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Abstract
In this paper, the extended finite element method is used for fracture analysis of shape memory
alloys for both cases of super elastic and shape memory effects. Heat generation during the
forward and reverse phase transformations can lead to temperature variation in the material
because of strong thermo-mechanical coupling, which significantly influences the SMA
mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on
material behavior in the crack tip are examined. Then, the crack propagation analysis is
performed in the presence of an initial crack by adopting a weighted averaging criterion, where
the direction of crack propagation is determined by weighted averaging of effective stresses at all
the integration points in the vicinity of the crack tip. Finally, several numerical examples are
analyzed and the obtained results are compared with the available reference results.

Keywords: shape memory alloys (SMAs), extended finite element method (XFEM), thermo-
mechanical coupling, crack propagation

(Some figures may appear in colour only in the online journal)

1. Introduction

Shape memory alloys (SMAs) are among the growing state of
the art smart materials that are being increasingly used in var-
ious sensitive engineering applications owing to the possession
of two very important properties: super elasticity and shape
memory effect (SME) [1]. As typically illustrated in figure 1(a),
in temperatures greater than A ,f SMA is in the stable austenite
phase. By applying a mechanical load it transforms into the
martensite phase and since it needs to retrieve its stable phase, it
transforms back to the austenite phase after unloading, repre-
senting the super elastic behavior. When the temperature is
lower than A ,s no reverse transformation occurs after unloading.
But, if the temperature is increased to a level greater than A ,f a
reverse phase transformation occurs, which is called the SME.
Figure 1(b) schematically shows the stress–strain curves for
super elastic and SME behaviors. Ms and Mf are the martensite
transformation start and finish temperatures, and Af and Af

represent the austenite transformation start and finish tempera-
tures, respectively. Also, σMs and σAs are the start stresses of
forward and reverse transformations, and σMf and σAf define the
finish ones, respectively. There are, however, other attitudes
towards the terminologies being used in this subject. For further
discussion see [1–3].

Generally, research on SMAs could be classified into
three categories: small scales such as microstructure studies,
continuum level analysis and the failure simulations, which is
the subject of the present paper. Compared to other types of
materials, SMAs exhibit more complicated failure mechan-
isms due to localized phase transformations at the crack tip
which directly affect the process zone. The conventional
theory of fracture mechanics cannot be directly applied for
SMAs, due to the fact that substantial phase transformation
occurs at the crack tip which affects the nearby stress field.
Figure 2 typically illustrates the phase transformation regions
and stress distribution around the crack tip in an SMA. In the
region near to the crack tip, the phase is martensite (M). A
little far from the crack tip, the phase transformation →A M( )
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occurs, whereas further away from this region no phase
transformation occurs and the phase remains austenite (A).

A variety of experimental, analytical and numerical stu-
dies have been performed to study the fracture behavior of

SMAs. The experimental studies were conducted for exam-
ining how the crack creation and propagation under mono-
tonic and cyclic loadings [4–7]. The analytical studies were
carried out for determination of the stress field and the size of
the phase transformation region [8–11]. Birman [8] presented
an estimation for the size of phase transformation regions by
improving the available classical relations for the size of the
plastic zone around the crack tip in conventional engineering
materials. Yi and Gao [11] concluded that the phase trans-
formation could decrease the stress intensity factor and would
lead to toughening in the crack tip. Maletta and Furgiuele [10]
provided an analytical model for investigation of the forward
phase transformation in the crack tip by assuming a constant
stress through the phase transformation. Furthermore, Maletta
[12] considered the effects of tri-linear stress–strain response
of SMAs and analytically formulated the stress fields and
determined the size of the transformation regions near the
crack tip of SMAs without the assumption of constant stress
through the phase transformation process. Desindes and Daly
[9] developed a model for determining the shape of the phase
transformation regions only for the mode III crack.

In addition to the experimental and analytical studies,
several numerical studies have been performed for investi-
gation of the phase transformation effect on the material
behavior in the crack tip considering the thermodynamic
parameters and different loading conditions by using the finite
element method [13–15]. Also, Freed and Banks-Sills pre-
sented a cohesive crack model for more accurate evaluation of

Figure 1. Typical loading paths and stress–strain curves for super elastic and shape memory effects (a) loading paths, (b) stress–strain curves.

