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ABSTRACT The main purpose of the present study is to enhance high-level noisy data by a wavelet-based iterative
filtering algorithm for identification of natural frequencies during ambient wind vibrational tests on a petrochemical
process tower. Most of denoising methods fail to filter such noise properly. Both the signal-to-noise ratio and the peak
signal-to-noise ratio are small. Multiresolution-based one-step and variational-based filtering methods fail to denoise
properly with thresholds obtained by theoretical or empirical method. Due to the fact that it is impossible to completely
denoise such high-level noisy data, the enhancing approach is used to improve the data quality, which is the main novelty
from the application point of view here. For this iterative method, a simple computational approach is proposed to
estimate the dynamic threshold values. Hence, different thresholds can be obtained for different recorded signals in one
ambient test. This is in contrast to commonly used approaches recommending one global threshold estimated mainly by
an empirical method. After the enhancements, modal frequencies are directly detected by the cross wavelet transform
(XWT), the spectral power density and autocorrelation of wavelet coefficients. Estimated frequencies are then compared
with those of an undamaged-model, simulated by the finite element method.

KEYWORDS ambient vibration test, high level noise, iterative signal enhancement, wavelet, cross and autocorrelation of
wavelets

1 Introduction

Ambient vibration tests are usually used for: damage
detections [1,2]; modal parameter identifications in health
monitoring studies [3–9]; assessment of real time condi-
tions [3,4,10–22]; and vibration controls [23]. The ambient
vibration tests are fast and cheap, and require no excitation
equipment and can be used for different structures and
infrastructures [24,25]. In these tests, the source of loading
can be environmental or natural excitation; some common
examples are: wind [3,16,17,19,20], traffic loads [26], and
small to moderate earthquakes [27]. The ambient vibration
tests mainly estimate the linear response of (damaged)
structures, since the magnitude of loading is small. The
in situ tests are interesting [28,29] because they are directly

performed on (partially damaged) full-scale structures to
control their performance (deviations from initial condi-
tions). However, the identification of system parameters
(i.e., modal frequencies, service condition’s modal damp-
ing and mode shapes) is nearly challenging in ambient
vibrations, due to non-stationary responses, nonlinear
signals and high-level of noise in recorded data [30,31].
The signal-to-noise ratios (SNRs) of these recorded signals
have significant effects on the accuracy of parameter
identification phase [32]. For this reason, noise effects on
modal identifications have been studied for different
approaches [33–36].
For removing/curing noise effects in recorded data in a

multiresolution framework, wavelet theories, which are
fast with a strong mathematical background, have been
developed. Wavelet transforms (WTs) study data in
the time-frequency representation with differentArticle history: Received Feb 10, 2019; Accepted Mar 24, 2019
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decomposition levels and resolution accuracy in a non-
parametric approach using only the output data [3,4,10–
13,18,19,27,37–42]. For high level of noise, however, this
powerful transform has its own shortcomings [43].
Two general denoising approaches can be addressed in

the framework of multiresolution analysis (MRA): one-
step [44–50] and iterative techniques [51–57]. In the
former, one stage of MRA allows for noise to be estimated
and removed from the data. In the iterative approach,
successive refinements of the data are used for estimation
of the denoised data. This iterative scheme can filter noise
in a step-by-step approach to clear or enhance the data. It
should be noted that, in signals with high-level of noise, it
is almost impossible to completely eliminate (filter) the
noise.
The iterative denoising algorithm was originally pro-

posed by Starck and Bijaoui [57] and Coifman and
Wickerhauser [51,52]; and then it was followed by
Hadjileontiadis et al. [53,54] and Ranta et al. [55,56]. In
each iteration, information with coherent structures in
different resolution levels is selected and the remaining
data are assumed as noise in the next iteration. Since the
physical information is gathered layer by layer from the
noise residual, the approach is also known as the “peeling
off successive layers” scheme [51,52]. The iterative
method assumes that large wavelet coefficients contain
physical information. These coefficients are detected based
on a (predefined) threshold in each resolution level: known
as the level-dependent thresholds. Each threshold in each
resolution level can be in accordance with the deviation of
wavelet coefficients in that resolution (a level-depending
thresholding).
The thresholds for the iterative scheme can be chosen

empirically or based on some criteria [53]. In this study, a
simple data-dependent criterion is explained based on peak
signal-to-noise ratio (PSNR) and SNR. This approach leads
to dynamic threshold values for different recorded data
obtained even in an ambient vibration test. This leads to a
more flexible noise estimation method in comparison to
commonly used approaches employing one constant
threshold for all data. To control the stochastic feature of
the estimated noises, the time-frequency representation of
estimated noises (by the iterative enhancing method) are
presented and studied for some recorded data. This feature
confirms effectiveness of the estimated dynamic thresholds
and the iterative method.
For noisy information with small values of SNR, the

importance of the iterative denoising approach is studied
and confirmed by comparing the results with:
1) The one-step MRA-based denoising scheme: This

comparison is performed for different decomposition
levels and wavelet families. In computations, wavelet
thresholds are those obtained by both theoretical and
empirical approaches [58].
2) The variational-based filtering approach with

different constraints [58].
Neither the one-step MRA-based denoising nor the

variational-based one can properly enhance high-level
noisy recorded data gathered during the ambient vibration
tests.
After the signal-enhancement step, other MRA-based

approaches are used here to improve the detection power of
physical features (without stochastic properties). After the
enhancement step, it is still a challenging task to determine
physical features in the enhanced data. In this regard,
detections are performed by:
1) The concept of the XWT [45,59], and the corre-

sponding spectral power. The XWT analysis and the
corresponding spectral power are simultaneously used for
frequency detections. Responses with both the continuity
pattern in time (controlled by XWT) and considerable
energies in the spectral power can be assumed to include
physical phenomena.
2) Autocorrelation of wavelet coefficients: by autocor-

relation of wavelet coefficients, the repeating patterns of
different scales can be detected for different resolution
levels in time [60,61]. This transform is especially
important for capturing the repeating features of weakly
excited responses (e.g., higher modes of a structure with
small participations) which cannot be detected by the
above-mentioned transforms.
For data with high-level of noise, in general, the noises

affect all time-scales in the scalogram of CWTs as
background information (especially in the high frequency
ranges). This causes difficulties for the detection of
continuously excited frequencies (especially those with
small modal participation). The MRA-based iterative
scheme can reduce the noise-effects; however, the
deblurring effects can still be considerable in the enhanced
data. Hence, the concepts of XWT and the autocorrelation
of CWT coefficients are used as an additional step to
reduce noise-effects. These effects, however, still remain in
both the XWT and autocorrelation analysis. In this regard,
in this study, the energies of wavelet-based results are
presented for the range jZj2 2 ½0:02,1� �MaxjZj2, to
eliminate noise-effects.
In brief, to achieve more reliable results, it can be

recommended to use independently different denoising-
detecting approaches. And then the results are compared
with each other, e.g., those from the wavelet, HHT and
Fourier transforms [62,63].
Abovementioned identifications can also be classified as

the output-only modal identification, since modal para-
meters are only determined by the output (recorded) data
(caused by wind with stochastic feature) [64].
At the last stage, the detected frequencies are compared

with those of a linear undamaged finite element (FE)
model. Most of the time, these two types of frequencies
may not be the same and FE models cannot precisely
predict modal frequencies even for undamaged structures
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[65]. The main reasons are: 1) conservation in designs; 2)
improper considering of the torsional eccentricity; 3)
foundation compliance effects [65]; 4) the effects of
damaged parts and flaws (for damaged systems).
In brief, there are other methods for MRA-based

