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A B S T R A C T

Linking atomistic and continuum zones in multiscale methods is a necessity in order to overcome the deficiencies
of the conventional molecular and continuum-based methods. In this paper, a novel approach is presented to
bind the atomistic and continuum zones together based on the combined concepts of the finite element method
and the radial point interpolation meshfree method. This variable node multiscale method (VNMM) introduces a
new way to couple the finite element method with the molecular solutions with nodes coinciding with the atoms.
In contrast to QC methods, VNMM does not need a mesh refinement in the vicinity of the molecular zone, nor it
requires an overlapping zone in the continuum/atomistic interface which is necessary in bridging schemes. In
VNMM, the total displacement of each atom is decomposed into coarse and fine displacements, in which the
coarse displacement is computed using the finite element solution over the whole domain, while the fine dis-
placement is calculated just in a limited atomistic zone with the use of molecular statics. Integration of the finite
element method within the VNMM formulation potentially allows for enrichment of any field over the entire
domain. Conventional interatomic potentials could be employed at the atomistic zone. The results are compared
with the fully atomistic simulation, conducted with the molecular statics, and the multiscale quasicontinuum
method. A good agreement is observed with substantially reduced degrees of freedom and computational costs.

1. Introduction

Scientists have always been interested in exploring how macro-
scopic or engineering continuum-based phenomena are formed from
atomistic responses [1]. Nevertheless, high computational costs of fully
atomistic simulations [2] compelled them to utilize the multiscale
methods in which efficiency of two or more scales are combined to
obtain a level of near atomic-scale accuracy with affordable computa-
tional costs.

Concurrent multiscale methods, developed in the past two decades
[3], can be categorized into two different types based on to the adopted
method for coupling of atomic and continuum zones [4]. The first type,
called “strong coupling”, includes methods with nodes coinciding atoms
in the desired domain, while in “weak coupling”, as the second type, no
coincidence is needed. Clearly, the coincidence of nodes and atoms
makes a strong constraint between them but requires refinement of the
mesh to the atomic lattice size near the interface of two scales.

One of the earliest concurrent multiscale methods with a strong
coupling is the quasicontinuum (QC) method, developed by Tadmor
et al. [5] based on the Cauchy-Born rule (CBR). This method has been
frequently used by researchers in a wide range of subjects such as crack

propagation [6–9], nanoindentation [10,11], modeling of irregular
lattices [12], nanocontact [13], surface effects [14], etc. QC divides the
entire domain into local and nonlocal zones. Atoms exist in both zones
but with different characteristics. Some atoms, called the representative
atoms, have degrees of freedom to compute the total energy of the
domain, while the others do not have any degrees of freedom and their
energy is taken into account by the energy of representative atoms. As a
result, QC reduces the number of degrees of freedom from the huge
number of atoms to just a limited number of representative atoms.
Despite being very efficient, a complex algorithm of mesh refinement in
the nonlocal zone should be implemented.

Many researchers have modified the original QC method in order to
perform finite temperature simulations [15,16], higher order Cauchy-
Born implementation [17,18], summation rule modification [19,20],
ghost force correction [21,22], and modeling of multi-lattice materials
[23,24].

To avoid complicated and expensive mesh refinements, many con-
current multiscale methods have been developed; among them, the
bridging domain method (BDM) developed by Xiao and Belytschko [25]
and the bridging scale method (BSM) developed by Wagner and Liu
[26] are better known. Both methods do not require the coincidence of
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atoms and nodes. In other words, the positions of nodes are in-
dependent of positions of atoms and no mesh refinement is needed.

In BDM, the whole domain is decomposed into a continuum and
molecular dynamics zones, with an overlapped band, called the hand-
shake region. The compatibility condition between these two domains
is established by the displacement constraints using the Lagrange
multiplier approach [27]. Many researches have tried to couple the
extended finite element method and the molecular dynamics approach
with the use of BDM [28]. Although the weak coupling of BDM via the
Lagrange multiplier eliminates the difficulties of mesh refinement,
spurious forces, especially in dynamic systems, are generated, which
result in some errors in the final response and reduction of accuracy.

In BSM, the finite element mesh is present everywhere in the whole
domain and the molecular dynamics (MD) is placed locally in the de-
sired area. The total displacement of an atom is decomposed into the
coarse and fine-scale displacements. The fine-scale displacement is the
difference between the molecular dynamics displacement and that of
the finite element method. Atoms and nodes do not require to coincide
in this method [29].

Both BDM and BSM methods eliminate some of the shortcomings of
the methods with strong coupling. Investigations, however, have shown
that the error of bridging methods, for example, in a specific fracture
modeling of nickel, is more than that of QC [30].

Strong and weak coupling methods use molecular statics or mole-
cular dynamics in the atomistic zone to calculate the energy and dis-
placement filed of the proposed zone. For calculating the energy of the
continuum zone, the finite element method is used in BDM and BSM,
while the energy in QC is computed by summation of the energy of all
atoms.

Due to the fact that meshfree methods could well perform in dis-
continuous regions, especially for large atomic simulations, many ef-
forts have been made to couple meshfree methods with molecular
statics/dynamics with strong or weak coupling schemes. In a recent
attempt, Kochmann et al. developed a meshfree quasicontinuum
method [31] by using the concepts of meshfree methods in the local
zone. The method eliminated the need for any elements in the domain,
but it suffered from the generation of nonphysical spurious forces.
Moreover, the Cauchy-Born hypothesis could not be directly applied, as
it was used in QC methods.

Moreover, Wang et al. introduced a method to couple the meshless
element-free Galerkin (EFG) method with molecular dynamics [32]. In
this method, however, the efficiency of the meshless method was not
used to completely eliminate the spurious forces in the handshake re-
gion, and EFG was used just as a more accurate alternative to the
conventional finite element method. Moreover, the moving least square
(MLS) shape functions of EFG caused some difficulties in enforcing the
essential boundary conditions.

Except the well-known BD, BS and QC concurrent methods, some
novel approaches have been established to couple the two atomistic and
continuum zones [33]. An adaptive multiscale method (AMM), devel-
oped by Budarapu et al. [34], introduces a weak coupling scheme along
with an adaptive algorithm in the continuum zone to coarsen the refine
zone. The atomistic area is solved by the molecular statics and a fixed
boundary is applied by the use of ghost atoms.