Figure 2. Typical stress distribution and phase transformation
regions near the crack tip in an SMA.
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forward and reverse phase transformations with crack pro-
pagation [2]. Proposing a cohesive crack model, Baxevanis
and Lagoudas investigated the effects of different phase
transformation characteristics such as the maximum trans-
formation strain on fracture behavior and evaluated the sizes
of transformed zones at the crack tip of SMAs [16]. More-
over, Baxevanis et al studied the propagation of mode I crack
in SMAs using a virtual crack closure technique considering
the effects of plasticity of martensite phase [17].

Despite the considerable developments of the finite ele-
ment method, the boundary element technique and a variety
of meshless methods for solving crack problems [18–20], the
extended finite element method (XFEM) has proved to be a
very powerful tool for modeling general weak and strong
discontinuity problems. The main idea of XFEM is based on
adding the discontinuous functions to the displacement field
approximation of the cracked elements. The XFEM procedure
allows for crack propagation problems to be simulated with-
out any remeshing. Since its introduction [21], XFEM has
been applied for modeling a wide range of new problems in
solid mechanics such as modeling of shear bands [22, 23],
thermo-mechanical fracture analysis of FGMs [24–26], brittle
[27, 28] and ductile [29, 30] crack modelings, and static and
dynamic fracture analysis of orthotropic media [31–34].

The main purpose of this research is to study the thermo–
mechanical coupling fracture of SMAs using XFEM. Despite
the fact that it is possible to analyze the cracking of SMA in
the unstable phase transformation case by using the softening
model of Ahmadian et al [35], in this paper, it is assumed that
the initial unstable behavior of SMA is shaken out by a
cyclical training and the behavior is completely stable, and a
hardening model is assumed for the transformation region.
This paper is organized as follows: first, the adopted con-
stitutive model of SMA is presented. Then, solution of the
thermo–mechanical coupling problem in the framework of
XFEM is presented in section 3. It also discusses brief
descriptions of the XFEM model to deal with cracks in SMA
and crack propagation criterion. Several numerical examples,
in two cases of stationary and progressive cracks, are then
investigated and the results are compared with the available
reference results.

2. Constitutive model

The constitutive model, presented by Boyd and Lagoudas
[36] based on the Gibbs free energy G is adopted
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where C denotes the effective compliance tensor, σ is the
stress tensor, εtr represents the transformation strain and α is
the effective thermal expansion tensor. ξ is the martensitic
volume fraction which varies between 0 (fully austenitic state)
and 1 (fully martensitic state). T and T0 are the current and

reference temperatures, respectively. ρ is the density, c
represents the effective specific heat, and u0 and s0 are the
effective specific internal energy and the effective specific
entropy at the reference state, respectively. f is the hardening
function which will be defined in the following section.

The strain tensor ε can be defined in terms of σ

ε σ α ε= + − +( )C T T: . (2)0
tr

Considering the nonlinear behavior of SMA during for-
ward and reverse transformations and its similarity to plasti-
city, equation (3) governs the relation between εtr and ξ
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where εmax is the material parameter related to the maximum
uniaxial transformation strain, σ is the deviatoric stress
tensor and ε −Rtr is the transformation strain at the reversal
point. σ′¯ is the effective stress (von Mises equivalent stress)
and ε −¯ Rtr is the effective transformation strain. In
equation (4), ξ ̇ > 0 and ξ ̇ < 0 are related to the forward and
reverse phase transformations, respectively.

For solving the nonlinear equation (3), the closest point
projection return mapping algorithm is adopted [3]. The first
and second law of thermodynamics can be represented in the
Clausius–Planck inequality as [1]
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Here, π is the thermodynamics force which can be obtained
by substituting the Gibbs free energy (1) in (7):
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The transformation surface Φ = 0tr can then be defined
for the forward and reverse phase transformations by reaching
π to a critical value

Φ
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where Y tr is the material parameter.
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The effective material properties c, s ,0 u ,0 α and C can
now be written in terms of ξ

α α α
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The hardening function ξf ( ) is defined for the forward
and reverse phase transformations as [1]
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where b ,M b ,A μ1 and μ2 are the material parameters.

