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The problem of an interface crack between two orthotropic layers under dynamic loading is analyzed.
Special crack tip enrichment functions are incorporated into the standard finite element shape functions
to exactly reproduce oscillatory stress and displacement fields near the tip of the interface crack.
Moreover, kinematics of displacement and its gradients across the crack face and material interface
are also modeled by partition of unity enrichments. Special attention is given to extraction of stress inten-
sity factors by utilizing a proper form of the interaction integral for orthotropic bi-materials. Advantages
of this method of extracting stress intensity factors over the conventional displacement extrapolation
technique are discussed. Several bi-material configurations with both vanishing and non-vanishing oscil-
latory indexes are solved using the interaction integral and the results are compared with the available
data in the literature. Effects of employing oscillatory crack tip enrichments and validation of the path-
independent J-integral are also discussed.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Combination of individual constituents to utilize the advan-
tages of each material has made composite materials ubiquitous
in different branches of engineering, from aerospace and automo-
tive structures to electronic packages. Nonetheless, the inherent
weakness associated with the interface joining each material might
limit the use of composites, particularly in extreme loading condi-
tions. In the engineering community, interface cracks have been
considered as one of the main sources of failure in composite
materials, making an accurate analysis of these particular defects
necessary. As many applications of composite materials include
time-dependent and impact loadings, the current study is focused
on analysis of interface cracks under dynamic loadings.

In case of fiber reinforced composite materials, the interface
crack is located between layers that are not isotropic, causing a
complex stress and displacement field near the tip of an interface
crack. Since arbitrary loadings and geometries encountered in a
practical engineering problem inhibit the use of analytical meth-
ods, numerical techniques must be employed to tackle these prob-
lems. A numerical technique widely used in the literature to
analyze problems with singularity and discontinuities is the
boundary element method (BEM), which makes use of fundamental
solutions to accurately simulate complex problems. However,
since the fundamental solution for general layered anisotropic
media does not exists, Refs. [1–5] utilized the solution of homoge-
neous anisotropic media in a multi-domain BEM framework to
analyze interface cracks under static loading condition. In addition
to BEM mentioned above, another numerical technique for numer-
ical analysis of fracture problems is the meshfree method (Refs.
[6,7]).

For the cases of dynamic loading, the situation becomes more
complicated and only a limited number of investigations can be
found [8,9], which suffer from poor stability in the time domain,
as mentioned in Ref. [10]. A more stable algorithm was presented
by Lei et al. [10], but this work neglected the oscillatory crack tip
fields near interface cracks. Song et al. [11] made an improvement
and utilized the scaled boundary finite element method to repro-
duce the mentioned oscillatory fields. It should be also noted that
nearly all mentioned BEM-based works utilize the conventional
displacement extrapolation technique to extract stress intensity
factors, which further requires accurate simulation of crack tip
fields. In the case of interface cracks, however, obtaining accurate
crack tip displacements is cumbersome, if not impossible. Also,
Domain discretization in scaled boundary elements also requires
especial care (Refs. [12,13]).

Finite elementmethod (FEM), on the other hand, can readily deal
with arbitrary geometries, and many unconditionally stable time
integration algorithms do exist for analysis of dynamic problems.
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Fig. 1. An interface crack in a layered orthotropic material subjected to dynamic
loading.
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It is also well suited for post-processing evaluation of J-integral, by
which the stress intensity factors can be easily obtained. Neverthe-
less,while the standardfinite elementmethodproved to be success-
ful in common fracture mechanics simulations, the fundamental
complications associated with oscillatory stress and displacement
fields near the tip of an interface crack, especially in the case of lay-
ered orthotropic media, result in its low performance and accuracy.
Recently, an algorithmcalled ‘‘the edge rotation algorithm”waspro-
posed for fracture analysis based on FEM. In this simple algorithm,
an alternative method to the methods based on enrichment tech-
niques was proposed (Refs. [14,15]).