In this paper, a new method, called the variable node multiscale
method (VNMM), is presented based on the meshfree concepts and the
strong coupling form of coincidence of atoms and nodes, while no
complex mesh refinement algorithm is required and the need for the
existence of an overlapping domain is avoided. In VNMM, the mole-
cular statics is used in the localized atomistic zone to calculate and
minimize the energy, while the energy of the far filed is essentially
based on the conventional finite elements formulations (similar to any
finite element modeling of macro problems) or the atomistic potential
energy of the underneath atoms (similar to QC method in far regions
[5]). First, the proposed method is explained with a discussion on im-
plementation issues. Various examples are then simulated to assess the

accuracy and performance of the developed VNMM.

2. Variable node multiscale method

2.1. Fundamentals

Coupling the continuum and atomistic zones can be established by a
limited number of methods in the forms of either strong or weak cou-
pling. A strong coupling ensures the high accuracy of response, but with
the expense of mesh refinement and redundant degrees of freedom.

To avoid remeshing, the size of all elements can be kept unchanged
while some additional nodes are added inside an element (See Fig. 1). If
the additional nodes are positioned in the atomic position, they can
function simultaneously as both nodes and atoms. For this purpose, a
combination of concepts of the conventional finite element and mesh-
free methods can be used, as recently reported in the form of the
variable node element (VNE) [35]. The variable node element consists
of 4 nodes on the corners and some internal nodes, known as the inside
nodes. In a variable node element, the number of inside nodes could
vary from one element to another, and with the completely different
nodal arrangement. The variable node element has successfully been
used in the finite element simulation of various continuum (single
scale) problems [35]. The complete procedure of derivation of shape
functions is explained in Section 2.3.

If the variable node element is tuned with the following conditions,
it could be used as a multiscale element:

I. The element should perform similar to conventional elements along
its edges to ensure continuity and compatibility conditions at the
boundaries.

II. Inside nodes should not be placed on the boundaries of VN element.
III. The arrangement of inside nodes must be similar to the arrange-

ment of atomic lattices. Any defect like inclusion, crack, hole and
grains can be modeled using corresponding arrangements of inside
nodes.

Accordingly, the new multiscale element is called the “variable node
multiscale element (VNME)”. Fig. 2 shows a number of typical ar-
rangements of atoms for the positions of inside nodes. Fig. 2a, which
shows a randomly distributed arrangement of nodes, can be used for
finite element simulation of higher order fields, whereas distributions of
the inside nodes in Fig. 2b and c allows for the element to be used as a
variable node multiscale element to simulate FCC and Graphene
structures, respectively.

In VNMM, an arbitrary mesh is generated on a molecular setup, as
typically shown in Fig. 3. In the vicinity of the zone in which the atomic
accuracy is required, a number of variable node multiscale elements are
placed and all the atoms within these elements are given full degrees of
freedom. In VNMM, atoms could be modeled everywhere, but modeling
of atoms which are located in the cutoff zone of inside nodes of variable
node multiscale elements is necessary. In other words, unlike QC, there
is no need to model all atoms in VNMM. If atoms are considered in the

Fig. 1. A typical variable node element.
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whole VNMMmodel, the constrained atoms far from the inside nodes of
variable node multiscale elements (gray atoms in Fig. 3b which are not
in the cutoff zone of inside nodes of VNME) do not affect the accuracy,
while in Fig. 3c the gray atoms, considered only in neighboring ele-
ments of the VN multiscale element, are inside the cutoff zone of inside
nodes and have a major contribution and directly affect the procedure
of computing the final position of inside nodes/atoms.

Those atoms that are inside nodes of the variable node multiscale
element (red circles in Fig. 3) are free to move and have degrees of
freedom in all directions. In contrast, the atoms beneath the

conventional finite elements do not have any independent degrees of
freedom and move according to the deformation gradient of their
parent elements. The Cauchy-Born rule [36] demonstrates that the new
position of these atoms for crystalline materials (xiatom) is derived from
Eq. (1),

=x FXi
atom

i
atom (1)

where F is the deformation gradient of the element and xiatom and Xiatom

are the final and initial positions of the ith atom, respectively.
In the variable node multiscale method, a linear or nonlinear form

(a) (b) (c)
Fig. 2. Variable node multiscale element; (a) randomly distributed inside nodes, (b) FCC structure of inside nodes, (c) Graphene structure of inside nodes.

   (a) 

(b) (c)
Fig. 3. (a) Schematic molecular setup with a typical defect, (b) VNMM with modeling of all atoms (similar to QC), (c) VNMM with partial modeling of atoms (similar
to BDM and BSM concepts).
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of the finite element method could be used. First, the zones with some
kind of defects or high gradient in the desired field are simulated using
the variable node multiscale element, while the rest of the domain is
modeled by the conventional finite elements (See Fig. 3b). The energy
of the whole domain, including VN elements and conventional finite
elements, should be minimized. Displacement of all nodes is accord-
ingly calculated by solving the governing virtual work (weak form) of
the finite element model.

2.2. Formulation and implementation

Consider a domain with full atoms, as typically shown in Fig. 3b.
The total energy of the model (Π) is,

∑ ∑ ∑= + −
= = =

u F u F u f uW WΠ( ) ( ( ))Ω ( ( ))Ω ·
i

N

i i
j

N

j j
k

N

k
ext

k
1 1 1

e
conv

e
VNME n

(2)

where W is the strain energy density function, F is the deformation
gradient, Ω is the volume of the element, f ext is the external force
vector applied on a node, Nn is the total number of nodes, Ne

conv and
NeVNME are the number of conventional finite elements and variable
node multiscale elements, respectively.

In VNMM, the conventional FE should be used in regions with rather
uniform deformation. Therefore, despite the dependency of the strain
energy function ( FW ( )) to the adopted continuum-based constitutive
law (employed in the FE procedure) according to the Cauchy-Born rule
[36], the first term of the right-hand side of Eq. (2) can be assumed
equal to the energy of all underneath atoms (constrained atoms under
conventional finite elements).

∑ ∑≈
= =

F uW U( ( ))Ω
i

N

i i
α

N

α
1 1

e
conv

a
conv

(3)

Uα is the energy of an atom and Na
conv is the number of atoms under

conventional finite elements (gray atoms in Fig. 3).
It should be noted that the procedure of Eq. (3) is not similarly valid

for the variable node multiscale elements due to the fact that the de-
formation gradient over the VNME is not uniform and the Cauchy-Born
rule cannot be employed [37]. This is numerically examined with an
example in Section 2.4.