So far, five unknown material parameters b ,M b ,A μ ,1 μ2

and Y tr have to be determined, which require the following
five independent equations, as comprehensively discussed in
[1]
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3. Thermo–mechanical coupling

An SMA domain Ω which contains a traction-free crack is
considered, as depicted in figure 3. Γc is the boundary of the
crack, and Γt and Γu are the boundaries with prescribed trac-
tion f t and displacement ū, respectively. For fracture analy-
sis, the coupling equations have to be solved. A semi-coupled
iterative algorithm is applied for solving the thermo-

mechanical problem by decoupling it into two parts. In each
step, first the mechanical problem is solved isothermally by
using XFEM and then, the temperature variations due to
phase transformation can be calculated from the heat
equation. The procedure continues until a certain convergence
criterion is met.

3.1. The XFEM

The XFEM has become one of the main numerical tools for
effective simulation of discontinuities over the past decade
[21, 37, 38]. XFEM is capable of crack propagation analysis
without any expensive remeshing procedures by only adding
some additional degrees of freedom to the original standard
finite element mesh (generated for the uncracked domain).

To simplify the process of SMA crack propagation
simulation, the singularity of crack tip is disregarded in this
research, and only the discontinuity across crack surfaces is
considered. Addition of the crack tip singularity effects
requires extensive numerical procedures to ensure stability of
the complex phenomena of phase transformation and moving
crack tip singular fields, which will be dealt with in an
independent study. Therefore, the XFEM enriched displace-
ment approximation for a typical point x of the domain can be
written as

     

∑ ∑ϕ ϕ= + −( )u x x u x x x aH H( ) ( ) ( ) ( ) ( ) , (13)
i

i i

j
j j j

1 2

where u is the nodal displacement, a is the vector of enriched
nodal variables and ϕ is the shape function of the standard
finite element. The heaviside function xH ( ) for representing a
discontinuous field, such as displacements across a crack, can
be written as:

=
+ − >
− − <

x
x x n
x x n

H
*
*

( )
1, ( ). 0,

1, ( ). 0,
(14)

c

c

⎧⎨⎩
where x* is the projection of point x on Γc and nc is the
normal vector to Γc in the point x*. For further details
see [38].

The equilibrium and boundary conditions for the
mechanical problem are defined as

 σ Ω+ =f. 0, in , (15)b

σ Γ=n f. , on , (16)t
t t

Γ=u ū, on , (17)u

where nt is a unit normal vector on the boundary Γt and f b is
the body force. Since the problem is nonlinear, the Newton–
Raphson method is applied for solving the equilibrium
equation incrementally. Applying the XFEM discretization
procedure to the incremental form of equation (15) leads to

Δ = −K u f f , (18)h ext int

where uh is the displacement vector (including the standard
degrees of freedom (u) and enriched degrees of freedom (a ))
[38]

Figure 3. A typical cracked SMA.
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In equation (18), K is the global stiffness matrix, and f ext

and f int are the global external and internal force vectors,
respectively. All terms are obtained by the assembly of the
stiffness matrix and force vector of each element
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Figure 4. Selecting the nodes for enrichment with the heaviside function.

Figure 5. Subdividing the cracked elements into sub-triangles, and their associated integration points.

Figure 6. Calculating the direction of crack propagation.
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Figure 7. Details of the infinite SMA plate with a central crack, and the finite element mesh.

Table 1. Material properties of infinite SMA plate.
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Figure 8. Predictions of the von Mises stress in the horizontal
direction from the crack tip, for ε = 0.01,max σ = 200 MPatr and
σ =∞ 62.5 MPa.

Figure 9. Size of the phase transformation regions (a) r aA versus
ε ,max (b) r aM versus ε ,max (c) phase evolution contour in the
crack tip.

