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SUMMARY

In this paper, a series of multimaterial benchmark problems in saturated and partially saturated two-phase
and three-phase deforming porous media are addressed. To solve the process of fluid flow in partially
saturated porous media, a fully coupled three-phase formulation is developed on the basis of available exper-
imental relations for updating saturation and permeabilities during the analysis. The well-known element
free Galerkin mesh-free method is adopted. The partition of unity property of MLS shape functions allows
for the field variables to be extrinsically enriched by appropriate functions that introduce existing discon-
tinuities in the solution field. Enrichment of the main unknowns including solid displacement, water phase
pressure, and gas phase pressure are accounted for, and a suitable enrichment strategy for different discon-
tinuity types are discussed. In the case of weak discontinuity, the enrichment technique previously used by
Krongauz and Belytschko [Int. J. Numer. Meth. Engng., 1998; 41:1215-1233] is selected. As these functions
possess discontinuity in their first derivatives, they can be used for modeling material interfaces, generat-
ing only minor oscillations in derivative fields (strain and pressure gradients for multiphase porous media),
as opposed to unenriched and constrained mesh-free methods. Different problems of multimaterial poro-
elasticity including fully saturated, partially saturated one, and two-phase flows under the assumption of
fully coupled extended formulation of Biot are examined. As a further development, problems involved
with both material interface and impermeable discontinuities, where no fluid exchange is permitted across
the discontinuity, are considered and numerically discussed. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mechanics of partially saturated porous media is one of the most important branches of mechanics
that has gained great attention in the past few decades because of its wide applications in major civil
engineering projects. On the basis of the early contributions by Terzaghi [1] and Biot [2], which laid
the fundamental concepts of porous media, averaging theories were introduced, and the governing
equations for deformable porous systems under nonisothermal multiphase situations were developed
and extended to account for various thermodynamic effects [3,4]. For a comprehensive explanation
and discussion on the governing equations and numerical discretization of fully coupled deforming
porous media, see [5].

Various numerical solutions to the problem of three phase partially saturated porous media can be
found in [6-11], all using the finite element method and assuming different static and dynamic con-
ditions and miscible and nonmiscible fluid phases. Despite the fact that the finite element method is
known as a robust and suitable tool for solving general partial differential equations, it suffers from
some drawbacks in certain problems that involve severe mesh distortions [12, 13] and general crack
propagation problems where remeshing strategies are needed [14]. In addition, in the case of stationary
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cracks, a conforming and highly refined mesh is required to capture the singular gradient fields at the
tip of discontinuity [15]. Here, an alternative element-free Galerkin method is presented on the basis
of the moving least-squares (MLS) shape functions[16-20].

Among the mesh-free methods, Modaressi and Aubert [21] proposed an element free Galerkin
(EFG) algorithm for deforming multiphase porous media, in which the displacement of the solid skele-
ton was modeled by the standard finite element method, whereas fluid pore pressures were modeled
using the EFG approach. They also proposed a method for handling material discontinuities based on
the Lagrange multipliers. Wang et al. [22] developed a mesh-free algorithm based on the consolida-
tion theory of Biot for the problem of one-dimensional saturated porous media. Samimi and Pak [23]
used EFG method to solve the problem of saturated porous systems in three dimensions. Khoshghalb
and Khalili [24] developed a new time integration scheme with second-order accuracy based on the
mesh-free radial point interpolation method (RPIM). They also developed a novel formulation using
the same methodology for partially saturated two-phase fluid flow, taking into account the hydraulic
hysteresis [25]. Other important contributions in continuous porous media using mesh-free algorithms
can be found in [26-30].

On the basis of the basic concepts of generalized finite element method [31] and partition of unity
finite element method [32], the local enrichment of finite element solutions for capturing of arbitrarily
oriented discontinuities within a domain was proposed by Moes et al. [33] and Belytschko and Black
[34]. This method, now called the extended finite element method, rectifies the need for remeshing
the solution domain during the propagation of discontinuities and does not require conforming the
discontinuity lines with element edges [35,36]. Imposition of arbitrary weak discontinuities was pro-
posed by [33], and modified strategies were exploited [37—41] to correct the poor convergence ratios of
original algorithms.

Multiple contributions that employ the extrinsic enrichment strategy to fully coupled porous media
exist in the literature. Rethore ef al. [42] developed a two-scale enriched finite element method formu-
lation around the crack region under the fully saturated state. An extension of the proposed model to
cohesive cracks for partially saturated porous media assuming active and passive gas pressures were
proposed by [43] and [44], respectively. Irzal et al.[45] developed a formulation for cohesive crack
propagation in geometrically nonlinear saturated porous media under the framework of extended finite
element method (XFEM), whereas Khoei et al.[46] proposed an enriched finite element formulation
for nonisothermal saturated porous media with impermeable discontinuities.

Simulation of strong discontinuities by the extrinsic enrichment in mesh-free methods has gained
great attention in the past few years. A three-dimensional enriched mesh-free method for representing
continuous multiple cohesive fractures was developed in [47]. Rabczuk and Belytschko [48, 49] and
Rabczuk et al. [50] proposed a simplified mesh-free method for arbitrary evolving cracks in which no
representation of the crack’s topology was required. Application of extrinsically enriched mesh-free
methods to modeling slip lines in geological materials with cohesive surfaces was proposed in [51]
and the same approach was applied for thin shells in [52,53] and to fluid-structure interaction in [54].
Here, the partition of unity property of MLS shape functions, proposed in [55-58], is utilized to model
the strong discontinuities using the extrinsic enrichment of the basic mesh-free solution.