It should be noted that the energy of atoms under the variable node
multiscale elements, which is computed with the summation of in-
teratomic potentials, is not identical to that of the VNME calculated
from the finite element method based on continuum constitutive laws
due to the non-uniformity of the deformation gradient of VNME.
Accordingly, an energy correction term ( ̃Π) is needed:

̃∑ ∑≈ +
= =

F uU W ( ( ))Ω Π
α

N

α
j

j j
1 1

Na
VNME VNME

e

(4)

The purpose of VNMM is to achieve higher accuracy based on the
interatomic energy computation. Solution of Eq. (2), which does not
include the energy correction term ( ̃Π), is accurate only for all nodes of
the conventional finite element. For inside nodes of VNME, however,
correction of energy and displacement is necessary. Since the major
part of the energy could be calculated by Eq. (2), its corresponding
solution is called as coarse displacement (ucoarse). The deformed position
of underneath atoms in conventional finite elements is calculated using
the Cauchy-Born rule [38].

Fig. 4a shows a typical setup of VNMM with one VNME in the
middle and 8 conventional FE elements. Displacements of all nodes
after the FEM analysis, as shown in Fig. 4b, represent the coarse ap-
proximation of displacement (ucoarse). According to Fig. 4b, atoms under
the conventional finite elements are positioned in their correct position
by applying Eq. (1), but inside nodes/atoms of variable node multiscale
element may not be placed at their accurate position, unless the energy
correction part ( ̃Π) is considered.

The difference in the final displacement with the solution of Eq. (2)
for the inside nodes/atoms of VNME arises from the fact that the strain
energy density function of VNME is based on the continuum based
constitutive equations, which is not necessarily consistent with the in-
teratomic potential function of atoms. In order to find the correct po-
sition of inside nodes/atoms after applying the coarse displacement and
to eliminate the error of displacement of VNME inside nodes/atoms, the
fine-tuned displacements of inside nodes/atoms (called the fine dis-
placement, u fine) is calculated. This is achieved by minimizing the en-
ergy of the inside nodes/atoms based on the atomic solutions:

̃ ∑= + +
=

u X u uUΠ( ) ( )fine

α

N

α α
coarse fine

1

a
VNME

(5)

where ̃ uΠ( )fine is the total energy of the inside nodes/atoms, Uα is the
energy of the ith inside node/atom derived from the interatomic po-
tential and NaVNME is the total number of inside nodes/atoms in all
variable node multiscale elements.

It should be noted that the coarse displacement of atoms in Eq. (5) is
completely calculated by minimization of Eq. (2) and it is, therefore,
can be considered as a known term. To further clarify the point, Eq. (2)
is rewritten in terms of the coarse and fine displacements,
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To compute the coarse and fine displacements, Eq. (6) should be
minimized with respect to ucoarse and u fine,
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Eqs. (6) and (7), which include derivatives of the common term
( ̃ +X u uΠ( , )α

coarse fine ) with respect to both the coarse and fine dis-
placements, should be solved simultaneously.

Since the internal energy is a path-independent state function [39],
the total energy of the system based on the interatomic potential, can be
minimized in a two-step approach based on Eqs. (7) and (8), as typically
shown in Fig. 4. In Eq. (7), the initial position is known and the coarse
displacement is computed, while in Eq. (8), the initial position and
coarse displacement of atoms are known and the fine displacement is
determined.

Therefore, in the variable node multiscale method, displacement of
an inside node/atom can be decomposed into the finite element
(coarse) and molecular statics (fine) solutions:

= +u u utotal coarse fine (9)

Fig. 4c demonstrates the final position of all nodes and atoms. In this
figure, inside nodes/atoms of the variable node multiscale element are
moved to their correct position, while the atoms beneath the conven-
tional finite elements remain unchanged after applying the coarse dis-
placement. In other words, the fine displacement of atoms under con-
ventional finite elements is equal to zero due to the Cauchy-Born rule.

To further discuss the implementation of the method, first, a com-
plete list of neighboring atoms is created for each inside node/atom of
the VNME. The list includes both grey and red atoms in the cutoff, as
shown in Fig. 5. It is essential to account only for the atoms beneath the
conventional finite elements which are in the cutoff range of VNME
inside nodes/atoms. Considering other atoms in Eq. (5) does not affect

O. Alizadeh, S. Mohammadi Computational Materials Science 160 (2019) 256–274

259



the accuracy of the response but increases the computational time.
Moreover, as depicted in Fig. 5, the inside node/atom of the variable
node multiscale element, which is labeled as “1”, should have neigh-
boring nodes/atoms within the cutoff radius, whose exact positions are
yet to be calculated. In contrast, the exact positions of some atoms in
the neighboring of the node/atom labeled as “2” are well defined from
the CB rule of adjacent conventional FE elements. In other words, the
gray atoms in the neighboring of the “2” atom are assumed to be lo-
cated in their correct final positions, but the red ones in the vicinity of
the “2” atom are not in their exact positions. This is due to the fact that
the position of gray atoms within the atom “2” cutoff is calculated using
the Cauchy-Born rule, which is assumed sufficiently accurate. There-
fore, the number of atoms which should be considered in the energy
minimization Eq. (5) is limited to the number of inside nodes of the
variable node multiscale element. It should be mentioned that the

number of inside nodes which are located in the cutoff zone of another
inside node, is not constant and varies according to the cutoff radius
and the location of the inside node of the variable node multiscale
element. These important aspects will later be discussed in numerical
simulations.

In VNMM there is no limitation either in the number of inside nodes
or in the number of variable node elements. In the extreme case of using
variable node elements with full inside nodes in the entire domain, the
number of inside nodes (Ninside) becomes equal to the atoms/molecules
of a molecular statics simulations. Since the reduction of computational
costs in multiscale methods is a significant issue, the prementioned
extreme model is not recommended for such problems.

After minimizing Eq. (8), the positions of inside nodes are changed,
and the shape functions and stiffness matrix of VNME should be up-
dated and re-assembled in the global stiffness matrix. This is due to the

Fig. 4. (a) Initial VNME setup, (b) after FEM analysis of the domain, (c) after minimizing the energy of inside nodes by molecular statics.