A remedy is the extended finite element method (XFEM)
[16,17], by which the exact crack tip fields can be precisely simu-
lated. Preserving all advantages of FEM over BEM, the XFEM formu-
lation presented here reproduces the exact oscillatory crack tip
fields. It also represents the kinematics of strong and weak discon-
tinuity easily. XFEM has been successfully used for static and
dynamic fracture analysis of homogeneous orthotropic materials
[18–25], and static fracture analysis of isotropic and orthotropic
bi-materials [26–28]. As many applications of composite materials
include time-dependent and impact loadings, the current study is
focused on analysis of interface cracks under dynamic loadings.
Therefore, an existing XFEM methodology [27] is further extended
to dynamic analysis of interface cracks in orthotropic bi-materials,
with particular attention to the effects of oscillatory fields and the
interaction integral. Also, it should be noted that prior to the pre-
sent methods, FEM and BEM solutions developed for analysis of
interface cracks under dynamic loadings without the need for
any exact solution for distribution of stress and displacement fields
around a crack tip. In the current study, however, the exact analyt-
ical distribution of displacement and stress fields are introduced
for the first time in the dynamic analysis of interface crack and
the differences between the proposed method and other numerical
methods are demonstrated.

The organization of this work is as follows: First, a description
of basics of the considered problem and essential backgrounds of
interface fracture mechanics under the assumption of linear elastic
fracture mechanic (LEFM) are provided. The next section explains
how strong and weak discontinuities and oscillatory crack tip fields
are modeled in the context of XFEM. Then, a brief review of the dis-
cretized equations and numerical evaluation of crack tip parame-
ters are presented, followed by several numerical simulations to
study the effects of employed crack tip enrichments and the inter-
action integral method. The paper is closed with the concluding
remarks.

2. Problem statement

As illustrated in Fig. 1, the elastodynamic problem of a layered
orthotropic body containing an interface crack is considered in this
study:

DivðrÞ þ f ¼ q€u ð1Þ
with the following boundary conditions

uðx; tÞ ¼ �uðx; tÞ on Cu ð2Þ

r � n ¼ t on Ct ð3Þ
and the initial conditions

uðx;0Þ ¼ u0 ð4Þ

_uðx;0Þ ¼ _u0 ð5Þ
The Hook’s law in plane stress conditions for both linear elastic
orthotropic materials are [29]
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In plane strain conditions, the following replacement should be
done:

aij ! aij � ai3 � a3i

a33
i; j ¼ 1;2;6 ð7Þ

The differential equation including equilibrium, orthotropic consti-
tutive law, and compatibility equation has a characteristic equation
of the form [30]

t4 þ 2B12t2 þ K66 ¼ 0 ð8Þ
with

B12 ¼ 2a12 þ a66
2a11

and K66 ¼ a22
a11

ð9Þ

Most of the orthotropic materials, including all simulated problems,
have properties that ensure

ffiffiffiffiffiffiffiffi
K66

p
< B12, resulting in purely imagi-

nary roots of Eq. (8), in the form of

t1 ¼ ip; t2 ¼ iq if
ffiffiffiffiffiffiffiffi
K66

p
< B12 ð10Þ

with

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
12 � K66

qr
; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B12 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
12 � K66

qr
ð11Þ

For further information and discussion on various types of compos-
ites, see Ref. [27].

3. Interface crack mechanics

Consider an interface crack located between two orthotropic
layers. The definition of stress intensity factors for interface cracks,
proposed by Cho et al. [2], is adopted. Based on this definition, the
singular stress at a distance r ahead of the crack tip can be written
as

½ sxy ryy �r;h¼0 ¼ 1ffiffiffiffiffiffiffiffiffi
2pr

p Re KW
r
L

� �ie� �
ð12Þ



202 A. Afshar et al. / Composite Structures 142 (2016) 200–214
where K ¼ K1 þ iK2 is the complex stress intensity factor, W is a
material property vector defined later, L is the characteristic length
of the interface crack, and e is the oscillatory index. It should be
noted that due to the coupling of shear and tensile behaviors near
the tip of interface cracks with e–0, K1 and K2 cannot be rigorously
interpreted as the conventional mode-I and mode-II stress intensity
factors [31]. The choice of characteristic length is somehow arbi-
trary, and the half crack length, adopted by [11], is chosen in this
work. The oscillatory index e is defined as

e ¼ 1
2p

ln
1� b
1� b

� �
ð13Þ

where b is the Dundur’s parameter [32]:

b ¼ �H12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22

p ð14Þ

where Hij are the components of the Hermitian matrix H for
bi-materials:

H ¼
kI22
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with

kaij ¼
Caij
Ca66

; ua ¼
ffiffiffiffiffiffiffi
ka11
ka22

s
; a ¼ I ðlower materialÞ

II ðupper materialÞ

	
ð16Þ

sa ¼ 1þ ka11k
a
22 � 1þ ka12
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Ra ¼ ðka22Þ
2ua �
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ð18Þ

where Caij are the elements of the elasticity matrix of material a
(inverse of the compliance matrix in Eq. (6)), and W in Eq. (12) is
a complex vector for orthotropic bi-materials [11]:

W ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22�H2

12

p
H22

h i
ð19Þ

Finally, the energy release rate and phase angle can be related to K
using the following equations [32]

G ¼ H22jKj2
4cosh2ðpeÞ

ð20Þ
Fig. 2. Adopted strategy for selecting en
w ¼ Arctan
sxy
gryy

� �
r¼L
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Im½KLie�
Re½KLie�

 !
ð21Þ

where g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H22=H11

p
is the traction resolution factor.