studying, such as: 1) the Hilbert-Huang transform (HHT)
[38,66] and the modified HHT method [67–70] (both
developed for nonlinear signals); 2) the synchrosqueezing
transform [71–73] and its generalizations [74,75].
Finally, it should be mentioned that the aforementioned

signal enhancement technique with the iterative denoising
method can be integrated (as a pre-processor) with other
wavelet-based methods developed for the modal parameter
identification, see Refs. [13,19,76].
After the signal processing stage, it is necessary to detect

damages in the structure by the direct or inverse
approaches to consider flaw or damage effects and then
in the next step to consider them in simulations. Flaw
detections are complex due to the fact that the proper
solution of these inverse problems are challenging because
of their inherent uncertainty, both in their spatial locations
and material properties due to fracture and softening [77].
This uncertainty leads to developing different detection
algorithms [78], stochastic modeling [79] and sensitivity/
uncertainty analysis [80,81]. Forward simulations of
cracks and flaws leads to major challenges to adjust the
interfaces to the discretization, which requires efficient
remeshing [82–84], division [85], and adaptation [86,87]
techniques. An efficient alternative approach is the
extended finite element method (XFEM) [15,16] or
modifications of it such as the smoothed XFEM [17,18],
the phantom node method [88], certain multi-scale
methods for fracture [89–92], or phase-field problems
[93,94]. Though XFEM has mostly applied to fracture
problems, there are also several applications of XFEM
related to this topic, i.e., inverse analysis and optimization
[32–38]. Similar advantages are observed in peridynamics
and dual-horizon peridynamics [95,96], meshfree methods
[97–99], partition of unity [100], cracking particles
methods [101–103], or extended meshfree methods
[104]. Another powerful tool to accurately capture
complex geometries accurately is the isogeometric analysis
(IGA) [105–108], applied to numerous problems including
thin shells [109–112], or optimization [113]. Furthermore,
IGA can also be used in an adaptive analysis [79–81].
There are also contributions of combining the advantages
of XFEM and IGA [110,114].
This work is composed of seven parts. Section 2

explains the general features of the periling tower and the
corresponding ambient vibration tests. Section 3 reviews
different one-step denoising techniques by discrete wave-
lets. There, some common wavelet-based denoising
approaches and corresponding effective parameters are
also presented. Section 4 devotes to issues related to the
iterative denoising and a simple criterion for the adaptive
threshold selection. Section 5 surveys three wavelet-based

signal processing and pattern recognition tools: XWT,
spectral powers and autocorrelation analysis of WTs.
Section 6 presents the signal enhancement and frequency
detection of the recorded data from the ambient vibration
test. The concluding remarks are presented in Section 7.

2 Ambient test on the Ammonium Nitrate
periling tower

The petrochemical complex, constructed in 1959, is placed
45 Kilometres north of the city of Shiraz, Iran. The
Ammonium Nitrate periling unites composed of two
reinforced concrete towers, including the process tower
and the elevator tower. The process tower is a cylindrical
podium overtopped with a rectangular structure. Four steel
chimneys with the height of 25 m diameter of 1.9 m and
thickness of 0.5 cm are attached to the top of cylindrical
part of the process tower between the heights of 55.7 and
80.7 m (Fig. 1). A schematic illustration of the tower and
the corresponding cross-section are presented in Fig. 2.
The towers are attached to each other at the heights of 47.7,
50.6, and 55.7m.
Considering degradation and deterioration from its

original condition and increasing vibrational response
(mainly due to stiffness reduction), motivated the owners
to pursue safety evaluations and potential rehabilitation
approaches. Figure 3 depicts some deteriorated parts of the
structure of the process tower. The initial assessment of
both towers revealed that:
1) Although, during visual tests many parts of rein-

forced concrete structures seem undamaged, but random
petrographic test results provide owners with critical
deterioration of cement gel, which extends up to 75 mm
inside the outer surfaces.
2) Because of operational conditions and serious health

consequences, it is somehow impossible to have access to
many parts of process tower’s inner surface.
3) Considering the explosion-sensitivity of products.
First, the specifications of instruments and their

installation details should be determined to obtain reason-
able results. These specifications depend on the dynamic
properties of structure, the dynamic characteristics of
operational systems and specifications of environmental
excitation. The frequency range of some operating
machineries is from 30 up to 1500 RPM. The machineries
include (but not limited to) stacks, hovers, compressors,
condensers and elevator. These machineries could not be
turned off during the ambient test, according to the owner’s
operational protocols.
Regarding accelerometers, a variable capacitance is

selected with nominal sensitivity threshold of 1V/g for the
pre-test phase. Observations in the pre-test phase show that
SNRs are extremely low; this means more sensitive
accelerometers are needed for the main test. Hence, the
Kinematics’ force balance accelerometer (FBA11) is
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nominated for the main test. This accelerometer has
100 Hz band-width, adjustable sensitivity ranging from
+ 5 up to+ 80 V/g and a dynamic domain equivalent to
140 dB. Also, digital data loggers with ten-simultaneous
channels of 24 bit resolution and effective band-width of

50 KHz are used to restore vibrational data.
Another crucial question is about “height-wise and/or

plan-wise arrangements of the loggers” during the data
accumulation phase. It is extremely preferable to install
sensors at antinode locations to catch maximum

Fig. 1 Ammonium Nitrate periling tower.

Fig. 2 Recording locations and directions: (a) locations of data recording; (b) recording directions “1” and “2” (unit: mm).
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amplitudes of the structure; however, other factors such as
location accessibility, safety considerations and existing
vibrational aliasing adjacent to heavy machineries put
great limitations on locations of the sensors.
Spatial locations of sensors along the tower and

recording directions “1” and “2” are illustrated in Fig. 2.
Acceleration recorders on the tower are denoted by Pi

where i 2 f1,:::,7g, and the recorder R is the reference one.
Recording directions for the recorded data at the main
tower are denoted by k as Pik for k 2 f1,2g. The ambient
vibration test is performed by the wind load and the
corresponding responses are recorded by the sampling step
Δt ¼ 1=100 s. Due to the limitation of sensors, signals are
recorded in different times.

3 MRA-based denoising and enhancement
of data

3.1 Denoising by discrete wavelets

In this subsection, wavelet-based denoising methods and
their effective parameters are studied [46].

3.1.1 MRA-based denoising

In general, wavelet-based denoising can be summarized as:
1) estimation of noise level in a process; 2) modification of
detail (wavelet) coefficients fdðj,kÞg (measuring local
fluctuations), where the modified set is denoted by
fd̂ðj,kÞg; 3) reconstruction of the denoised signal by
both fd̂ðj,kÞg and unchanged scale coefficients c(Jmin,l)
(reflecting overall smooth variations) [46,47], where j 2
fJmin,Jmin þ 1,:::,Jmaxg denotes the resolution level, where
in Jmin (Jmax) shows the coarsest (the finest) resolution
level with the sampling step 1=2Jminð1=2JmaxÞ; k denotes the

location of the wavelet functions in the spatial domain, as
(2k+ 1)/2j + 12 ½0,1�; and l denotes the location of the
scaling functions in the spatial domain, as l=2j 2 ½0,1� [46].
The modifying stage can be performed by the thresh-

olding technique. For instance, for a pre-defined threshold
ε, detail coefficients below this threshold are set to zero.
This simple kill-or-keep method is known as the hard
thresholding [46–48]. To prevent sudden jump in modified
(thresholded) detail coefficients, there is another simple
and famous approach known as the soft thresholding
method, defined as [46–48]:

d̂ðj,kÞ ¼
0, jdðj,kÞj£ε,

Sign½dðj,kÞ�½dðj,kÞ – ε�, jdðj,kÞj > ε:

(
(1)

The threshold value can be independent or dependent to
the resolution level j. The level independent one is known
as the global thresholding, where a single threshold is used
for all resolutions. For the level dependent case, a threshold
value εj is used for the level [48].
Regarding the number of iterations for denoising

(thresholding), two different approaches have been devel-
oped:
1) the one step [44–49];
2) the iterative method, also known as the peeling

scheme [51–57].
In the first approach, the noise is cleaned by the one step

of thresholding (with either a global or level-dependent
one), while in the iterative method, the noise is removed
layer by layer (by repeating a denoising procedure on the
denoised signal resulted from the previous step) until a
convergence criterion is satisfied [51–57]. In general, for
estimation of the threshold values, two general approaches
exist: theoretical [46,48], and empirical [58].
For the theoretical case, some famous approaches are:

Universal, SURE, and GCV (Generalize Cross Validation)
[46–48]. They all try to minimize the mean squared error,

Fig. 3 Some examples of concrete destruction.