Fig. 5. A typical setup of a multiscale problem with FCC structure.
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fact that the shape functions of the variable node multiscale element are
related to the position of inside nodes.

Box 1 briefly explains the implementation procedure of the pro-
posed variable node multiscale method.

2.3. Variable node element

In order to establish the variable node element, the shape functions
of all inside nodes should be created. For this purpose, a combination of
meshfree concept and the conventional finite element method is used.
In other words, the positions of nodes on the boundary of the element
are similar to the conventional elements, and the inside nodes are dealt
with as nodes of the meshfree method. So, a combination of mesh free
method and the finite element is used to create the shape functions of
all nodes. Since the polynomial basis functions are very sensitive to the
position of nodes and have potential singularities in calculating the
moment matrix [40], the radial basis functions are adopted to form the
shape functions.

Approximation by the radial point interpolation method (RPIM) can
be written as,

∑= =
= ≠

+

x x x R x λ xψ R λ( ) ( ) ( ) ( ) ( )T
i

j

N N

j j i i
1,j i

b inside

(10)

where xψ ( )i is the shape function of the ith node, R is the radial basis
function, which could be selected from Table 1, and λ is the unknown
coefficient. Nband Ninside are the number of nodes on the boundary and
inside of the element, respectively.

Since the shape functions derived from Eq. (10) are not continuous
across the interface of two adjacent elements, a modification is applied
to ensure C0 continuity. For this aim, a ramp function xφ ( ) is used to
make a smooth combination of ψi and conventional shape functions

xN ( )i ,

∑= =
= ≠

+

x x x R x λ xψ R λ( ) ( ) ( ) ( ) ( )T
i

j j i

N N

i j i i
1,

b inside

(11)

= + −x x x x xR φ R φ N( ) ( ) ( ) (1 ( )) ( )i i i (12)

The shape function xψ ( )i remains continuous all over the domain. It
performs similar to conventional elements on the boundary and acts as
meshfree methods inside the element. The ramp function xφ ( ) is a C0

continuous function. Here, the following ramp function is adopted,

= = − −xφ φ x y x y( ) ( · ) (1 )(1 )2 2 (13)

The unknown vector of coefficients (λ) can then be computed,

= =− −λ x R x ψ x R x δ( ) ( ) ( ) ( )m m i m m mi
1 1 (14)

where xm is the position of a node.
Moreover, in order to ensure the partition of unity (PU) condition

for the derived shape functions, the difference of 1 and the sum of shape
functions is distributed over all the shape functions. As a result, the
summation of all shape functions becomes equal to one, and the
Kronecker delta condition is satisfied:

= +
+

x xψ ψ
N N

( ) ( ) 1 Δi i
b inside (15)

Box 1
Algorithm of VNMM.

1. Initialize the mesh and locate the variable node multiscale elements
1.1. set the initial node positions x0
2. Loop i = 1 to Ntime(total number of time steps)
2.1. Loop j = 1 to NFE (number of All conventional FE)
2.2. Establish the shape functions of FE elements
2.3. Generate the stiffness matrix and assemble in global stiffness matrix
2.4. Apply the loading and boundary conditions
2.5. end
2.6. Loop while not converged
2.7. Loop j = 1 to NVNME (number of All VNME)
2.8. Establish the shape functions of VN multiscale elements
2.9. Generate the stiffness matrix and Update in global stiffness matrix
2.10. end
2.11. Compute the coarse displacement of FEM nodes (ucoarse) from Eq. (7)
2.12. = +x X ui

node
i
node coarse

2.13. Loop k = 1 to NFE (number of conventional finite elements with underneath atoms)
2.14. Compute the deformation gradient of the element (F x( ))k i

node

2.15. Loop m = 1 to Natomk (number of atoms under the kth element)

2.16. =x F Xm
atom

k m
atom

2.17. end
2.18. end

2.19. Compute ̃ = ∑ + +=u X u uUΠ( ) ( )fine
α
Na
VNME

α coarse fineα1

2.20. Compute the fine displacement (u fine) for inside atoms by minimizing ̃ uΠ( )fine

2.21. = +u u uinsideatom
total

insideatom
coarse

insideatom
fine

2.22. Loop n = 1 to Ninside (total number of inside nodes/atoms)

2.23. = +x X un
insideatom

n
insideatom

n
total

2.24. end
2.25. Check the convergence criterion
2.26. end loop while
2.27. Compute the stress filed from utotal by conventional procedures
3. end

Table 1
Radial basis functions.

RBF Mathematical Form

Multi-Quadrics (MQ)
[41]

= + = − + − +R (x, y) (r C ) [(x x ) (y y ) C ]i i
2 2 q

i 2 i
2 2 q

Gaussian (EXP) [42] = − = − − + −R (x, y) exp( cr ) exp{ c[(x x ) (y y ) ]}i i
2

i 2 i
2

Thin plate spline (TPS)
[43]

= = − + −y yR (x, y) r [ (x x ) ( ) ]η
i

ηi i i 2 2
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∑= −
=

+

xψΔ 1 ( )
i

N N

i
1

b inside

(16)

where xψ ( )i is the modified VN shape function which satisfies the PU
condition. To better visualize the differences of modified shape func-
tions, Fig. 6 shows the shape functions of a variable node multiscale
element of graphene [44].

For details of the formulation of the variable node element and its
performance in single scale applications, see [35].

2.4. Examining the validity of the Cauchy-Born rule in VNMM

To examine the validity of the Cauchy-Born rule in VNMM, a simple
model of 126 atoms is stretched along the y-axis and analyzed by the
molecular statics method (MS) with the embedded atom model (EAM)
potential to determine its final correct position, as depicted in Fig. 7.
The results of the molecular static simulation are used as a benchmark
to examine the results of variable node multiscale element.

The problem is modeled in two extreme cases: a quadrilateral 5-
node variable node multiscale element and a 130-node VN multiscale
element (see Fig. 8), both based on the TPS radial basis function
( =η 0.8) and the parabolic ramp function. The finite element analysis is
performed for both cases and the new positions of atoms (constrained
atoms) beneath the 5-node variable node element are determined via
the Cauchy-Born rule.