4. Displacement approximation in XFEM formulation

In XFEM, the displacement field is enriched by special functions
in order to accurately reproduce the analytical asymptotic fields
near the crack tips, and to provide the appropriate discontinuity
in the domain of finite element approximation. In the case of inter-
face cracks, the displacement field is approximated by

uðxÞ ¼
X
n2N

ud
ndn þ

X
i2Mcrack

ua
i ai þ

X
j2Mtip

ub
j bj þ

X
k2Minterface

uc
kck

¼
X
n2N

NnðxÞdn þ
X

i2Mcrack

NiðxÞHðxÞai

þ
X
j2Mtip

NjðxÞ
X
t

bjFtðxÞ
 !

þ
X

k2Minterface

NkðxÞvkðxÞck ð22Þ

where N, Mcrack, Mtip, and Minterface denote the set of conventional,
crack face, crack tip, and interface nodes, respectively (Fig. 2).
ud

n;ua
i ;ub

j ;uc
k are also standard, strong discontinuity, crack tip sin-

gularity, and weak discontinuity shape functions. Accordingly, ai,
bj, and ck are the vectors of additional degrees of freedom for crack
face, crack tip, and interface nodes. HðxÞ is the Heaviside function,
used for modeling crack face strong discontinuity (illustrated in
Fig. 3):

HðxÞ ¼ þ1 points above the crack
�1 points below the crack

	
ð23Þ

FtðxÞðt ¼ 1� 8Þ are the eight tip enrichment functions, derived from
the asymptotic fields of an interface crack between two orthotropic
materials, incorporated into the finite element displacement field in
order to exactly reproduce the complex oscillatory behavior around
the crack tip [27]:

Fðr; hÞ ¼

e�ehl cosðelnðrlÞ þ hl
2Þ

ffiffiffiffi
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p
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riched nodes of an interface crack.



Fig. 3. Definition of the signed distance functions for strong and weak discontinuity
enrichments.
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rj ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ z2j sin

2 h
q

; hj ¼ arctanðzj tan hÞ
j ¼ l; s; zl ¼ p; zs ¼ q

ð25Þ

where p and q are defined in Eq. (11). r and h are polar coordinates
measured from the crack tip, as illustrated in Fig. 1.

Returning to Eq. (22), vk is the weak discontinuity enrichment
function, used to provide the discontinuity in the strain field in a
non-conformal mesh, i.e. the mesh in which the element edges
are not conformed to the material interface:

vk ¼ min kx� xnk � signðen:ðx� xnÞÞ ð26Þ
where x; xg; and en are defined in Fig. 3. More details about weak
discontinuity are available in Ref. [33].

5. Discretized equilibrium equation and time integration

The discretized weak form of the dynamic equilibrium equation
(Eq. (1)) at time n is

M€un þ Cd _un þ Kun ¼ fn ð27Þ
where M;Cd; and K are the mass, damping, and stiffness matrices,
respectively, and f is the force vector. €u; _u; and u are the XFEM
acceleration, velocity and displacement vectors, respectively:

u ¼ fd a b c gT ð28Þ
where d is the standard vector of nodal displacements, and a, b, and
c are vectors of additional displacements corresponding to oscilla-
tory crack tip enrichments, crack face strong discontinuity and
material interface, respectively. The elements of K and M matrices
and f vector are

Krs
ij ¼

Z
Xe

ðBr
i ÞTCðBs

j ÞdX ðr; s ¼ d; a; b; cÞ ð29Þ

Mrs
ij ¼

Z
Xe
qður

i Þðus
j ÞdX ðr; s ¼ d; a; b; cÞ ð30Þ

fri ¼
Z
@X\@X

ður
i Þ�tdC ðr ¼ d; a; b; cÞ ð31Þ
where �t is the applied traction and ur represents the XFEM shape
functions (see Eq. (22)). B is the matrix of shape functions
derivatives:

Br
i ¼

@ur

@xi
0

0 @ur

@yi
@ur

@yi
@ur

@xi

2
6664

3
7775 ðr; s ¼ d; a; b; cÞ ð32Þ

Detailed evaluations of these terms within the context of XFEM are
available in Ref. [22–24,34]. As depicted in Fig. 4. For the integration
of Eq. (29), the sub-domain technique [27] is utilized to partition
the three types of enriched elements into sub-triangles. For each
sub-triangle in the split and interface elements, 3 Gauss points
are utilized. For sub-triangle in the tip element, 7 Gauss points
are used.