Hassan YOUSEFI et al. Implementation in purification of modal frequency 5



MSEðεÞ. These three methods are available for both global
and level-dependent thresholding methods (see Appendix
A for more information). In the empirical approach, the
threshold is determined by a criterion, e.g., the curve of
SNR against ε (threshold). In this case, the proper threshold
value is the one maximizing SNR.
To quantify the performance of different denoising

methods and wavelet family effects, two criteria are
considered based on the MSE concept: SNR and PSNR
[47,48]:

SNR ¼ 10Log10
�2ðŝÞ

�2 s – ŝð Þ
� �

,

PSNR ¼ 10Log10
max jŝijð Þ2
�2 s – ŝð Þ

� �
, (2)

where s and ŝ denote the original (noisy) and denoised
signals, respectively; �2ðZÞ is the variance of Z; ŝi is the ith
element of ŝ; and �2 s – ŝÞð measures the variance of the
noise: s – ŝ. Function R ¼ �2 s – ŝÞð denotes the risk-
function, which is equivalent to MSE [48]. Both SNR
and PSNR are measured in dB.
The SNR and PSNR of large values provide better

denoised (or compressed) results, because they have
inverse proportionality to the variance of noise
(�2 s – ŝÞð ). For PSNR, values larger than 30 dB are
sufficient in practical applications [115].

3.1.2 Effective parameters on wavelet-based denoising

To achieve the best denoised signal, especially for the one-
step denoising methods, it is essential to select the best
denoising method, the best wavelet family and a proper
decomposition level. Wavelet functions may be data
dependent and this can have significant effects on the
denoising performance. For an optimal wavelet, several
features should be considered: 1) orthogonality (or bi-
orthogonality); 2) support length which may be equivalent
to filter length; 3) vanishing order of moments (the jth

moment is: MjðψÞ ¼ !xjψðxÞdx , where ψðxÞ denotes the
wavelet (detail) function); 4) symmetry. The third condi-
tion is also known as the smoothness, approximation, or
the regularity condition.
Several wavelet families with different orders are

considered in this study: Daubechies (Db), Symlet, and
BattleLemarie families [46,49]. For each family, the
corresponding wavelet with order N can be represented
as: Db[N], Symlet[N], and BattleLemarie[N]. The ortho-
gonal and compact support Db and Symlet wavelets have,
respectively, the most regular and the most symmetric
features; while the BattleLemarie wavelets are orthogonal
and symmetric with infinite support, but the wavelets
vanish exponentially.

4 Iterative denoising by discrete wavelets

Wavelet one-step denoising methods are widely used for
signal processing problems. However, such approaches
may not lead to proper results for data with high-levels of
noise (as will be shown in this study). To improve the
wavelet-based one-step methods, iterative-based denoising
scheme has been developed [51–57]. In this approach, in
each iteration, the data having coherent structures in
different resolution levels are selected and the remaining
information is used as the noise in the next iteration. Due to
the high level of noise in the data, the noise is removed
from the data as much as possible by decomposing signals
to coherent structures and incoherent noise by localizing
both in time and frequency domains, simultaneously.

4.1 An algorithm for the MRA-based iterative denoising

In this subsection, the iterative denoising approach
proposed in [53–55] is followed. For a noisy signal
Z ¼ fz½1�,:::,z½N �g, at the first step of the iterative
denoising algorithm, it is assumed that the signal Z is
totally noise. Then, the coherence and significant features
in the noise are gathered.
Detection is performed by decomposing Z by MRA,

and then in each resolution level, those detail coefficients
(d(j,k)), that represent significant phenomena, are detected.
In a statistical approach, the distribution of d(j,k) is
measured at each scale j and is shown by the variance of
the detail coefficients, i.e., ð� jÞ2 . Then, detail coefficients
larger than C � � j are assumed to belong to a physical
phenomenon, where C ¼ Cj

n is a positive constant and
C³1 (n denotes the iteration number). The selected detail
coefficients along with the scale coefficients are recon-
structed as the first estimation of the denoised signal, and
the remaining detail coefficients are reconstructed and
named as the updated noise. The above peeling procedure
is repeated for the updated noise. At the end of each
iteration, the estimated denoised signal is added to the
previous one (obtained from the previous step). In brief,
the iterative algorithm can be summarized as:
1) For the first iteration, n = 1, the denoised signal is

assumed to be zero: Zn ¼ fzn½1�,:::,zn½N �g ¼ f0,:::,0g, and
the noise is ΔZn¼1 ¼ Z ¼ fzn½1�,:::,zn½N �g.
2) Decompose the noisy signal ΔZn by the DWT to

obtain scale coefficients {c(Jmin,l)} and detail coefficients
in different resolutions as {{d(j,k)}; j = Jmin,...,Jmax – 1},
where Jmin and Jmax denote the resolution level of the
coarsest and finest resolutions, respectively.
3) Compute the variance of {d(j,k)} for each

resolution level j as ð� j
nÞ2 ¼ 1

Nj
kdðj,kÞk22, where kdðj,kÞk22

¼
X

k
jdðj,kÞj2, n denotes the iteration number; and

Nj is the length of vector {d(j,k)} (notice that:
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� ¼
X

k
dðj,kÞ ¼ 0).

4) For each resolution level j, compute the threshold as
Tj
n ¼ f ð� j

nÞ . It is assumed: f ð� j
nÞ ¼ Cj

n�
j
n , where C

j
n³1 is

a constant.
5) Detect the noise coefficients by the hard thresholding

method. Coefficients d(j,k) can be decomposed as:
dðj,kÞ ¼ d̂ðj,kÞ þ Δdðj,kÞ, where d̂ðj,kÞ³Tj

n and Δdðj,kÞ
denotes the noise coefficients with values less than Tj

n.
6) Reconstruct the modified detail coefficients

fd̂ðj,kÞ; j ¼ Jmin,:::,Jmax – 1g with {c(Jmin,l)} (from the
second step). The reconstructed signal is
Ẑn ¼ Ẑn½1�,:::,Ẑn½N �g:�
7) Reconstruct the detail coefficients belonging to

noise, i.e., ffΔdðj,kÞg; j ¼ Jmin,:::,Jmax – 1g with zero
approximation coefficients, cðJmin,lÞ ¼ f0,:::,0g. The
reconstructed signal is ΔZnþ1 ¼ fΔZnþ1½1�,:::ΔZnþ1½N �g.
8) Update the estimated (denoised) signal as: Znþ1 ¼

fznþ1½1�,:::,znþ1½N �g¼fzn½1�,:::,zn½N �gþ ẑn½1�,:::,̂zn½N �gf .
9) Update the noisy signal to be ΔZnþ1, and go back to

the second step (to restart a new peeling procedure).
10) This iteration is terminated after a predefined loop-

number or reaching a termination criterion, jSTCnþ1j < ε
where STCnþ1 ¼ kΔZnk22 – kΔZnþ1k22 and ε denotes a
positive constant.