All nodes of the variable node multiscale element coincide with the
underneath atoms. In the case of 5-node variable node element, if there
is an atom beneath the variable node multiscale element, where no
corresponding node exists in the same position, the exact position of the
atom can be computed by CBR. The relative error of displacement of the
constrained (gray) atoms (shown in Fig. 8a) is calculated by Eq. (17),

=
−
−

x x
x x

error VNMM
f

MS
f

MS
f

MS
i (17)

where x is the position vector of atoms, upper indices f and i denote the
final and initial positions, respectively and operator ||•|| represents the
norm of vector.

The computed error is 0.077 (7.7%), and more or less similar order
of error is obtained for other radial based shape functions and para-
meters in their well-known recommended range of values [45,46].
Clearly, this amount of error is not acceptable for accurate solutions by
the proposed problem.

In the case of 130-node variable node element, the final positions of
inside nodes are the same as the solution of molecular statics, and the
relative error according to Eq. (17) approaches to zero.

In general, the Cauchy-Born rule in the presence of RBF based shape
functions is not accurate enough. The reason can be attributed to the
fact that the radial basis shape functions generate nonlinear shape
functions, with non-uniform distribution of deformation gradient on the
element. The type of the ramp function and its influence domain are
expected to affect the validity of the Cauchy-Born rule, which is the
subject of an independent study.

Since the underneath atoms cannot generally follow the Cauchy-
Born rule, they should be given freedoms in both directions. In this
case, all atoms under the variable node multiscale element are con-
sidered as the nodes of the variable node element, and they will obey
the main formulation of the element to minimize the energy of the
whole domain. Therefore, in this problem, the 130-node variable node
multiscale element (Fig. 8b), should be used instead of the 5-node
variable node multiscale element (Fig. 8a).

3. Numerical simulations

In this section, three different examples are comprehensively

Fig. 6. Shape functions of two nodes of a variable
node multiscale element of graphene.
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Fig. 7. Molecular static simulation, (right) initial relaxed state, (left) after applied displacement.
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examined to demonstrate the accuracy and efficiency of the proposed
approach. In the first two examples, two inhomogeneous compositions
of materials are considered. For the sake of simplicity, in the first ex-
ample, a one-dimensional chain subjected to a uniform loading is si-
mulated. Then, a uniform loading on a two-dimensional plate is simu-
lated in the second example. In the third example, the method is
adopted to solve a rather complicated fracture mechanics problem.

3.1. 1D nonhomogeneous bar

A nonhomogeneous chain consisting of 5 copper atoms at the left
and 5 Nickel atoms on the right side, as shown in Fig. 9, is considered.
The chain is fixed on the left side and is being stretched on the right side
with a prescribed displacement. Since the chain is bi-material, a non-
uniform distribution of displacement is expected. Despite being a geo-
metrically simple setup, it can well demonstrate the accuracy and
power of the proposed approach.

The many-body Rafii-Tabar-Sutton long-range pair potential [47]
with the nearest-neighbor interactions rule is utilized to accurately
calculate the force-field between atoms in the interface. The mathe-
matical form of the potential is as,
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where rij is the distance between two atoms, pi is set to 1 and 0 for
copper and nickel atoms, respectively, while pjis equal to one and zero
for nickel and copper atoms, respectively. Functions Vαβ and ϕαβ are
defined as,
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Other coefficients are listed in Table 2.
In the case of alloy interaction, in which two different atomic types

are engaged, Eqs. (21)–(26) are applied:

=V V Vαβ αα ββ (21)

=ϕ ϕ ϕαβ αα ββ (22)

= +m m m1
2
( )αβ αα ββ

(23)

= +n n n1
2
( )αβ αα ββ

(24)

=a a aαβ αα ββ (25)

∊ = ∊ ∊αβ αα ββ (26)

First, the chain is relaxed by the Rafii-Tabar-Sutton potential. The
relaxed position of 10 atoms, presented in Table 3, is considered as the
initial configuration for both the molecular statics and the proposed
variable node multiscale methods. The chain undergoes a 3% strain and
the results of molecular statics simulation are assumed as the bench-
mark.

To show the accuracy of VNMM, 3 different setups are examined.
All setups are displacement controlled one-dimensional models with a
variable node element in the center. Setup 1 has only one VN element,
while setups 2 and 3 have 2 conventional bar elements and a one-di-
mensional variable node multiscale element (see Fig. 10).

All three setups are constrained at the left edge. First, the finite
element solutions of the models (ucoarse) are computed, and then the fine
displacement (ufine) of inside nodes/atoms are calculated from Eq. (8).

The final correct position is the sum of two results, as shown with
the solid line in Fig. 11. It is observed that the fine displacement of
atoms beneath the conventional bar elements is zero and their total and
coarse displacements are equal. This is due to the fact that these atoms
obey the CB rule and are located in their final correct position, while
the displacement of inside nodes of VN element is not necessarily equal
to the total final displacement (see Fig. 12).

After minimizing the energy of inside nodes/atoms, the error in the
final position of atoms is calculated from:

=
−x x

error of final position
relaxed lattice spacing

VNMM
f

MS
f

(27)

where xVNMM
f and xMS

f are the final positions of atoms in VNMM and MS,
respectively. The relaxed lattice spacings for Copper and Nickel are
2.0935 Å and 2.0413 Å, respectively.

Fig. 13 depicts the error of final positions of atoms in terms of the

(a)                                            (b) 
Fig. 8. Variable node multiscale element (a) 5-node, (b) 130-node.

Fig. 9. 1D nonhomogeneous chain.

Table 2
Raffi-Tabar-Sutton potential parameters [47]

Atom m n ∊(eV) a (Å) c

Copper 6 9 12.328e-3 3.61 39.432
Nickel 6 9 15.707e-3 3.52 39.432
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initial position of atoms (x-axis). Accordingly, the maximum error is
about 1% for setup 3, and it reduces as the number of inside nodes/
atoms increases (setup2 and setup1). For the setup 1, which all atoms
have independent degrees of freedom, the error in final displacement is
less than 10−6 percent; showing an outstanding agreement with the
molecular statics prediction. It should be noted that, the error of dis-
placement of the first and the last atom should be equal to zero as
depicted in Fig. 13. This is due to the fact that the position of the first
and last atom is determined with the applied Dirichlet boundary con-
dition in both MS and VNMM simulations (fixed boundary condition).