The classical Rayleigh damping is assumed here

Cd ¼ ckKþ cmM ð33Þ
and the unconditionally stable Newmark scheme [35] is utilized for
the time integration of Eq. (27).

6. Evaluation of stress intensity factors

The interaction integral method is utilized in this study to eval-
uate stress intensity factors, based on the auxiliary stress and dis-
placement fields of an interface crack between two orthotropic
solids. Since a region far from the crack tip can be selected as the
domain of the integral, solutions based on domain integrals are
known to be very accurate. Beginning with the definition of the
dynamic J-integral [32]

J ¼
Z
C
½ðW þ TÞn1 � r � @u

@x1

� �
� n�dC ð34Þ

where C and n are the contour enclosing the crack tip and the unit
normal of integration path, respectively. W and T are the strain and
kinetic energies of the domain within the integration path. For the
finite element implementation, Eq. (34) is transformed into

J ¼
Z
A

r � @u
@x1

� �
@q
@x

� ðW þ TÞ @q
@x1

þ q
@2u
@t2

@u
@x1

� @u
@t

@2u
@x1@t

 !
q

" #
dA

ð35Þ
where A is the area inside C. q is an arbitrary function chosen to be
unity at the crack tip and zero on C. The adopted choice of
q-function is of the typical form depicted in Fig. 5. Having defined
the J-integral, the interaction integral I can be derived from Eq.
(35) in the following manner [32]

I ¼
Z
C

r : eaux þ q
@u
@t

@uaux

@t

� �
n1 � r � @u

aux

@x1
þ raux � @u

@x1

� �
� n

� �
dC

ð36Þ
For auxiliary terms, the stress and displacement fields of an inter-
face crack are adopted from Ref. [36]. These fields are reported in
the appendix of the Esna Ashari and Mohammadi [27]. Numerical
evaluation of Eq. (36) for a stationary crack can also be carried
out with the help of q-function

I¼
Z
A

r �@u
aux

@x1
þraux � @u

@x1

� �
@q
@x

�r :eaux
@q
@x1

þq
@2u
@t2

�@u
aux

@x1
q

" #
dA

ð37Þ
The finite element mesh is adopted to evaluate Eq. (37) using 4� 4
gauss quadrature for ordinary elements and the sub-domain tech-
nique [27] for enriched ones (Fig. 4). Mixed mode stress intensity
factors can then be calculated from



Fig. 4. Partitioning of enriched elements for numerical integration.

Fig. 5. Typical form of q function for numerical evaluation of the interaction
integral.

(a)

Fig. 6. (a) Geometry and boundary condition of the specimen (all dimensions in mm
discontinuity enrichments.
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I ¼ H22

2cosh2ðpeÞ
K1K

aux
1 þ K2K

aux
2


 � ð38Þ

through the use of two auxiliary fields

I ¼ H22

2cosh2ðpeÞK1ðKaux
1 ¼ 1; Kaux

2 ¼ 0Þ
I ¼ H22

2cosh2ðpeÞK2ðKaux
1 ¼ 0; Kaux

2 ¼ 1Þ

8<
: ð39Þ
7. Numerical simulations

7.1. Interface cracks with vanishing oscillatory index

This section is devoted to analysis of stationary interface cracks
with a zero oscillatory index. All layers of the multi-layered mate-
rial are considered to have the same orthotropic material proper-
ties, but with a 90� rotation for material axes (with respect to
global coordinates in Fig. 1).
(b)

); (b) XFEM mesh around the crack to reproduce singularity, strong and weak
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7.1.1. A center interface crack in a four-layer composite
In this example, the problem of an interface crack in an ortho-

tropic solid with four layers is analyzed. Geometry and boundary
conditions (Fig. 6a) are similar to Ref. [37]. The material has the fol-
lowing elasticity matrix in its principal material axis
Fig. 7. Error introduced into the results by disregarding the weak-discontinuity
enrichments.

Fig. 8. Geometry and boundary condition of the six-layer specimen. All dimensions
are in mm.