Figure 10. Prediction of the von Mises stress in the horizontal
direction from the crack tip for the two cases of slow and high
loading rates.

S H

Figure 11. Local stress–strain curve σ ε−( )yy yy in an integration

point in front of the crack tip for two cases of slow and high loading
rates.

Figure 12. Comparison between the sizes rA and rM of phase
transformation regions for two cases of slow and fast loading rates
with σ = 200 MPatr .
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where B is the matrix of shape function derivatives.

3.2. Solving the coupled heat equation

Assuming that the effective specific heat and the thermal
expansion coefficients have the same value for both phases (A
and M), the fully coupled heat equation of SMA is written as
[1]

α σ ρ π ρΔ ξ+ ̇ + − + ̇ = − ( )T cT s T q: . , (30)0

where q is the heat flux.

The essential and convective boundary conditions and
initial values associated with this heat equation are as follows:
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where ΓT and Γq are the boundaries where the temperature
(essential) and convective boundary conditions are
applied, respectively. nq is the normal vector to the boundary
Γq and t is the time. Assuming the heat conduction to
follow the Fourier’s law, = −q k T , the heat equation is
written as

 α σ ρ π ρΔ ξ+ ̇ + − + ̇ = ( )T cT s T k T: . ( ). (32)0

Applying the conventional finite element discretization
and assuming that the problem is solved in a semi transient
state, the heat equation can be written in the following
incremental form
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Δt is the time of each increment, n is the number of incre-
ments, F is the equivalent load vector, T is the temperature
vector, and matrices K ,k K ,h ξK , σK and M represent the heat
conduction, the heat convection, the latent heat due to mar-
tensitic volume fraction variations, the latent heat due to stress

Figure 13. Geometric details and the finite element mesh of the compact tension test.

Table 2. Material properties of SMA specimen.

EM ×8.22 10 Pa9 =C CA M × −10 10 Pa K6 1

EA ×56.5 10 Pa9 εmax 0.0048
ν ν=A M 0.33 k −18.3 W (m K) 1

Ms − °31 C hAir
−4 W (m K)2 1

Mf − °34 C σ( )crit superelastic 728 MPa

As − °8.5 C σ( )crit SME 400 MPa
Af °4 C

Table 3. Definition of the loading types.

Loading rates Description

Coupled— × + −2 10 mm s1 1 High loading rate
Coupled— × − −2 10 mm s1 1

—

Coupled— × − −2 10 mm s2 1
—

Coupled— × − −2 10 mm s3 1 Very slow loading rate (near
isothermal)

Uncoupled Isothermal
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variations and heat capacity, respectively
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4. Numerical issues

4.1. Selecting the enriched nodes

Figure 4 demonstrates the way different nodes are selected for
enrichment with the heaviside function. In order to ensure the
continuity of the displacement field between the tip element
(element A) and the element ahead of the crack tip (element
B), all the nodes of the split element are enriched by the
heaviside function except the common nodes of these two
elements.

4.2. Numerical integration

A 2× 2 Gauss–Legendre quadrature rule is employed for
numerical integration of the standard bilinear quadrilateral
elements. For elements containing a discontinuity, the stan-
dard integration rule cannot provide accurate results, and the
well-developed sub-triangle technique is adopted. Accord-
ingly, when an element contains a discontinuity and one or
some of its nodes are enriched with the heaviside function, the

element is subdivided into sub-triangles and a conventional
integration rule is then adopted in each triangle, as shown in
figure 5. For details, see [38].

4.3. Crack propagation

The crack analysis starts with an assumed initial crack and
then a crack propagation criterion is examined to determine
the stability of crack and its potential propagation direction.
Also, the crack is assumed to propagate as a finite straight line
inside the finite element at each stages of propagation. For
numerical implementation, a crack propagates when the
effective stress ahead of the crack tip reaches to the critical
stress σcrit.