The amount of stress error (Es) is defined as:

=
−

×
S S

S
E 100s VNMM

f
MS
f

MS
f

(28)

where SVNMM
f and SMS

f are the final stress values of each atom for VNMM
and MS simulations, respectively.

The maximum amount of error is less than 6 percent, which can be
attributed to the surface effect of the two boundary atoms (see Fig. 14).

3.2. Uniaxial loading on a 2D plate

In order to further investigate the accuracy and efficiency of pro-
posed VNMM in two-dimensional problems, a benchmark example of
uniaxial loading, reported by Beex et al. [48], is studied. Since the
model includes a stiff region in the middle, the displacement field
around the stiff region is not uniform, which is a great test for the new
proposed method.

To better compare the results of VNMM with that of the benchmark,
a dimensionless full lattice domain is considered. The vertical and
horizontal lattice spacings are considered to be 1 unit length (com-
pletely similar to the benchmark). The model consists of 10,201 atoms
in which 49 atoms belong to the 6×6 unit length stiff region in the
middle. The vertical displacement in the bottom edge of the plate (Γs1)
and the horizontal displacement of the left edge (Γs4) are forced to be
zero. The prescribed displacement on the right edge (Γs2) is imposed by a
Dirichlet boundary condition. The top edge (Γs3) is constrained in a way
that the vertical displacement of all nodes of the top edge remain equal.
Fig. 15 illustrates the geometry and boundary conditions.

As discussed in the previous section, there is no need to refine the

mesh to lattice size in order to couple the fully atomistic region with the
continuum one. So, the fully atomistic region is surrounded by an ar-
bitrary mesh, as shown in Fig. 16. The underneath atomic lattices are
shown in small solid gray circles while the continuum nodes/atom are
depicted with red circles. To have an accurate result near the stiff re-
gion, all the atoms in the desired zone, are free to move in X/Y direc-
tions, while the movement of other atoms follow the deformation gra-
dient of their master triangular element. Those atoms that are allowed
to move freely are coincident with internal nodes of the variable node
elements.

The initial configuration of the model has a coarse mesh, consisting
of 164 triangular elements in the domain. In the setup shown in Fig. 16,
the stiff region and its surrounding atoms are modeled with 16 variable
node elements (with 9, 12 or 16 inside nodes/atoms). Since each inside
node is given two degrees of freedom, no further effort is necessary to
adjust the number and arrangement of inside nodes in the variable node
element. In this setup, from the existing 10,201 atoms, only 169 atoms
in the center of the domain are involved in the energy minimization
procedure of Eq. (3).

In Fig. 17, which is a close-up view of the region with variable node
elements, each element may have a variable number of inside nodes
during the analysis. As the analysis is performed, the position of inside
nodes is changed, and the inside nodes/atoms near the edges of a VN
multiscale element may move from an element to another, as schema-
tically depicted in Fig. 17. Each node is given two degrees of freedom
(in x and y-directions). The white nodes are the corner nodes of con-
ventional triangular finite elements and variable node elements. The
corner nodes of variable node elements do not necessarily possess the
same position as of the atoms. The red nodes/atoms, which are inside
the variable node elements, are the main links between the finite ele-
ment method and the molecular statics. The gray points under the
conventional triangular finite elements do not have any degrees of
freedom and will move by the Cauchy-Born rule.

To be similar to the benchmark reference example, each free atom
in the entire domain has interactions only with its nearest neighbors. In
other words, atoms in the bulk, edge, and corner regions have 8, 5 and 3
neighboring atoms, respectively [48]. To completely calculate the force
field, the following interatomic pair potential is employed,

Table 3
Initial and 3% strained positions of atoms according to the molecular statics solution.

Atom 1 2 3 4 5 6 7 8 9 10

Initial position (Å) 0 2.09 4.18 6.28 8.37 10.44 12.48 14.52 16.56 18.60
Final position − 3% applied strain (MS) 0 2.16 4.33 6.50 8.66 10.79 12.88 14.98 17.07 19.16

setup 1 

setup 2 

setup 3 

Fig. 10. 1D nonhomogeneous setups.
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(29)

where E is the Young modulus, A is the area and r0 is the equilibrium
initial lattice spacing. Without the loss of generality of the investiga-
tion, E, A, and r0 are set to 1 in this example [48].

On the right edge (Γs2) of the model, shown in Fig. 15, a displace-
ment of 2 unit length is applied and the displacement field over the
entire domain is calculated. The displacement is applied in the first
iteration and the coarse scale movement of nodes is calculated with the
finite element formulation. In the next iterations, the total energy of
atoms is minimized. This procedure is terminated when the relative
error (Er) becomes less than an acceptable tolerance,

= −E u u
u

r 2 1

1 (30)

where u2 and u1 are the displacement vectors of current and previous
iterations, respectively.

The accuracy of VNMM is assessed by the molecular static analysis
of the full lattice model and its efficiency is compared with the quasi-
continuum model. The initial configuration of the quasicontinuum
model is illustrated in Fig. 18. The same stiff region is modeled in the
center of the plate. Due to oscillatory displacement field around the stiff
region, the mesh must be refined to the lattice dimension in that zone.
Therefore, the size of the nonlocal zone around the stiff region is as-
sumed larger than the dimensions of the stiff region. To reduce the
computational costs, the mesh size is adaptively increased in zones far
from the stiff region (see Fig. 18).

To better compare QC with other methods, the fine mesh in the size
of the lattice is located just in the nonlocal zone, as shown in Fig. 18b,
while, in the MS model, all atoms have degrees of freedom in both
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directions and no elements are used.
The QC method uses fixed number of degrees of freedom in each

iteration and in each load step, whereas VNMM uses different number
of degrees of freedom in iterations associated with coarse and fine
displacement calculations. In this problem, VNMM uses 556 degrees of
freedom to compute the coarse displacement, and 338 DOFs are used
for computing the fine displacement, while QC uses 698 degrees of
freedom in each iteration of energy minimization. Computations of
coarse and fine displacement in VNMM are not conducted simulta-
neously in one iteration. As a result, each iteration of QC uses more
degrees of freedom than any iterations of coarse or fine displacement
calculation of VNMM.

According to Table 4, a large reduction in the number of DOFs is
obtained by using a multiscale method such as QC or VNMM. Moreover,
VNMM requires fewer degrees of freedom than QC for computing the
coarse displacement, while it needs just about half of the DOFs of QC
for computing fine displacement. This is due to the fact that unlike
VNMM, QC requires mesh refinement inside the nonlocal zone and in its
vicinity.