Fig. 9. Comparison of complex SIF
C ¼
155:43 3:72 0

16:34 0
sym 7:48

2
64

3
75 ðGPaÞ ð40Þ
s for the six-layer specimen.

Fig. 10. Error introduced into the results without the weak-discontinuity
enrichments.

Fig. 11. Configuration of the problem.



Table 1
Geometry and the material properties for case I.

Geometry Material 1 Material 2

W (mm) h (mm a (mm) C11 (GPa) C12 (GPa) C22 (GPa) C33 (GPa) q (kg/m3) C11 (GPa) C12 (GPa) C22 (GPa) C33 (GPa) q (kg/m3)

10 20 2.4 122.77 3.88 16.34 6.94 1600 65.41 4.29 16.34 5.58 1600

Table 2
Geometry and the material properties for case II.

Geometry Material 1 Material 2

W ðmmÞ h ðmmÞ a ðmmÞ C11 ðMPaÞ C12 ðMPaÞ C22 ðMPaÞ C33 ðMPaÞ q ðkg=m3Þ C11 ðMPaÞ C12 ðMPaÞ C22 ðMPaÞ C33 ðMPaÞ q ðkg=m3Þ
5 10 2 104.71 15.71 52.35 10 1 104.71 14.06 46.90 9.53 1

Fig. 12. Comparison of SIFs for the bi-material configuration.

Fig. 13. Effect of different enrichment strategies.
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Each layer will have 0� or 90� rotation with respect to the global
geometric coordinates (hmaterial 1 ¼ 0� and hmaterial 2 ¼ 90�). The mass
densities of two materials are also identical

q1 ¼ q2 ¼ 1600 ðkg=m3Þ ð41Þ
The problem is solved using the uniform mesh of 40� 20 elements
(shown in Fig. 6b), 0:22 ls time-step and the J-integral domain of
2 mm. Comparison of the SIFs (normalized by P

ffiffiffiffi
p

p
a) obtained from

the J-integral and displacement extrapolation technique is depicted
in Fig. 7, which shows very good agreement.

Special elements must be employed in the context of XFEM
(non-conformal mesh) to provide weak discontinuity across mate-
rial interfaces. Since in a dynamic analysis, a small error in the
early steps of analysis accumulates and may become significant
in later steps, weak discontinuity enrichment should not be disre-
garded in analysis of cracked layered media using XFEM. To show
the significance of this enrichment, the current problem is also
solved with similar conditions, except for the weak discontinuity
enrichment to be neglected. Obtained normalized results, as
depicted in Fig. 7, show an increasing difference with the reference
values with time, proving the importance of using weak-
discontinuity enrichments in a dynamic analysis with non-
conformal meshes.

7.1.2. An edge interface crack in a six-layer composite
The previous example is now extended to the mixed-mode edge

crack in a six-layer orthotropic solid, as depicted in Fig. 8. The
material properties are the same as the previous example. This
example was examined in Ref. [37] with the displacement extrap-
olation technique. The dynamic finite element analysis is per-
formed by a 30� 60 uniform mesh, 0:2 ls time step, plane strain
condition and domain integral radius of 1:2 mm.

Normalized stress intensity factors (normalized by P
ffiffiffiffiffiffi
pa

p
) are

presented and compared with Ref. [37] in Fig. 9. While good agree-
ment is observed for the real part of the SIF, the imaginary part of
the obtained SIF slightly differs from the reported results. This
deviation may be attributed to the inherent inaccuracy of the dis-
placement extrapolation technique in obtaining the SIF directly
from the crack tip fields.

In order to further study the effects of interface enrichments in
XFEM, the same problem is solved without using the weak discon-
tinuity enrichment and the results are presented in Fig. 10. This
Figure again shows how the use of weak discontinuity enrichment
in a non-conformal mesh improves the results.

7.2. Interface cracks with non-vanishing oscillatory index

A large number of bi-materials used in the industry have a non-
zero oscillatory index. Therefore, the rest of examples are devoted
to the analysis of bi-materials with non-vanishing oscillatory
index. Additionally, in order to further demonstrate the robustness
of the approach for bi-materials with relatively large values of
oscillatory indices, two mixed mode configurations, subjected to
impact loading, are also studied.

