T-spline based XIGA 1292 537 - 17.01 11.55 5

0 T T
0 15 30 45
minimum and maximum sizes of elements are [w x h]/27° and T
. . . . Crackinclination angle
[w x h]/27 around the crack tip and far from it, respectively. Cubic
basis functions are adopted for the analysis. .
For comparing the obtained results with those available in the (b) s EnrElediErg il SudEEM

literature, the Stress Intensity Factor (SIF) is calculated by the tech- T-spline based XIGA NURBS based XIGA
nique developed by Kim and Paulino [2]. Effects of changing the 15 —
material elastic angle on mixed mode SIFs in the plate are probed. PP Y T
Comparison of the results of the proposed method and the results — N > -
of the enriched element free Galerkin (EFG) [38], the extended 2 ,f”
finite element method (XFEM) [37] and the boundary element 3 4{,”
method (BEM) [33], is shown in Fig. 7. o s | -

It is observed that the results are in good agreement with those 2 e
obtained by other methods. The results show that the trend of 7
mode [ SIF changes around g = 45°. It has an increasing trend in 0 I T T
the span of g =0° to f =45° and then decreases in the span of 0 15 30 45

p =45 to f=90° and reaches a value around its initial value,
i.e. when g = 0°. The turning point for the mode II SIF is about
B = 30°. It should be emphasized that the same level of accuracy
is obtained with T-spline XIGA by much lower number of DOFS,
control points and elements.

5.2. Disk with an inclined central crack subjected to point loads

Consider an orthotropic disk with an inclined central crack sub-
jected to double point loads, as depicted in Fig. 8. The material
orthotropy axes and corresponding material properties are defined
in Fig. 8.

For discretization purpose, the area around the crack is refined
and both global (Fig. 9) and local (Fig. 10) refinements using qua-
dratic degree NURBS and T-spline basis functions are employed.

Table 1 compares the stress intensity factors reported by Kim
and Paulino [34], Asadpoure and Mohammadi [37] and Ghorashi
et al. [38] with those obtained using the present approach for the
case of o = 30°.

XIGA is also used for analysis of different inclination angles of
the crack. The computed values of mixed mode SIFs alongside
those reported by Asadpoure and Mohammadi [37] and Ghorashi
et al. [38] are illustrated in Fig. 11. The results of XIGA are in good
agreement with the others. Note that similar to XFEM and EFG

Crackinclination angle

Fig. 11. SIF values corresponding to different central crack angles in the orthotropic
disk: (a) mode I SIFs; (b) mode II SIFs.

methods, XIGA is capable of analyzing several crack inclination
problems on only one discretization.

6. Conclusion

In this contribution, the newly developed XIGA has been
extended to analysis of cracked orthotropic plates. The recently
proposed crack-tip orthotropic enrichment functions have been
employed in the XIGA method to increase the approximation accu-
racy near the crack-tip. Furthermore, by adopting the T-spline
basis functions, the proposed approach allows for efficient local
refinements.

The proposed approach have been utilized to analyze some
numerical examples. Results of mixed-mode stress intensity
factors (SIFs) have been compared with the reference results and
proved the accuracy and efficiency of the method.

By adopting an appropriate error estimator in the developed
scheme, which is in progress by the authors, efficient adaptive
procedures can now be followed.
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