4.2 A simple criterion for choosing Cj
n

The heart of the iterative denoising method is the proper
selection of the variance-dependent thresholds controlled
by the coefficients Cj

n. While some constant values of Cj
n

were empirically proposed for different applications (e.g.,
Cj

n = 3 or Cj
n = 2.5) [53], few computational approaches

were proposed based on extra information about data, such
as their experimental distributions [55,56]. One drawback
of the constant Cj

n values (in Refs. [53,116]) is that they
can vary for different signals recorded even in one study. In
this regard, a flexible approach is needed for adaptive
selection of Cj

n values.
In this study, a simple method is proposed based on

measuring the PSNR and SNR values for several Cj
n values.

Admissible values Cj
n for correspond to cases where

PSNR³PSNR* ; here, it is assumed that PSNR* ¼ 30
[115]. The largest acceptable Cj

n can be used as the first
estimation of Cj

n in the iterative denoising method. The
present study shows that this selection can be affected by
other important parameters:
1) The continuity feature of denoised signals to prevent

unphysical gaps in denoised data.
2) Sufficiently large values of SNRs.
The selection procedure for Cj

n is explained in detail in
Section 6 for different recorded data.

5 Signal processing of the enhanced data
by continuous wavelet transforms (CWTs)

After the signal-enhancement stage, the signal processing
step is performed by CWTs for detection of time-frequency
information in the data.
In this study, the complex Morlet wavelet is used for

detection of instantaneous frequencies and pattern recogni-
tions. Parameters of the Morlet wavelet are: υb = 2 (is the
bandwidth frequency) and υc = 1.10 ( denotes the central
frequency). Hence, the inequality condition

ffiffiffiffiffi
υb

p
υc³

ffiffiffi
2

p
is satisfied for this wavelet family (defined as

ψðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
π� υb

p e2πivct�e – t
2=υb

). For other possible values of

υb and υc, some other approaches are reviewed in
Appendix B.
Based on the CWTs, some effective signal processing

tools are: XWT, the autocorrelation of wavelet coefficients
and the spectral power. Initially, the concept of the spectral
power of WT is reviewed. This helps to identify energy
concentrations in the frequency (or scale) domain. The
spectral power is defined as:

PW ðaÞ ¼
1

T
!
t0þT

t0
jWψf ða,bÞj2db, (3)

where a denotes the scaling (dilation) number controlling
the width (support) of wavelet functions; b represents
the spatial position of the scaled wavelets ψðt=aÞ; T
denotes the duration of data; and Wψf ða,bÞ denotes the

CWT of data f(t), defined as Wψf ða,bÞ ¼
1ffiffiffiffiffijajp !

þ1
–1f ðtÞ

ψ* t – b

a

� �
dt, where the symbol “*” shows the imaginary

conjugate of a function.

5.1 XWTs, corresponding spectral powers and
autocorrelation of wavelet coefficients

Based on the coefficients of WTs, different analyses can be
performed. Three of them are:
1) XWTs: In practical computations, it is often useful to

capture possible links between two existing processes
(signals). For assessing energy coherencies, the concept of
the XWT (denoted by XWψ) is introduced. For signals f(t)
and g(t), XWψðf ,gÞ is defined as [45]:

XWψðf ,gÞ ¼ Wψf ða,bÞ �Wψgða,bÞ*, (4)

where symbol “*” shows the imaginary conjugate of a
function. The XWT detects zones in the time-frequency
space where the two data show the coherency of the power
(energy). Since the noise has a random feature, the two
recorded data are expected to have uncorrelated energies of
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noise in different resolutions and times.
2) Spectral power of XWTs: To detect energy coher-

encies between two data in the frequency domain, the
power of XWTs can also be defined, as:

PXW ðaÞ ¼
1

T
!
t0þT

t0
jXWψðf ,gÞjdb: (5)

Simultaneous study of XWTs and the corresponding
spectral powers helps to identify physical (real) phenom-
ena in data. The energy of WT reveals the continuous
distribution/pattern of energies in the time-frequency
representation, and at the same time the corresponding
spectral power shows the concentration of energies in the
frequency domain.
3) Autocorrelation of WTs: This operator measures the

correlation of a signal with a shifted copy of itself. It assists
similarities or repeating patterns in the signal as a function
of time delay or time lag. One example of such feature is
the detection of periodic signals covered with noise. For
the signal {xi}, where i = 1,...,n, the autocorrelation RðτÞ is
defined as:

RðτÞ ¼
Xn – τ

i¼1
xi – �̂ð Þ xiþτ – �̂ð ÞXn – τ

i¼1
xi – �̂ð Þ2 , (6)

where �̂ ¼ ð
Xn

i¼1
xiÞ=n denotes the mean value of the

signal {xi}, and τ is the time lag.
To integrate the MRA with the autocorrelation concept,

at the scale a, the autocorrelation ofWψf ða,bÞ is evaluated
over the translation parameter b. This procedure is repeated
for different a values. For each scale, this helps capturing
similarity features through time, or detecting the repeating
patterns of data. This type of detection is nearly free from
noise effects, since, stochastic coefficients due to noise do
not have correlation with each other. In this study, it is
shown that this transform is especially important for
capturing weakly excited responses or vibration modes (in
ambient tests) which cannot be detected by other trans-
forms. Frequencies for modes with small participations
have the wavelet coefficients of small values; hence, these
frequencies may not be distinguishable from their wavelet
energies, XWTs or their spectral densities.
It should be noted that, the scaling parameter a can be

related to the corresponding frequency υa (in Hz) based on
the central frequency of the scaled- shifted wavelet ψa,bðtÞ ,
as:

υa ¼
υc

a� Δ
, (7)

where ψa,bðtÞ ¼ ψððt – bÞ=aÞ= ffiffiffiffiffijajp
, Δ ¼ dt denotes the

sampling period, and υc represents the central frequency of
the wavelet function ψðtÞ in Hz.

6 Results: the signal enhancements and
the frequency detection of the ambient
vibration test

The effects of regularization- and wavelet-based denoising
schemes are now studied for different data in this section.
The recorded data P21, P31, P51, P12, and P72 are
presented in Fig. 4 with the sampling time step ΔT ¼ 0:01.
The denoising or enhancing procedure is performed with
the MRA and the regularization approaches. For the MRA-
based denoising approach, both the one-step method and
the iterative scheme are studied. For the regularization-
based denoising scheme see Appendix C.

6.1 The one-step denoising approach

6.1.1 Denoising with the regularization approach

Let us consider the signal P12. At the first step, it is
essential to estimate a proper value for the regularization
parameter p (or l). This can be performed empirically by
the SNR-p curve [58]: the proper value that maximizes
SNR. These curves are presented in Fig. 5 for the
constraints Ωðf ÞTV , Ωðf ÞL2 , and Ωðf ÞSobolev. It is obvious
that the curves do not have any extrema. Due to the high-
level of noise, the SNR values can even be negative, and for
the large values of p , the SNR values increase rapidly. For
checking the denoising performance, the residual noise
(after the denoising stage) and the corresponding energy in
the wavelet space (by the complex Morlet wavelet with
parameters υb ¼ 2 and υc ¼ 1:10) are presented in Fig. 6
for the constraints Ωðf ÞL2 and Ωðf ÞSobolev, where p = 0.98.
The energies are presented for the range of
0:02Max½jWψj2�£jWψj2£Max½jWψj2�. It is evident that
the energies of the noises do not contain localized
stochastic information; instead, they contain several
instantaneous frequencies excited continuously through
time. Such information can be physically justified as the
modal frequencies of the structure. Hence, this denoising
approach is not efficient.