For determining the direction in which the strong
discontinuity (crack) is extended, the method presented in
[39] is applied. Accordingly, the crack propagates in the
direction in which the effective stress σ′¯ (see equation (5)) is
maximum. By applying a weighted averaging of the effective
stresses at all the integration points in front of a crack tip,
the direction of crack propagation d̄ is estimated by (see
figure 6)

∑ σ′

=

d̄ =
d

d
H w V¯

, (36)
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i i i

i
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⎛
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where di is the vector in the direction of the integration point
i, n is the number of integration points, Vi is the volume
related to the integration point i and Hi

P is the tip-based
heaviside function
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d d

d d

d d

d d
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0
.

0,
(37)i

P

i t

i t

i t

i t

⎧
⎨
⎪⎪

⎩
⎪⎪

where dt is the vector tangential to the crack at its tip. The

Figure 14. Force–displacement curve for the isothermal condition and before the crack propagation.
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heaviside function Hi
P is included in the weighted averaging

(36) to ensure that only the Gauss points ahead of the crack
tip are included.

In equation (36), wi is a Gaussian weighting function
related to the ith integration point [39]

π
=

−
d

w
l

l

exp
2

(2 )
, (38)i

i
2

2

3 3 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where l is the length parameter which is considered 2–3 times
bigger than the average size of the elements ahead of the
crack tip.

5. Numerical simulations

5.1. A square plate with a central crack under mode I loading

In order to verify the proposed approach, a central crack
square plate with the crack length to the plate width ratio of

=a W 0.05, is simulated under the mode I loading condition
and the plane stress state. The initial ambient temperature is
equal to °25 C. First, this problem is simulated with a slow
loading rate (isothermal condition) and the results are com-
pared with the available analytical and numerical results [10].
Then, a simulation with high loading rate is carried out and
the results are compared with the ones obtained in the slow
loading rate. Considering the symmetry in geometry and
loading conditions, only half of the geometry is modeled with
appropriate boundary conditions. Finer elements are used
around the crack tip, to allow for better capturing of stress
concentration and better prediction of the nonlinear behavior
of the elements due to the phase transformation. Accordingly,

Figure 15. Temperature in crack tip elements (a) definition of
crack tip elements, (b) element 717, (c) element 716, (d)
element 715.

Figure 16. Effect of transformation strain on the temperature of crack
tip element (element 717).

Figure 17. Local strain–stress curve in the crack tip element for two
transformation strains of 0.0048 and 0.048 (element 717).
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about 4500 bilinear quadrilateral elements are used to dis-
cretize the domain, as shown in figure 7.

The basic material properties are listed in table 1. Based
on the assumptions of the reference [10], this problem is
simulated by assuming that σMs is equal to σ ,Mf called the

transformation stress σ tr σ σ σ= =( ).M M
tr

s f Using the linear
transformation surfaces in the constitutive model of Lagoudas
[1] and the transformation stress (σ ),tr the critical tempera-
tures of the phase transformation (A A M M, , and )f s s f can be
calculated. Therefore, for two transformation stresses
σ = 100 200 MPa,tr which are related to two different
materials, the values of A A M M, , andf s s f are listed in table 1.

Several simulations are performed by changing the thermo-
dynamics characteristics of the material, such as the trans-
formation stress (σ )tr and the maximum strain due to the
phase transformation (ε ),max to allow for a comprehensive
investigation of the phase transformation effects around the
crack tip.

Figure 8 presents a comparison between the results
of proposed extended finite element model and the
analytical and numerical (FE analysis) models by Maletta and
Furgiuele [10] in prediction of von Mises stress in the
horizontal direction from the crack tip. These results are
related to the case in which the remote tensile stress of the

.
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plate (σ∞) is 62.5 MPa and the loading rate is slow. Clearly,
the XFEM results in three regions of Α, →A M and Μ are
in a good agreement with the reference analytical and
finite element results. Also the number of elements in the
XFEM analysis (4500 elements) is decreased to half
compared to the reference FE analysis (9500 elements)
and unlike the FE analysis the crack is not geometrically
modeled.