Vertical and horizontal displacements are illustrated in Figs. 19 and
20, respectively. Clearly, the middle inclusion affects the surrounding
displacement field, as similarly predicted by VNMM, QC, and the mo-
lecular statics.

According to Fig. 21, the maximum difference in displacements of
atoms in each direction, predicted by VNMM and molecular statics, is
about 0.03 unit length (3% of the lattice spacing), which illustrates the
acceptable accuracy of the method.

To better compare the results, variations of the horizontal dis-
placement along the y=0 line and variations of the vertical displace-
ment along the x=0 line are depicted in Fig. 22. A very good agree-
ment is observed between the results of VNMM, MS, and QC methods.

3.3. Enriched VNMM for an edge crack problem

In order to simulate a cracked domain consisting of 10,201 atoms,
the Heaviside enrichment term, corresponding to the crack edge dis-
continuity, is used in VNMM. A 100 Å width square plate with a 7 Å
long edge crack is considered. The plate is fixed at the bottom edge and
a uniform tensile loading is applied on the top edge to simulate a mode I
crack problem.

Two different VNMM setups with structured and unstructured

Fig. 13. Error of final position of atoms predicted by VNMM for all three setups.
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Fig. 14. Error of stress of atoms predicted by VNMM for all three setups.

Fig. 15. Geometry and boundary conditions of the 2D uniaxial test.

Fig. 16. Adopted VNMM mesh and the fully atomistic region beneath it.
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meshes are proposed as depicted in Fig. 23. The cracked region in both
setups is modeled with two variable node multiscale elements (fully
includes the crack). The rest of the plate is modeled with conventional
triangular finite elements.

The variable node multiscale elements in the vicinity of the crack
are enriched with the Heaviside enrichment term. Since the crack tip is
located inside one of the variable node multiscale elements, where a full
molecular static minimization is performed, no macro based asymptotic
enrichment term is used.

To better simulate the crack opening, no interaction between the
atoms across the crack sides is considered. In other words, interaction of
atoms across the sides of the crack interface is eliminated. The intera-
tomic potential defined by Eq. (25), is used with nominal E and A
parameters equal to one. The initial relaxed lattice dimension is 1 Å.

In order to investigate the validity and efficiency of the variable
node multiscale method, one fully atomistic setup (solved by molecular
statics method) and 3 different multiscale setups (simulated by
Quasicontinuum method) are examined. The initial configurations of
QC setups are illustrated in Fig. 24.

To better compare VNMM and QC, setup (C) in Fig. 24 with ap-
proximately uniform mesh size in zones far from the crack tip, which is
similar to VNMM setup with structured mesh (setup A) is considered.
The size of the mesh for two other setups increases as the distance of the
element from the crack tip increases (similar to setup B). The size of the
refined zone near the crack tip in setups (C) and (D) is identical, and is
slightly larger in setup (E). Due to the fact that the quasicontinuum
method cannot be enriched by the enrichment terms, the crack body is
modeled using separated elements with gaps in between. Specifications

of the setups are listed in Table 5.
After applying a 2 Å displacement on the top edge, the crack is

opened and the displacement field around the crack is perturbed, as
shown in Fig. 25 with a tenfold scale for the deformation.

Displacements of atoms in both directions after applying the dis-
placement on the top edge are depicted in Fig. 26.

The relative error of vertical displacement predicted by VNMM with
respect to MS is demonstrated in Fig. 27. Clearly, a good agreement is
observed, with a maximum error of near 5% (0.05 Å) for setup A of
VNMM.

As the plate is further stretched, the vertical stress Syy near the crack
tip increases. To show the stress components in atomic scale, the virial
stress components are calculated [49],
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where for the proposed potential, the stress components can then be
calculated by (32),
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where lower indices α and β, ranging from 1 to 3, represent three in-
dependent directions and the upper index is the atom number.

In order to better demonstrate the accuracy of VNMM in predicting
the high gradient nature of stress near the crack tip, Fig. 28 compares
variations of S22 along the crack for all VNMM, QC and MS setups.
Clearly, a very good agreement, both qualitatively and quantitatively, is
observed for this complex high gradient response near the crack tip for

Fig. 17. Modeling of the stiff region by variable node elements.

(a)                                                                 (b) 

Fig. 18. (a) Initial configuration of the quasicontinuum model, (b) the fine mesh of QC around the stiff region.
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Table 4
Specification of adopted MS, QC and VNMM models.

Method Number of elements Number of nodes or atoms Number of DOFs

Molecular Statics – 10,201 20,402
Quasicontinuum 668 349 698
VNMM 180 278 (for computing u )coarse

and

169 (for computing ufine)

556 (for computing u )coarse

and

338 (for computing ufine)

UY
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-0.5
-0.6
-0.7
-0.8

Fig. 19. Vertical displacement contour, (left) MS, (center) VNMM, (right) QC.
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Fig. 20. Horizontal displacement contour, (left) MS, (center) VNMM, (right) QC.
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Fig. 21. Difference in displacement fields predicted by VNMM and MS, (left) horizontal displacement, (right) vertical displacement.
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VNMM simulations.
To better show the distribution of error along the crack, a relative

error (Er) based on the vertical stress component is defined:

=
−S S

S
E yy

VNMM
yy
MS

yy
MSr

(33)

which shows that the maximum error of VNMM is less than 2% near the
crack tip and vanishes in the regions far from the crack tip (see Fig. 29).

The overall information of Table 6 shows that increasing the

number of degrees of freedom of the QC setup does not lead to further
reduction of the errors of vertical stress and displacement below a
certain level, while the error of VNMM reduces significantly as the
number of degrees of freedom increases. Moreover, comparison of QC
and VNMM with nearly equal number of degrees of freedom (setups A
and D) shows that the error of VNMM is about one-sixteenth and half of
the error of QC setups for vertical stress and vertical displacement,
respectively.

Moreover, the runtime of VNMM method is significantly lower than
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Fig. 22. (left) Horizontal displacement along y= 0, (right) vertical displacement along x= 0.

a) setup A 

b) setup B 

Fig. 23. Initial configurations of two VNMM setups, (a) setup A with structured mesh, (b) setup B with unstructured mesh.
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a) setup C (QC)                              b) setup D (QC)                             c) setup E (QC) 

Fig. 24. Initial configurations of an edge crack plate simulated by QC models.