7.2.1. A center interface crack in an orthotropic bi-material
First, a center interface crack in an orthotropic bi-material is

considered, as shown in Fig. 11. Upper and lower layers are loaded
with a tensile traction. This example has been analyzed in the lit-
erature with two different geometry and material properties, using
the time-domain boundary element and the displacement extrap-
olation technique. Geometry and material properties for two cases



(a) (b)
Fig. 14. (a) The predicted complex SIF for five mesh sizes; (b) error of K1 (Error ¼ ðK1 � K1ðfinest meshÞÞ=K1ðfinest meshÞ) versus the mesh sizes.

(a) (b)
Fig. 15. (a) The predicted complex SIF for four time steps; (b) error of K1 (Error ¼ ðK1 � K1ðsmallest time stepÞÞ=K1ðsmallest time stepÞ) versus the time steps.

(a) (b)
Fig. 16. (a) Effect of different crack tip enrichments on reproducing stress singularity; (b) stress distribution near the crack tip for four different meshes in case of oscillatory
crack tip enrichments.
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Fig. 17. Comparison of SIFs for the bi-material configuration.

Fig. 18. The predicted complex SIF for four J-integration radii.

Fig. 19. Geometry and boundary conditi

Table 3
Geometry and the material properties.

Geometry

W ðmmÞ C ðmmÞ D ðmmÞ L ðmmÞ

100 1:27W 0:63W 600
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are presented in Tables 1 and 2. In this example, all the results
related to the SIF are normalized by P

ffiffiffiffiffiffi
pa

p
.

The corresponding oscillatory indices for two cases are
e ¼ 0:0137 and e ¼ 0:002, respectively. The first case was analyzed
by [10,11] with the time-domain boundary and the scaled
boundary-finite element method. Although both works [10,11]
used the displacement extrapolation technique to obtain complex
stress intensity factors, Ref. [10] failed to incorporate the oscilla-
tory field into the formulation. Ref. [11], however, managed to do
so by expressing the oscillatory behavior of the stress field in the
radial direction analytically. The difference between these two
approaches is examined here by solving the same problem with
XFEM, which incorporates the asymptotic functions of the crack
tip in its approximation.

Half of the geometry is modeled by 60� 240 elements, 0:2 ls
time step, plane stress condition, and using a domain integral of
1 mm. The predicted complex SIF, which is extracted from the
interaction integral, is compared with the reference results in
Fig. 12. It is evident that the results of reference [11] agree well
with the results obtained in the present study. It shows that in
bi-materials with non-vanishing oscillatory index (even with small
values of e, as in the present case), neglecting the oscillatory nature
of the field variables could result in inaccurate results (such as
[10]), especially for the displacement extrapolation technique in
which SIF is determined from values near the crack tip. Moreover,
since this specimen is loaded in pure tension and the principal
orthotropic axes are parallel to the crack, a pure mode-I fracture
is expected. Although the real and imaginary parts of the complex
SIF do not have the notion of mode-I and mode-II fracture in inter-
face cracks, due to the small value of e, it would be reasonable to
expect a very small value for k2. However, results obtained by
Ref. [10] introduced non-zero spurious small k2, mainly caused
by the inherent inaccuracy of the displacement extrapolation tech-
nique and neglecting the oscillatory nature of near crack tip fields.

To further demonstrate the effects of tip enrichments, the prob-
lem is solved in three different cases: no tip enrichment function,
on of the specimen. (negative S=W).

Material 1 Material 2

E1 ðGPaÞ t1 E2 ðGPaÞ t2

3.33 0.35 80 0.3



Fig. 20. Comparison of SIF values for verification of the static case.

Table 4
Material properties and impact loading.

PSM-1 Scotch ply 1002

E ðGPaÞ G ðGPaÞ q ðkg=m3Þ E11 ðGPaÞ E22 ðGPaÞ

2.5 0.91 1200 39.3 9.7

Fig. 21. Time histories of energy
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enriching element containing the crack tip, and enriching all ele-
ments near the crack tip (9 elements). A small J-domain of 5 mm
is chosen for all three cases and the results are presented in
Fig. 13. It should be noted that choosing a larger domain of J-
integral, mitigates the sensitivity of the results to the choice of
enrichment strategy; however, it also increases computational
effort dramatically. As illustrated in Fig. 13, while enriching more
than one element does not alter the results, neglecting the crack
tip enrichment functions substantially decreases the accuracy.
Therefore, if one wants to choose a small domain of J-integral to
save the computational effort throughout a dynamic analysis,
enriching only the tip element seems the best strategy.