Now, by changing the main thermo-mechanical char-
acteristics of the alloy, i.e. the transformation strain εmax and
transformation stress σ ,tr a series of simulations are carried
out. Figures 9(a) and (b) compare the size of the phase
transformation regions in terms of distances rA and rM

(schematically shown in figure 2), for the proposed extended
finite element model and the reference of analytical and finite
element models [10] under the remote tensile stress
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σ =∞ 62.5 MPa with a slow loading rate. Figures 9(a) and
(b) demonstrate that the obtained results have a good agree-
ment with the analytical and FEM results [10], while sub-
stantially reducing the number of elements from the reference
9500 to present 4500 elements. Figure 9(c) illustrates the
phase evolution contour in the crack tip for σ =∞ 62.5 MPa
and ε = 1%.max It is observed that in the region near to the
crack tip, the phase is martensite (M), and a little far from the
crack tip, the phase transformation ( →A M) occurs, while
further away from this region no phase transformation hap-
pens and the material remains in the austenite (A) phase.

Now, the effects of loading rate on the von Mises stress
around the crack tip and the size of phase transformation
regions are investigated. Figure 10 compares the von Mises
stress in the horizontal direction from the crack tip for the two
cases of slow and high loading rates. It is observed that in the
case of high loading rate, variations of the stress around the
crack tip do not remain constant (and equal to σ )tr in the
phase transformation region and show a decreasing trend. As
a result of the thermo-mechanical coupling, the stress depends
directly to the heat, meaning that it increases by the release of
heat. Since noticeable amount of heat is released in the case of
high loading rate, the stress is also increased in the phase
transformation region ( →A M) and the material shows a
hardening behavior (see figure 11), with a varying value for
the von Mises stress in the phase transformation region (see
figure 10).

Figure 12 illustrates a comparison between the sizes rA

and rM of the phase transformation regions for two cases of
slow and high loading rates with σ = 200 MPa.tr As can be
observed in the case of high loading rate, the sizes of rA and
rM are considerably decreased in comparison with the slow
loading rate. The reason for this phenomenon is that the phase
transformation in the case of slow loading rate is completed in
a lower level of strain compared with the case of high loading
rate (ε ε>H S in figure 11) and therefore rA and rM zones have
sufficient time for growth. Hence, the size of rA and rM

become smaller in the case of high loading rate.

5.2. Compact tension test with the thermo–mechanical
coupling effects

In this example, a compact-tension specimen with a notch is
numerically simulated. Geometry and dimensions of the
experimental model [40] are presented in figure 13(a). A finite

element mesh with bilinear quadrilateral elements is used to
discretize the domain, as shown in figure 13(b). In this test, an
initial crack with =a W 0.504 is assumed in the problem and
the force P is inserted in two opposite directions in the points
B1 and B2 (see figure 13(a)). This geometry and loading lead
to crack propagation in mode I. The specimen has the
thickness of 8 mm and it is analyzed in the plane stress state.
The initial ambient temperature is equal to °14 C. The other
required characteristics are presented in table 2.

First, the problem is analyzed under the isothermal
condition and the obtained results are compared with the
experimental ones. Then, in order to observe the thermal
concentration in the crack tip, the problem is simulated with
different loading rates, which are presented in table 3.

5.2.1. Stationary crack. In this section, it is assumed that no
crack propagation occurs in the domain. First, the problem is
verified for isothermal conditions and then the effect of
different loading rates on material behavior is examined.
Figure 14 presents the force–displacement P–U curve for the
isothermal condition and before the crack propagation in the
domain. U represents the relative vertical displacement of
points A1 and A .2 It can be observed that the numerical and
reference experimental results [40] are in a good agreement.
Also, it can be seen that the material behavior is linear elastic
at the start of loading and by increasing the load, the phase
transformation occurs around the crack tip.

Evaluation of the temperature variations in the crack tip
elements for different loading rates. Figure 15 depicts the
effect of loading rate on temperature of three elements in front
of the crack tip. It is observed that as the loading rate is
decreased, the temperature in crack tip elements is decreased
to the ambient temperature ( °14 C —isothermal condition).
Three parts are observable in all curves of figure 15. The first
part (part A) is related to the linear elastic behavior where the
temperature of all elements is equal to the ambient
temperature for all loading rates (heat is not released yet).