6.1.2 DWT-based one-step denoising methods

The performance of different one-step DWT-based denois-
ing approaches is studied for signals P12 and P51.
Denoising approaches are mentioned in Table 1; the term
“Level” indicates the level depending thresholding.
For the signal P51, the corresponding results based on

Symlet[12] wavelet with Nd = 13 (the number of decom-
position levels) are presented in Fig. 7. For P12 and P51,
the performance of different denoising methods, measured
by the SNR and PSNR criteria, is also presented in Table 2.

8 Front. Struct. Civ. Eng.



This table and Fig. 7 offer that the GCV denoising method
leads to the best result for the Symlet[12] wavelet with
Nd = 13. However, in general, this conclusion could not be
made. This is studied in terms of different denoising
approaches, wavelet families and the number of decom-
position levels (Nd) in the following.
The effects of the wavelet family are studied in

Tables 3–5 for the GCV method with Nd = 13 and the

considered wavelet families are: Db[N], Symlet[N], and
BattleLemarie [N]. Accordingly, the wavelet-dependency
of the results is clear even for the GCVmethod. The effects
of Nd , presented in Table 6, confirm that the values of SNR
and PSNR are in accordance with the values of Nd.
The performance of the empirical approach for the

threshold selection is studied in the following. Let us
consider the signal P12 with both the hard and the soft

Fig. 4 Recorded accelerations at different stations: (a) signal P21; (b) signal P31; (c) signal P51; (d) signal P12; (e) signal P72.

Fig. 5 Empirical evaluation of p values based on SNR-p curves for data P12. (a) SNR-p curve by the TV regularization; (b) SNR-p curve
by the L2 regularization; (c) SNR-p curve by the Sobolev regularization.
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thresholding approaches. Variations of SNR against ε=�
values are presented for different wavelet families in Fig. 8
for Nd = 13; where ε and � denote the threshold and the
deviation of a signal, respectively. In Fig. 8, the wavelets
are those with the best performance according to
Tables 3–5. The results offer that the curves do not have
extremum values for SNRs; therefore, an empirical
threshold cannot be recommended.

6.2 Results for the iterative denoising method

6.2.1 Selection of Cj
n values

For the iterative denoising, the largest possible value of Cj
n

for each signal can be estimated by a simple algorithm
based on measuring PSNR values.
Initially, the effects of Cj

n values on the iterative
thresholding is studied for the signal P12. Two different
values of Cj

n are chosen as Cj
n = 1.8 and Cj

n = 2. Enhanced
signals by thresholds Cj

n = 1.8 and Cj
n = 2 are presented in

Figs. 9 and 10, respectively. The wavelet is Symlet[12],
with Nd = 13 and N = 10 (the number of iterations). In
these figures, the captured information (Ẑn) and estimated
noise (ΔZn) are presented at each iteration. In the last row,

both the denoised data (i.e., Z1þ10 ¼
X10

n¼1
Ẑn) and the

estimated noises (that is: Z –
X10

n¼1
Ẑn) are presented after

ten iterations. The denoised data offer that:
1) For Cj

n = 1.8. SNR = 2.3072 and PSNR = 28.145: an
insufficient denoised signal as the SNR is small; the
denoised signal has several gaps.
2) For Cj

n = 2. SNR = –10.078 and PSNR = 24.286: a
false denoised signal; most parts of physical information
are eliminated.
Therefore, choosing a proper value for Cj

n is crucial. For
this reason, the simple approach, proposed in Section 4.2,
is now explained in detail. Variations of the PSNR and
SNR values against Cj

n are illustrated in Fig. 11 for different
signals with parameters: Symlet[12], Nd = 13 and N = 10
(the number of iterations). Based on the PSNR values and
PSNR*= 30, the initially estimated values of Cj

n (the largest
possible values) are: 1) For P12: Cj

n = 1.78; 2) For P51: Cj
n

= 1.94; 3) For P31: Cj
n = 1.95; 4) For P72: Cj

n = 1.91; and
5) For P21: Cj

n = 1.96.

Fig. 6 Residual noise of the regularization-based denoising and corresponding energy in the wavelet space; plotted ranges are

0:02Max½jWΨ j2�£jWΨ j2£Max½jWΨ j2�. (a) The residual noise obtained by the L2 regularization (by using Ωðf ÞL2 ); (b) the residual noise
obtained by the Sobolev regularization (by using Ωðf ÞSobolev); (c) the time-period representation in the wavelet space of the residual noise
obtained by Ωðf ÞL2 ; (d) the time-period representation in the wavelet space of the residual noise obtained by Ωðf ÞSobolev.

Table 1 Different denoising approaches with corresponding thresh-

olding method and estimating noise level

denoising method thresholding approach estimating method of the noise
level

GCV soft GCV

GCVLevel soft GCV-Level

SURE hard SURE

SURELevel hard SURE-Level

SUREShrink soft SURE

Universal hard Universal

UniversalLevel hard Universal-Level

VisuShrink soft Universal

VisuShrinkLevel soft Universal-Level
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In this study, slightly smaller values of Cj
n are used: to

prevent developing of artificial gaps, and to have a larger
value for PSNR in denoised signals, as: 1) For P12:
Cj

n ¼ 1:75; 2) For P51: Cj
n ¼ 1:90; 3) For P31:Cj

n ¼ 1:90;
4) For P72: Cj

n ¼ 1:85; 5) For P21: Cj
n ¼ 1:90.

For the signal P12, with the threshold Cj
n ¼ 1:75, the

effectiveness of the enhancement (measured by SNR and

PSNR) after each iteration is presented in Table 7. The
assumptions are: Two Symlet wavelets of orders 4 and 12
with Nd = 13 are utilized; at the end of ith iteration, for
evaluation of SNR and PSNR, the enhanced results at the

ith iteration (i.e., Z1þi ¼
Xi

n¼1
Ẑn) and the initial noisy

(raw) data (Z) are used. It is evident that even for the
Symlet[4] the results become sufficiently good after ten

Fig. 7 Denoising of the P51 signal with different one-step wavelet-based denoising methods using Symlet[12] wavelet where Nd = 13.
(a) denoising with GCV method; (b) denoising with GCVLevel method; (c) denoising with SURE method; (d) denoising with
SURELevel method; (e) denoising with SUREhrink method; (f) denoising with Universal method; (g) denoising with UniversalLevel
method; (h) denoising with VisuShrink method; (i) denoising with VisuShrinkLevel method.

Table 2 Effects of denoising with different thresholding methods by the Symlet[12] and Nd = 13

method P12 P51

SNR PSNR SNR PSNR

GCV 22.2179 46.72143 18.21671 32.48012

GCVLevel – 33.2626 22.4117 – 26.3399 4.871594

SURE – 51.2787 22.2521 – 1.3714 14.25517

SURELevel – 51.2787 22.2521 – 39.8919 3.420075

SUREShrink – 51.2787 22.2521 – 16.3401 8.145114

Universal – 51.2787 22.2521 – 4.22646 13.07922

UniversalLevel – 35.1236 22.31927 – 29.3122 3.756303

VisuShrink – 51.2787 22.2521 – 21.3869 6.866752

VisuShrinkLevel – 45.3760 22.26384 – 32.9884 3.602981
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Fig. 8 Variations of SNR against ε/σ for P12 signal with different one-step wavelet-based denoising methods, where Nd = 13. (a) soft and
hard denoising with Symlet[12]; (b) soft and hard denoising with Db[8]; (c) soft and hard denoising with BattleLemarie[8].