To demonstrate the mesh independency, this problem is further
extended using different meshes (10� 40, 20� 80, 60� 240 as the
reference mesh, 85� 320 and 100� 400 elements). Fig. 14a shows
the predicted complex SIF for different meshes. It is observed that
the solution is not sensitive to the FE mesh sizes. Also, to examine
the convergence of the solution in space, the error of K1
Impact loading

G12 ðGPaÞ t12 q ðkg=m3Þ P ðKN=mÞ

3.1 0.25 1860 1

release rate and phase angle.
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(Error ¼ ðK1 � K1ðfinest meshÞÞ=K1ðfinest meshÞ) versus different mesh
sizes for times 10:4 ls and 13:6 ls is shown in Fig. 14b. It is
expectedly observed that K1 converges to the finest mesh as the
mesh becomes finer.

To investigate the convergence of the solution in time, the pre-
dicted complex SIF is shown in Fig. 15a for four time steps
(0:8 ls, 0:2 ls, 0:1 ls and 0:05 ls). It is observed that the result
Fig. 22. Effects of oscillatory tip enrichm
related to the largest time step is very different from other results
and the results almost coincide as the time step is reduced.
Fig. 15b illustrates the error of K1 (Error ¼ ðK1 � K1ðsmallest time stepÞÞ=
K1ðsmallest time stepÞ) versus the time steps for times 12 ls and 16 ls. It
can be seen that K1 converges to the solution for the smallest time
step as the time step decreases.
ents for different values of damping.



(a) (b)

Fig. 23. (a) Geometry and boundary condition; (b) mesh and the J-integral domain.

Table 5
Geometry and the material properties.

Geometry Material 1 Material 2

R ðmmÞ E ðGPaÞ m Ejj ðGPaÞ E? ðGPaÞ m

10 2.76 0.38 7 30 0.25

Fig. 24. Effects of fibers direction on stress intensity factors.
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To further demonstrate the effects of the employed oscillatory
crack tip enrichments, the ryy stress near the crack tip in the upper
material (normalized by P), at time 15 ls, is depicted in Fig. 16a for
three cases: neglecting all crack tip enrichments, neglecting only
oscillatory crack enrichments and using standard orthotropic crack
tip enrichments, and using full oscillatory crack tip enrichments. It
is obvious that neglecting crack tip enrichments removes the crack
tip singularity. Using ordinary orthotropic crack tip enrichments,
however, reproduces singularity but underestimates the stress val-
ues. Finally, it is the oscillatory crack tip enrichment that repro-
duces the right order of singularity. In Fig. 16b, the stress
distribution ryy (normalized by P) near the crack tip (at the dis-
tance of 0.06 mm from the crack tip associated with the crack tip
element for mesh 100� 400) at time 15 ls is shown for four differ-
ent meshes. This figure is for the case of full oscillatory crack tip
enrichments. As a result, the stress distribution converges to the
values associated with the finest case.
The second case was studied in Ref. [38] using the boundary
element method, the displacement extrapolation technique for
extracting SIFs and the time step of 0:02 ls. In this study, a
30� 60 mesh, along with a 0:04 ls time step and 0:2 mm size
of the interaction integral are used to analyze the problem in
plane stress condition. The obtained results are compared with
the reference values [38] in Fig. 17. Ref. [38] used the standard
boundary element method (neglecting the oscillatory behavior),
which in combination with the sensitive displacement extrapola-
tion method resulted in a non-zero imaginary part for SIF. It
should be noted that the oscillatory index of the present case
(e ¼ 0:002) is smaller than the previous one, so given the problem
configuration, an almost zero imaginary part of the complex SIF is
expected.

To demonstrate the path independency, this case is simulated
using different J-integration radii (0.2 mm, 0.5 mm, 1 mm and
1.3 mm), and the results are shown in Fig. 18. It is observed that



Fig. 25. Effect of different crack tip enrichments on reproducing stress singularity.

Fig. 26. Contours of von-Mises stress in different t
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the solution is not sensitive to the integration radius and there is
no path dependency.

7.2.2. Asymmetric four-point-bending specimen
The examples have so far been limited to layered plates with

simple configurations. The remaining simulations are then devoted
to mixed-mode test problems with more complex geometry and
configurations. First, an asymmetric four-point bending specimen
under the dynamic loading is considered to analyze the effects of
geometry on energy release rate and phase angle history.

To verify the numerical calculation, first an isotropic bi-material
beam (Fig. 19) with a static loading is solved. In Fig. 19, parameter
S is changing and parameters C and D are constant. While, the
overall distance between the two loads and two supports, i.e. C
+ D, remains constant, the beam moves with respect to the loading
setup. The relative movement of the beamwith respect to the load-
ing setup is determined by S. If parameter S is on the right side of
the crack, it assumes a negative value, and if it is on the left side of
ime steps (time steps in ls and stress in GPa).
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the crack, it assumes a positive value. Corresponding geometric
and materials properties are presented in Table 3.