In the second part (part B), the temperature in the crack
tip elements is increased by the time of loading. In this region,
the phase transformation is started and the heat is also
released. At the end of this part, the forward phase
transformation process is completed.

The third part (part C) is related to the case in which the
forward phase transformation is completed and the heat
transfer phenomenon may lead to increase or decrease of
temperature, with no predictable trend for the temperature in
this part.

In figure 15, it is observed that the temperature of the
crack tip elements can only be increased up to °2.5 C in the
highest loading rate, which is in agreement with recent
infrared thermography measurements [41]. Furthermore, if
this problem is solved with a larger transformation strain, the
temperature of the crack tip element is remarkably increased.
In figure 16, the effect of transformation strain on behavior of
the crack tip element is demonstrated. Now, by considering
ε = 0.048,max the temperature of the crack tip element

Figure 20. Force–displacement curve for the isothermal case.
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becomes remarkably higher than the case of ε = 0.0048.max

The local strain–stress curve in the crack tip element (element
717) is depicted in figure 17, which shows that for the case of
ε = 0.048,max the length of the phase transformation part is
larger than the case of ε = 0.0048;max meaning that the

material has more time for phase transformation. In addition,
considering that the heat is only released in the phase
transformation part, thus the temperature of the crack tip
element in this case becomes higher than the case of
ε = 0.0048max .
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Phase evolution and temperature distribution contours in the
case of high loading rate 2� 10+1 mm s−1

� �
. In figure 18,

the phase evolution contour and temperature distribution in
the crack tip are depicted for different stages of loading. It can
be observed that by starting the phase transformation in the

crack tip, the heat is released and therefore the temperature in
the crack tip is increased. Also, with the growth of phase
transformation zone, the temperature changes in a larger zone.
These results are obtained for the loading rate of

+ −×2 10 mm s1 1 and the transformation strain of 0.0048.

Evaluation of temperature distribution contours for slow and
high loading rates 2� 10−2 mm s−1; 2� 10+1 mm s−1

� �
.

Figure 19 illustrates the temperature distribution contours
for slow and high loading rates in different stages of loading.
These results are obtained for the transformation strain of
0.0048. Clearly, for a slow loading rate, the temperature
distribution occurs in a larger zone (the radius of temperature
circles are bigger around the crack tip). The reason can be
attributed to the fact that the material has more time for heat
transfer to the surrounding parts.

5.2.2. Crack propagation. In this section, the experimental
test presented in [40] is analyzed under the isothermal
condition. Figure 20 demonstrates the force–displacement
curves for present numerical results and the reference
experimental data [40]. The experiments in reference [40]
were carried out under the force-control conditions, which
was not capable of measuring the softening part of the curve.
Therefore, the reference results [40] are only available up to
the peak of loading capacity (before crack propagation).
Clearly, in the present XFEM analysis, the force–
displacement response can be obtained even for the crack
propagation part where the loading capacity of structure is
decreased.

Figure 23. Geometric details of the cracked plate with holes.

Table 4. Material properties of the SMA plate with holes.

EA ×52 10 Pa9 =C CA M × −10 10 Pa K6 1

EM ×52 10 Pa9 εmax 0.032
ν ν=A M 0.33 k −18.3 W (mK) 1

Ms − °11 C hAir
−4 W (m K)2 1

Mf − °11.1 C σ( )crit super elastic 600 MPa

As °3 C σ( )crit SME 300 MPa
Af °5.5 C

Figure 24. Crack tracks obtained from two cases of ambient
temperature ( = °T 2,22 C).
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Figure 25. Phase evolution contours for two cases of ambient temperature (a) >T Af (super elastic behavior), (b) <T As (SME behavior).
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The phase evolution and shape deformation contours in
different stages of loading are depicted in figure 21. By
increasing the loading steps, the phase transformation region
in the crack tip is grown. Then, crack propagates in the mode
I according to the criterion for crack propagation. Also, it can
be observed that the phase evolution is always concentrated in
the crack tip, and the reverse phase transformation occurs on
crack surface (the martensitic phase transforms to the
austenitic phase).