Table 3 Effects of denoising with the GCV method for “Db” wavelets, where Nd = 13

method n(Db[N]) P12 P51

SNR PSNR SNR PSNR

GCV 2 – 44.06220 22.50474 – 3.89105 15.11722

GCV 3 – 44.60310 22.51398 1.745215 18.18960

GCV 4 16.88966 41.75307 4.907001 20.27852

GCV 5 21.81810 46.31249 10.50614 25.38050

GCV 6 21.80349 46.34828 9.132639 24.06303

GCV 7 21.79715 46.28996 16.05011 30.35188

GCV 8 21.88650 46.39464 19.22092 33.40890

GCV 9 20.92899 45.53208 17.05526 31.40279

GCV 10 – 47.54780 22.40617 15.57229 29.81848

GCV 11 – 45.98960 22.43916 17.50372 31.65586

GCV 12 – 47.04270 22.40797 15.54650 30.10663

Table 4 Effects of denoising with the GCV method for “Symlet” wavelets, where Nd = 13

method n(Symlet[N]) P12 P51

SNR PSNR SNR PSNR

GCV 2 – 44.06220 22.50474 – 3.89105 15.11722

GCV 3 – 44.60310 22.51398 1.745215 18.18960

GCV 4 – 29.29480 22.63941 1.328582 17.44202

GCV 5 – 35.13940 22.37958 6.854628 22.08273

GCV 6 – 41.13590 22.55448 16.61225 31.09798

GCV 7 20.87357 45.46648 12.50832 27.23006

GCV 8 – 37.22440 22.52614 14.83558 29.36768

GCV 9 – 36.51710 22.40699 14.93296 29.30645

GCV 10 – 38.40640 22.47555 14.31810 28.91892

GCV 11 16.16067 41.13243 15.13602 29.70963

GCV 12 22.21790 46.72143 18.21671 32.48012
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iterations, while with this wavelet the results obtained from
the one-step denoising approach are not acceptable (see
Table 4).
For the signal P12, both the captured information (Ẑn)

and the estimated noise (ΔZn) are presented in Fig. 12 at
each iteration (or the peeling step), where Cj

n ¼ 1:75 and
Nd = 13. In this figure, the last row includes: the left
column: the denoised signal after ten iterations, (i.e.,
Z1 + 10), and the right column: the estimated noise

(Z ¼
X10

n¼1
Ẑn).

6.2.2 The feature of the estimated noise by MRA

The effects of the iterative enhancement for different
signals are discussed in more detail in this subsection. The
energy densities of the final noises, obtained after ten

iterations (Z ¼
X10

n¼1
Ẑn; see Fig. 10), are presented in

Fig. 13 for different signals in the time-frequency
representations (obtained by CWT). All computations are
performed by the complex Morlet wavelet, where υb ¼ 2
and υc ¼ 1:10. The plotted range for the energies is
0:02Max½jWψj2�£jWψj2£Max½jWψj2�. The results con-
firm that the noises contain localized random-wise
information at different times and resolution levels,
especially at the high frequency ranges (as expected for
noise). For short periods, i.e., T< 0.5, stochastic localized
information exists and for the range of 0.9< T< 1.4,
several considerable phenomena occur locally, which may
represent the operations of mechanical systems in the
tower. These local or stochastic-like data are not important
in this study, because only the modal frequencies excited
continuously in time are sought.
So far, some mathematical tools have been used to

enhance signals. At the next step, it is tried to integrate the
physical properties to extract more reliable information

Table 5 Effects of denoising with the GCV method for “BattleLemarie” wavelets, where Nd = 13

method n(BattleLemarie[N]) P12 P51

SNR PSNR SNR PSNR

GCV 2 – 37.51220 22.48681 14.50130 29.00262

GCV 3 2.524623 28.41792 9.416154 24.65823

GCV 4 – 39.45680 22.36815 20.25745 34.51602

GCV 5 – 3.82456 21.44457 9.14055 24.06958

GCV 6 – 39.71980 22.37107 19.59721 33.88775

GCV 7 – 2.11519 20.21495 8.419222 23.10889

GCV 8 – 39.93670 22.36848 20.21610 34.49167

GCV 9 – 1.67073 19.56586 6.465177 21.24691

GCV 10 – 40.13260 22.36773 20.53085 34.79046

GCV 11 – 1.32343 19.16377 4.554586 19.54653

GCV 12 – 40.3243 22.36709 19.7327 34.01635

Table 6 Effect of decomposition levels (Nd) with Symlet[12] wavelet

method Nd P12 P51

SNR PSNR SNR PSNR

GCV 1 – 9.97622 23.26845 5.658332 19.27875

GCV 2 – 19.0964 22.53899 – 0.27328 16.60651

GCV 3 – 20.6277 22.53432 12.68916 27.32417

GCV 4 – 28.2157 22.42929 12.34322 26.96229

GCV 5 – 31.7853 22.41064 12.2635 26.88179

GCV 6 17.47486 42.28752 12.57217 27.09593

GCV 7 22.22651 46.72911 12.61731 27.15701

GCV 8 22.22536 46.72797 16.6339 30.97174

GCV 9 22.22257 46.72528 16.63093 30.96646

GCV 10 22.22027 46.72262 18.22178 32.48961
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from the enhanced data. The main idea is that if some
information is repeated in different data, they may include
the physical responses of the structure. The MRA-based
approaches for such detections are XWT and the
autocorrelation of wavelet coefficients (since the noise is
assumed to have random feature with zero coherence).

6.3 XWTs and autocorrelation of wavelet coefficients for
frequency detections

Physical responses are tried to be detected by XWT, the
corresponding spectral power and the autocorrelation of
wavelet coefficients.
XWT is used for detection of energy coherencies in the

enhanced pairs {P21, P31}, {P21, P51}, and {P12, P72}.
These signals are enhanced with the iterative algorithm
with Symlet[12], where Nd = 13, and N = 10 (the number
of iterations). Results presented in Figs. 14, 15, and 16 are
for the enhanced pairs {P21, P31}, {P21, P51}, and {P12,
P72}, respectively. In each figure, the density of wavelet

energies, the corresponding XWT and the spectral powers
are provided. In these figures, plotted ranges for jWψj2
and jWψj are 0:02Max½jWψj2�£jWψj2£Max½jWψj2� and
0:02Max½jWψj�£jWψj£Max½jWψj�, respectively.
Based on XWTs and the corresponding powers, the

detected frequencies are:
1) Form the pair {P21, P31} (Figs. 14(e) and 14(f)):

0.88, 0.92, 1.05, 1.09, 1.11, 1.22, 1.24, 1.29, 1.59, 1.64,
1.8, 1.84, 2.12, 2.16, and 2.3 s.
2) Form the pair {P21, P51} (Figs. 15(c) and 14(d)):

0.88, 0.92, 1.05, 1.09, 1.24, 1.29, 1.59, 1.64, 1.71, 1.78,
1.8, 1.84, 2.12, 2.16, and 2.3 s.
3) Form the pair {P12, P72} (Figs. 16(e) and 14(f)):

0.88, 0.92, 1.05, 1.09, 1.24, 1.29, 1.55, 1.59, 1.64, 1.8,
1.84, 1.89, 1.96, 2.12, 2.16, and 2.3 s.
Since signals are not recorded simultaneously, periods

which are detected in all pairs are assumed to be the
possible modal periods. They are: 0.88, 0.92, 1.05, 1.24,
1.29, 1.59, 1.64, 1.8, 1.84, 2.12, 2.16, and 2.3 s. The results
also show that due to the semi-symmetric shape of the

Fig. 9 The iterative thresholding for P12 where Cj
n = 1.8, Symlet[12] and Nd = 13. The last row contains final denoised signal and

estimated noise.
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structure, there are several pairs of nearly excited periods.
In the following, by the autocorrelation of the wavelet

coefficients (of CWTs), interrelationships are studied at
different resolution levels of the enhanced data and the
results are illustrated in Fig. 17 for P21, P31, P51, P12
and P72. It is evident that by the autocorrelation transform,
it is possible to detect some short periods which are not
captured by XWT. The detected short periods are: 0.12 and
0.4 s, which are common in all data. These short periods
participate marginally in the ambient vibration test, due to:
1) the nature of wind loading: this type of load mobilizes
mainly some first modes; 2) the rigidity of the concrete
tower: the participation of higher modes is small for the
wind load.
Based on the aforementioned detections, the possible

modal periods are mentioned in Table 8. The tower was
independently modeled by an undamaged FE model using
3-D continuum elements with linear shape functions [117].
The modal frequencies of the FE model reported in Ref.
[117] are presented in Table 8.