Table 5
Setups specifications.

Multiscale method Setup Number of atoms Number of nodes Number of DOFs Number of elements Approximate size of elements far from the crack (A)

MS – 10,201 – 20,402 – –
VNMM A 10,201 465 942 380 5
VNMM B 10,201 111 234 108 20
QC C 10,201 818 1636 1265 5
QC D 10,201 450 900 576 20
QC E 10,201 300 600 404 20

Fig. 25. Deformed configuration of the edge crack (a tenfold scale for de-
formation).
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Fig. 26. (left) Horizontal displacement, (right) vertical displacement.
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Fig. 27. Error of final position with respect to the lattice parameter, predicted
by VNMM.
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MS, due to huge reduction of degrees of freedom. The analysis runtime,
on a 2.8 GHz-Core i7 CPU with 8.00 GB RAM is 6.52, 6.78 and 28.9 s for
setup (A) of VNMM, setup (D) of QC and MS simulations, respectively.

3.4. Lomer dislocation dipole

To completely show the accuracy of VNMM in using long range
potentials, a 400 Å width square plate of aluminum atoms with a dipole
of Lomer dislocations [50] is simulated. The crystallographic direction

[1 1 0] and [0 0 1] of aluminum atoms are along the global X and Y
directions, respectively. All sides of the setup are constrained and a
specific amount of displacement proportional to y-coordinate of the
boundary is applied along the X direction. Two dislocations (dipoles)
are placed in the center of the plate and they are 40 Å away from each
other (see Fig. 30)

A VNMM setup, which consists of 182 conventional 3-nodded ele-
ments and 25 variable node multiscale elements, is created. The VNMM
setup has 1217 nodes with 2434 degrees of freedom. The model con-
tains 27,867 atoms. The atoms under the conventional finite elements,
depicted with gray dots in Fig. 31, obey the CB rule and the others,
shown with red dots, do have independent degrees of freedom. To
better investigate the accuracy of VNMM model, the results are com-
pared with the results of molecular statics setup.

A shear strain is applied on the boundary of the model based on Eq.
(34)

= γYuy (34)

where Y represents the coordinate of boundary nodes along the y-axis
and γ is the magnitude of applied shear. The interatomic force between
the atoms is governed by the embedded atom model (EAM) [51].

After applying 4% of strain, the horizontal and vertical displace-
ments of the atoms are calculated, as presented in Figs. 32 and 33 for
MS and VNMM setups, respectively.

The results of VNMM shows a good agreement with those of MS,
with a maximum difference of less than 1%. The contour of vertical
displacement error is depicted in Fig. 34.

To better demonstrate the accuracy of the VNMM method, the
analytical solution for the vertical displacement of the two dislocations
problem [52] is adopted:
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where xd and yd are the coordinates of the dislocation core in global X
and Y directions, respectively, b is the Burgers’ vector and ν is the
Poisson’s ratio. Fig. 35 shows the results of the analytical solution
computed by Eq. (35).

The amount of error of the VNMM results with respect to the ana-
lytical solution for the vertical displacement is computed from Eq. (36)

=
−

×E
U U
lattice constant

100VNMM
y
VNMM

y
analytical

(36)

where Uy
VNMM and Uy

analytical are the results of VNMM and analytical
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Table 6
Summery of error for different multiscale methods.

Multiscale
method

Setup Number of
DOFs

Maximum error
of vertical stress
(%)

Maximum error of
vertical displacement
(%)

VNMM A 942 0.75 3.26
VNMM B 234 1.75 5.14
QC C 1636 13.97 4.79
QC D 900 12.46 6.8
QC E 600 11.52 6.66

Fig. 30. Schematic illustration of the Lomer dipole setup.
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Fig. 31. Lomer dipoles setups, (left) VNMM setup, (right) VNMEs close view.

UX: -5.0 -3.4 -1.8 -0.3 1.3 2.9 4.5
UY: -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

Fig. 32. Results of molecular statics simulations, (left) horizontal displacement, (right) vertical displacement.

UX: -5.0 -3.6 -2.3 -0.9 0.5 1.8 3.2 4.5 UY: -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

Fig. 33. Results of VNMM simulations, (left) horizontal displacement, (right) vertical displacement.
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solution, respectively, and the lattice constant for aluminum is 4.032 Å.
Contours of EVNMM , as depicted in Fig. 36, shows a maximum error of
less than 5%, which confirms a good agreement and the level of ac-
curacy of VNMM in this simulation.

4. Conclusion

Reduction of computational costs while preserving the desired ac-
curacy in a multiscale problem is of outmost important. In the new
proposed approach, the variable node multiscale method (VNMM)
combines the flexibility and accuracy of meshfree methods with the
simplicity of finite element method to create an element which could be
placed in a zone, where the high accuracy of atomic-based methods is
required.

VNMM enables the model to estimate the coarse displacement of
atoms with just a limited number of degrees of freedom in the platform
of FEM, and the fine displacements are calculated based on the use of
interatomic potential in the required zones with few numbers of inside
nodes/atoms. Decomposition of total displacement into two in-
dependent coarse and fine displacements, enables VNMM to reduce the
number of DOFs, as the simulation is performed. This is due to the fact
that the total number of degrees of freedom for computing the fine
displacement is significantly less than that of the coarse displacement
calculations.

Adjustable positions of the inside nodes of the variable node mul-
tiscale element provide a platform to arrange any materials structure
and to eliminate the need for mesh refinement.

The method can potentially be applied on any extension of FEM. As
a result, all forms of solid material constitutive models in the continuum
zone with known interatomic potential can be similarly implemented
and easily be engaged with the molecular zone. It is important to model
only materials which obey the Cauchy-Born rule. As a result, the pre-
sent VNMM modeling is not suitable for amorphous materials.
Nevertheless, utilization of standard CB rule for crystalline materials,
higher order Cauchy-Born rule for complex lattices and nanotubes does
not alter the concept and platform of VNMM algorithm. Moreover,
while the Cauchy-Born rule is no longer valid in VNMM, it can be used
in the neighboring elements to reduce the computational costs by
sharply reducing the number of degrees of freedom.
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