Analysis is performed in the plane stress condition with 6 mm
out of plane thickness. The characteristic length is assumed to be
the crack length. Variations of the stress intensity factors (normal-
ized by P

ffiffiffi
a

p
=W2) are presented in Fig. 20. Clearly, a good agree-

ment exists between the present and reference [39] results.
Next, the example is extended to the impact loading PHðtÞ.

Moreover, since the proposed enrichment functions are capable
of producing stress and displacement fields in orthotropic bi-
materials, a PSM-Scotchply bi-material (layers 1 and 2, respec-
tively) is considered for this problem. Geometric properties are
similar to those of the static case, but the material properties,
which results in a large value of e ¼ 0:07, and impact loading are
listed in Table 4.

The dynamic analysis is performed on a 100� 20 mesh, with
10 ls time step in plane stress condition and a domain integral
radius of 5 mm. Results for two cases of S=W ¼ �0:5 and S=W ¼
�0:25 are provided in Fig. 21, in which time histories of both the
energy release rate and the phase angle are presented.

All results are compared with each other for different values of
damping (ck–0 and cm ¼ 0). As expected, introducing damping
into the dynamic equilibrium equation diminishes large
oscillations.

As the oscillatory index of this example has quite a large value,
the effects of oscillatory crack tip enrichments are discussed for the
case of S=W ¼ �0:25. Results of neglecting the crack tip oscillatory
behavior are presented in Fig. 22 for different values of damping. It
is observed that in structures with larger damping coefficients, the
effect of neglecting crack tip oscillatory behavior becomes
insignificant.

7.2.3. Brazilian specimen
For the last example, the bi-material Brazilian specimen, devel-

oped for analyzing mixed-mode interface cracks, is simulated.
Fig. 23 depicts the geometry, boundary condition and the utilized
mesh. An isotropic–orthotropic bi-material, with oscillatory index
e ¼ 0:057, is considered for this problem (see Table 5).

Where Ejj and E? represent the Young’s modulus along and per-
pendicular to the fiber direction, respectively. Two cases of fibers
parallel and perpendicular to the interface crack are considered.
The obtained values of stress intensity factors (normalized by
P
ffiffiffiffiffiffi
pa

p
) for both cases are depicted in Fig. 24.

Clearly, when the fibers direction is parallel to the interface
crack, mode-II stress intensity factor is larger. The reason can be
attributed to the fact that the configuration of Brazilian test is
loaded in a direction parallel to the interface crack; therefore,
when the fibers are parallel to the crack the stiffness mismatch
between two materials is more pronounced, resulting in shearing
displacement of the crack faces and increasing the mode-II stress
intensity factor.

For the case of fibers perpendicular to the interface crack, vari-
ation of the stress ryy at the time 15 ls, in the vicinity of the crack
tip and in the upper material (normalized by P), is presented in
Fig. 25 using three different enrichment strategies. As before, in
the case of no crack tip enrichments, the stress approximation does
not generate the stress singularity at the crack tip. Moreover, ordi-
nary crack tip enrichments reproduce a stress singularity, but with
an underestimation. Only in the case of oscillatory crack tip enrich-
ments, the stress distribution is accurately reproduced.

Finally to visualize the mechanical wave propagation in the
inhomogeneous material, contours of the von-Mises stress (effec-
tive stress) for time steps corresponding to ð1;8;24;40Þ ls are
plotted in Fig. 26.
8. Conclusion

Adopting the oscillatory crack tip enrichment functions, derived
from the analytical solution of an interface crack between two
orthotropic layers, and the path independent interaction integral,
time histories of complex stress intensity factors, energy release
rate, and phase angle have been calculated for several cracked bi-
material problems subjected to dynamic loadings. It has been
shown that the use of oscillatory crack tip enrichment functions,
particularly in configurations with non-vanishing oscillatory
indexes, can accurately reproduce the complex stress field in the
vicinity of the crack tip, making the evaluation of interface fracture
parameters more accurate. Moreover, numerical simulations ascer-
tained that the interaction integral method, which utilizes the ana-
lytical solution of delamination in orthotropic bi-materials as the
auxiliary field, is path-independent, and hence can be reliably
adopted in mixed-mode problems, especially in comparison with
the conventional displacement extrapolation technique.
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