Regarding the modal frequencies, the difference
between the results may be attributed to: 1) damage
existence in different parts of the concrete tower, which is
not considered in the FE model; 2) the effects (mass and
stiffness) of three operating fans on the top of the main
tower, one Hooper and the operation of some mechanical
systems in the main tower are not considered in the FE
model; 3) the steel-concrete interaction due to the existence
of four narrow and long steel towers on the top of the main
concrete tower (Fig. 1) and their connection to the concrete
tower. In the FE model, steel towers have rigid connections
with the main tower, which may not be the case in real
structure; 4) ignoring the foundation effects. These
differences between theoretical and experimental results
were also reported in some independent studies [65].

7 Conclusions

In this study, the main novelty from the application-wise

Fig. 10 The iterative thresholding for P12 where Cj
n = 2, Symlet[12] and Nd = 13. The last row contains final denoised signal and

estimated noise.
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point of view is introducing the iterative enhancement
approach. For this approach, then, a computational method
is suggested to help in choosing proper values of the
iterative algorithm.
Initially, two general MRA-based approaches have been

examined for the enhancement of high-level noisy signals
recorded from the ambient vibration tests: the one-step and

the iterative denoising methods. The regularization-based
denoiser is also studied as the one-step denoiser. For the
data with small values of SNR, the results of the
variational-based minimization (the regularization) and
the MRA-based one-step denoising methods confirm that:
1) Outputs can be incorrect (Figs. 6 and 7).
2) For the variational-based denoising, there is no

Fig. 11 Determination of thresholds for Cj
n for different enhanced data; SNRs and PSNRs are obtained by the iterative denoising method

by the wavelet Symlet[12], Nd = 13 and ten iterations. (a) SNR-Cj
n for P12; (b) PSNR-C

j
n for P12; (c) SNR-C

j
n for P51; (d) PSNR-C

j
n for

P51; (e) SNR-Cj
n for P31; (f) PSNR-C

j
n for P31; (g) SNR-C

j
n for P72; (h) PSNR-C

j
n for P72; (i) SNR-C

j
n for P21; (j) PSNR-C

j
n for P21.
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Table 7 Iterative denoising of data P12 with parameters: Cj
n ¼ 1:75 and Nd = 13

iteration Symlet[4] Symlet[12]

SNR PSNR SNR PSNR

1 – 7.55393 24.76396 – 7.21248 24.65147

2 – 4.92225 25.24466 – 4.53529 25.20301

3 – 3.10526 25.76809 – 2.92566 25.62346

4 – 1.62498 26.31642 – 1.5398 26.14033

5 – 0.1176 26.99467 – 0.21442 26.73450

6 1.565725 27.89154 1.296935 27.54208

7 3.492652 29.12365 3.141206 28.69235

8 5.906256 30.92646 5.588525 30.51896

9 9.267875 33.77444 9.015204 33.39050

10 14.43995 38.5877 13.90964 38.10661

11 22.86539 46.97153 20.82031 44.92097

Fig. 12 Iterative denoising of the signal P12 with ten iterations; both denoised signal and estimated noise are provided at each iteration

(rows 1–5). The last row contains final denoised signal and estimated noise; evaluations are obtained with: Symlet[12], Cj
n ¼ 1:75 and Nd

= 13.
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optimum value of SNR in the empirical approach for
estimation of l (Fig. 5). Moreover, denoised data (even
with marginal effects of regularization) may contain
physical information (Fig. 6).
3) For wavelets, both empirical and theoretical

approaches are unsuccessful for estimation of threshold
values (Figs. 7 and 8).
4) Results are very sensitive to wavelet families

(Tables 3, 4, and 5).
5) Different thresholding methods lead to different

results (Table 2).
6) The number of decomposition levels is also impor-

tant (Table 6).
For the iterative denoising approach in high-level noisy

data, the results offer:
1) Different Cj

n values are needed for different recorded
data (Fig. 11); hence, it is essential to use an adaptive
approach for selection of Cj

n.
2) It can enhance the signals (see captured noise in

Fig. 12 and corresponding stochastic density of energy in
Fig. 13).
3) The method can detect some stochastic-like data,

which confirms the importance of such enhancements
(Fig. 13).

Fig. 13 Energy Density for remaining noise after ten iterations of the peeling algorithm where Nd = 13; the energies are evaluated
by the complex Morlet wavelet with parameters υ b= 2 and υ c= 1.75. Energies are presented for the range

0:02Max½jWΨ j2�£jWΨ j2£Max½jWΨ j2�. (a) noise of P12 in the wavelet space where Cj
n ¼ 1:75; (b) noise of P51 in the wavelet space

where Cj
n ¼ 1:90; (c) noise of P31 in the wavelet space where Cj

n ¼ 1:90; (d) noise of P72 in the wavelet space where Cj
n ¼ 1:85; (e)

noise of P21 in the wavelet space where Cj
n ¼ 1:90.
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4) Noise cannot completely be removed (see the
localized features in Fig. 15).
5) The results are not so sensitive to the wavelet orders

or families (Table 7).
6) While some criteria can be introduced (e.g., Fig. 11)

for the threshold estimation, the trial and error method can
also be recommended for determination of threshold (this
is clear by comparing Figs. 9, 10, and 12).
After the enhancement of the high-level noisy signals

(from ambient vibrations) by the iterative algorithm, it has
been tried to detect excited frequencies by some MRA-
based signal-processing approaches: the cross-wavelet
analyses, corresponding spectral powers and the auto-
correlations of wavelet coefficients. CWTs have been
performed with the complex Morlet wavelets for capturing
both instantaneous frequencies and corresponding excita-
tion patterns in the time-frequency representations.
An excited frequency is known as a physical phenom-