5.2.3. Effect of the ambient temperature on SMA behavior.
Assuming an isothermal condition, the effect of ambient
temperature (T) on SMA behavior is investigated in this
section. Considering the Lagoudas model for SMA [1], if the
ambient temperature is less than A ,s the forward phase
transformation occurs in loading and the reverse phase
transformation does not occur in unloading, so the material
is elastically unloaded similar to a plastic material (SME). The
reason for this phenomenon is that the austenitic phase is not
a stable phase in this temperature. Therefore, if >T Af (see
figure 1), the material has the super elastic behavior while for

<T A ,s the behavior is SME and there will be residual strains
after unloading. In this example, As is equal to − °8.5 C, and
in order to have the super elastic behavior, the ambient
temperature is considered °14 C (the ambient temperature in
previous sections of this example was °14 C ). While the SME
behavior is activated by the ambient temperature of − °15 C.
These two cases ( >T Af and <T A )s are compared in this
section.

In figure 22, phase evolution contours for two cases of
material behavior in the different stages of loading are
depicted. It can be observed that if the material has the super
elastic behavior, the phase evolution is concentrated around
the propagating crack tip and the reverse phase transformation
occurs on crack surfaces. On the other hand, if the material
has the SME behavior, the reverse phase transformation does
not occur on crack surfaces and there will be residual strains
after unloading.

5.3. Crack propagation in a plate with holes

In this example, a plate with three holes is numerically
simulated. Geometry and dimensions of the model are pre-
sented in figure 23(a). The original numerical and experi-
mental test of this problem was performed on aluminum in
[42], and it is now changed to SMA to discuss the proposed
approach for dealing with the complex case of mixed mode
crack propagation. An initial crack with =a 10 mm is
assumed which is located slightly above the center of plate. In
order to prevent rigid body motions, the displacement is fixed
in the bottom hole in the x and y directions; and the y-dis-
placement loading is imposed on the top hole. A finite ele-
ment mesh with bilinear quadrilateral elements is used to
discretize the domain, as shown in figure 23(b). Two values
are considered for the initial ambient temperature
( = ° <T A( 2 C) s and = ° >T A( 22 C) ).f It will be observed
that for = ° >T A( 22 C) f and = ° <T A( 2 C) ,s the behaviors

become super elastic and SME, respectively. The required
material properties are presented in table 4.

Figure 24 illustrates the crack paths obtained from two
cases of ambient temperature ( = °T 2, 22 C ). It is observed
that the crack paths are identical at the beginning of crack
propagation, and they become different when the crack tip
locates close to the hole. The reason of this difference is that
the material behavior in the crack tip is not the same for two
cases of temperature. In figure 25, phase evolution contours
for two cases of ambient temperature in the different stages of
loading are depicted. It can be observed that for >T Af (super
elastic behavior), the reverse phase transformation occurs on
crack surfaces in different stages of loading, while for <T As

(SME behavior), the reverse phase transformation does not
occur on crack surfaces.

6. Conclusion

Fracture of SMAs has been analyzed by using XFEM and
considering the coupling effects. The heaviside enrichment
function has been employed for modeling of the dis-
continuities in the finite element mesh, and any crack pro-
pagation problem can be modeled without remeshing. It has
been illustrated that the stress field, temperature and size of
the phase transformation regions in the crack tip have strong
dependency to the loading rate. As a result, considering the
effects of thermo-mechanical coupling is very important in
fracture analysis of SMAs. Also, it has been observed that if
the material has the super elastic behavior, the phase evolu-
tion and von Mises strain are concentrated around the pro-
pagating crack tip and the reverse phase transformation
occurs on crack surfaces. On the other hand, if the material
has the SME behavior, the reverse phase transformation does
not occur on crack surfaces and residual strains remain after
unloading. Finally, in order to demonstrate the capabilities of
the proposed method in more complicated SMA problems, a
mixed mode crack propagation problem has been simulated
and comprehensively discussed.
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