Fig. 14 Powers and energies of WTs of enhanced signals P21 and P31 and corresponding XWT and spectral power of XWT; plotted

ranges are 0:02Max½jWΨ j2�£jWΨ j2£Max½jWΨ j2� and 0:02Max½jWΨ j�£jWΨ j£Max½jWΨ j�. (a) The spectral power of the enhanced

data P21, evaluated by jWΨ ðP21Þj2 ; (b) the density of energy for the enhanced data P21, jWΨ ðP21Þj2; (c) the spectral power of the
enhanced data P31, evaluated by jWΨ ðP31Þj2; (d) the density of energy of the enhanced data P31, jWΨ ðP31Þj2; (e) the spectral power of
XWT for the enhanced data P21 and P31; (f) the density of jXWΨ j for the enhanced data P21 and P31.
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enon if it is continuous through the time in the time-
frequency representation, and has a local concentration of
the spectral power in the frequency (scale) domain. This
simultaneous study for different pairs of the enhanced data
provides:
1) XWTs can improve the time-frequency representa-

tion for detection of excited frequencies (e.g., Fig. 15).
2) This transform, however, seems to be insufficient

since there are several excited frequencies with continuous
pattern through the time (see Figs. 14–16).
3) In this regard, the spectral power of WTs helps in

capturing frequencies with considerable energies.
4) As the participation of higher modes is small (due to

the stiffness of the structure), the multiresolution-based
autocorrelation analysis can help distinguish such possible
modal frequencies (Fig. 17).
5) XWTs can also decrease the effects of noise-like

stochastic phenomena (see Fig. 15).
6) In detected periods, there are several couple of

periods (near each other), because of the semi-symmetric
plan of the structure (see Figs. 1 and 2).
Finally, the captured frequencies have been compared

with those of a 3-D FE model; the results show a good

agreement. Nevertheless, there are some frequencies which
are not seen in the FE model, which can be justified by: 1)
the absence of four narrow steel towers on the top of the
main (concrete) tower in the FE model; 2) during the
ambient vibration test, the main tower was in operation
(this means some detected frequencies may correspond to
the operating systems); 3) the operations of some
equipment and fans on the main tower (which were not
considered in the FE model); 4) the real tower has several
localized damaged parts which were not considered in the
FE model.
The detection algorithm used here is completely based

on the signal processing approach. The results can be
examined by other methods which take into account the
structural properties (such as modal superposition in
MDOFs) [13,19,76]. The identification of modal shapes
and the corresponding damping will be studied in an
independent work.
For future works, the following tasks are recommended:
1) Updating the FE model to include the damages and

operating systems (mass and stiffness),
2) Using wavelet packets for the iterative enhancement

approach. One of the shortcoming of the common discrete

Fig. 15 Powers and energies of WTs of enhanced signals P21 and P51 and corresponding XWT and spectral power of XWT; plotted

ranges are 0:02Max½jWΨ j2�£jWΨ j2£Max½jWΨ j2� and 0:02Max½jWΨ j�£jWΨ j£Max½jWΨ j�. (a) The spectral power of the enhanced

data P51, evaluated by jWΨ ðP51Þj2; (b) the density of energy for the enhanced data P51, jWΨ ðP51Þj2; (c) the spectral power of XWT for
the enhanced data P21 and P51; (d) the density of jXWΨ j for the enhanced data P21 and P51.
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WTs is that they may not suitable for the processing of high
frequency signals with nearly narrow bandwidth. For this
reason, the wavelet packet was developed. The full
transform leads to a large number of subbands (time-
scale cells) and so significant numbers of signal repre-
sentation possibilities. Decomposition increasing may lead
to a more flexible analysis capability, especially, for data
including different slow and fast variations. To capture

properly these responses in the time-scale representations,
the concept of the best basis was proposed. The best basis
can be evaluated by defining a cost function where
different ones were developed [118–120]. Hence, the
best basis can depend on the cost definition. This
dependency can also affect the iterative denoising results.
This can also be considered for the future study.

Fig. 16 Powers and energies of WTs of enhanced signals P12 & P72 and corresponding XWT and spectral power of XWT; plotted

ranges are 0:02Max½jWΨ j2�£jWΨ j2£Max½jWΨ j2� and 0:02Max½jWΨ j�£jWΨ j£Max½jWΨ j�. (a) The spectral power of the enhanced

data P12, evaluated by jWΨ ð12Þj2; (b) the density of energy for the enhanced data P12, jWΨ ð12Þj2; (c) the spectral power of the enhanced
data P72, evaluated by jWΨ ð72Þj2; (d) the density of energy for the enhanced data P72, jWΨ ð72Þj2; (e) the spectral power of XWT for the
enhanced data P12 and P72; (f) the density of jXWΨ j for the enhanced data P12 and P72.
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Appendix A: Different thresholding
approaches

The Universal, SURE, and GCV thresholding methods try
to minimize the mean square errorMSEðεÞ¼kf ε – f k2=Nf ,
where f ε is a vector of thresholded data with the threshold
value ε , f is the unknown smooth (untouched or without

noise) data, and Nf denotes the length of data. Since f is
unknown, it is necessary to estimate MSE [48]. In the
Universal method, the threshold gives a minimax solution
of the ideal mean squared error in the asymptotic behavior
of MSE (as N ↕ ↓1 ) [46–48,121]. In the SURE method,
the Stein’s unbiased risk estimator (SURE) is used forMSE
estimations [46–48,122]. Asymptotically, the GCV func-
tion is a vertical translation of the MSE function, while the

Fig. 17 Autocorrelations of wavelet coefficients of the enhanced data. (a) Results for the enhanced P21; (b) results for the enhanced
P31; (c) results for the enhanced P51; (d) results for the enhanced P12; (e) results for the enhanced P72.

Table 8 Comparison of modal periods from the ambient vibration test and the FE model [117]

method period (s)

0.0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5

the ambient
vibration test

0.12, 0.4 0.88, 0.92 1.05, 1.24, 1.29 1.59, 1.64, 1.8, 1.84 2.12, 2.16, 2.3

the FE modelling 0.1829, 0.1843, 0.20,
0.2138, 0.3139, 0.3232,
0.3954, 0.4118

– – 1.6004, 1.9738 –
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GCV can be evaluated only based on input (noisy) data.
Hence, the threshold value minimizing GCV also mini-
mizes MSE [48].

Appendix B: Other approaches for parameter
selection of the Morlet wavelet

Different approaches were suggested for selection of the
pair {υb, υc} for the Morlet wavelet for different purposes:
1) Obtaining an optimal time-frequency resolution based
on the predefined modal frequencies {υi} of a structure in a
way that two successive near modal frequencies can
effectively be distinguishable [10]; 2) minimizing the
Shannon entropy function; this wavelet entropy checks the
sparsity of WT. Accordingly, a wavelet family with a
minimum number of WT coefficients is the best [11];
3) minimizing the end effect for the ith modal frequency,
[10]; 4) maximizing the Kurtosis number, which measures
the impulsive content (peakiness) of a signal [12]. These
constraints can also be considered together. For example,
Kijewski and Kareem [10] used the first and third
conditions, while conditions 1 through 3 were satisfied in
Ref. [13].

Appendix C: Denoising with variational-based
minimization- the regularization approach

In the regularization approach, the denoised solution is the
minimizer of the functional [58]: Qðf Þ ¼ �ðf – yÞ2 þ l

�Ωðf Þ; where: y and f denote noisy and denoised data,

respectively; function �ðf – yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
ðf i – yiÞ2

q
denotes

the residual error; l is a penaltization (smoothing) factor
with possible values in the range of 0£l < 1; and
functionΩðf Þ is an extra information. For this information,

several measurements are available, such as: Ωðf ÞTV ¼
!jdf=dxjdx, Ωðf ÞL2 ¼ !jd2f=dx2j2dx and Ωðf ÞSobolev ¼
!jdf=dxþ d2f=dx2j2dx; where: Ωðf ÞTV measures the total

variation (TV) of f(x); Ωðf ÞL2 and Ωðf Þ Sobolev are defined
as semi-norms in the energy and Sobolev spaces,
respectively. For numerical algorithms see Refs. [123–
125].
To remap the possible range of l into the unit range

[0,1], the new parameter p can be defined as: l ¼ 1 – p

p
.

Cases p↕ ↓1 and p↕ ↓0 lead to data without denoising and a
linear fit, respectively. Proper values for the parameter p
can be estimated by the trial and error method or by an
empirical approach, for example, by maximizing the
SNR-p curve.
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