A challenging problem in enriched mesh-free methods is the problem of material discontinuity,
which is discussed in this paper. Such a discontinuity is a result of difference in material properties
and causes discontinuity in the first derivatives of the field variables while the main unknowns remain
continuous. As many of practical porous applications consist of different soil layers with different
material properties, it is of great importance to consider this type of discontinuity. For example, in
hydraulic embankments, soils with different values of permeability and stiffness are used or the soil
foundations may naturally be consisted of different soil properties. This type of discontinuity, known
as the weak discontinuity, can be captured by the finite element method by adjusting the element edges
to coincide with the line of discontinuity. In mesh-free methods, however, because of the continuity of
derivatives in EFG method, continuous but oscillatory solution for derivatives is obtained, as reported
in [19]. There are basically two methods for handling material discontinuities in mesh-free methods:
(i) constrained mesh-free methods that exploit additional constraint equations to impose continuity of
main unknowns and (ii) enrichment of the solution by an appropriate function that reproduces desired
properties resulted from the material discontinuity.
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In this work, the second method, as proposed by Belytschko and Krongauz [59], is adopted. This
method enriches the basic solution around the line of discontinuity by the proposed functions with
the properties of compact support and discontinuous first derivatives. In contrast to the Lagrange mul-
tipliers method, only minor oscillations around the line of discontinuity exist [59], and dissimilar to
the penalty method, the precision of enforcing material discontinuity does not depend on the user’s
predefined coefficients.

Nevertheless, a Lagrange multiplier constraining equation is coupled to the system of equations to
impose the essential boundaries as additional conditions (see [16,60—62]). After a concise derivation
of governing equations for multiphase iso-thermal porous media, the weak form of the governing
equations are developed. Because of the nonlinearities of equations in fluid phases in the case of
partially saturated porous systems, additional experimentally defined equations are exploited and a
linearization of equations using the Newton—Raphson strategy is performed. Adopting an enriched
MLS approximation for field variables, the discretized form of enriched system matrices are derived.
Simulations of well-known poro-elasticity problems allow for assessment of enrichment strategies for
capturing existing strong and weak discontinuities. The results are discussed for impermeable disconti-
nuities, which lead to discontinuous pressure fields with no fluid exchange through discontinuity walls
and material interfaces in the framework of fully coupled deformable saturated and partially saturated
porous media.

2. GOVERNING EQUATIONS FOR FULLY COUPLED PARTIALLY SATURATED
MULTIPHASE POROUS MEDIA

The governing equations are developed for the general case of partially saturated three-phase
deformable porous media undergoing small elastic deformations. Solid phase displacements (u), water
pressure (py,), and gas pressure (p,) are considered as the main variables.

Assuming multiple fluid phases as distinct wetting and nonwetting immiscible parts, existence of
any phase change during the fluid flow process is ignored. No heat exchange is present, and only equa-
tions of momentum and mass balance for each phase are applied. The whole system is assumed to
be working under slow phenomena condition (consolidation), and all inertia and convective terms are
droped out from the fully coupled system of equations.

The phenomenological approach of Biot is extended for multiphase partially saturated porous media.
Neglecting all convective and inertia terms, the linear balance of momentum equation for the total
multiphase system is written as

LTo+pb=0 )
where b is the body force vector and p is defined as
p=(1—n)ps+nSypw + (1 —n)Sapa 2

where 7 is the porosity of soil mass and p,, and p, are the fluid densities. The modified effective stress
is defined as

0" =0 +am(Sypw + Sapa) (3)

where o and " are the total and effective stress vectors, respectively, Sy, and S, are the degrees of

saturation for water and gas phases, respectively, and m = [ 1 0 O]T. « is the Biot’s constant and
is defined by

a=1-— “

in which K7 and K are the bulk modulus of porous skeleton and solid grains, respectively. The
constitutive relation for the solid phase is written in an incremental form that is more suitable for
nonlinear problems:

de” =D"(de) ©)
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where DT is the material tangent stiffness matrix, which is simplified to the elastic stiffness tensor D
for linear elastic materials considered in this work (see equation (A.1)).
Writing the momentum balance equation for each phase leads to the well-known generalized Darcy
equation for phase «:
kk
09 = — 2~V pg + pab] a=w,a (6)

o

where v** is defined as the relative velocity for phase o with respect to the solid phase. k.4 is the

relative permeability of phase o and stands for modification in permeability value of phase o due to
interaction with multiple fluid flows. k is the intrinsic permeability of medium and is equivalent to
the permeability of a fully saturated state. In practice, an experimental relation for ko in terms of the
water saturation and capillary pressures is assumed.

Assuming no mass exchange between the phases, the mass balance equation for phase « is
written as

— + paV.vg =0 (N

Adding mass balances of each fluid phase multiplied by its corresponding volume fraction to the
mass balance equation of solid phase gives the following continuity equation for phase o:
(1 —n) dps n 0pg n 0Sy 1
—+Vog+—— + —— + — nS ) =0 8
ps Ot Us Pe 0t Sy Ot SoPa (1Sapav™) ®
The time derivative of solid density and solid phase pressure are related by the following
equation [5]:

€))

1 dps 1 1 dps
ps Ot 1—n

(x —n)?y — (1 —a)V.vg

Assuming water saturation to be a function of capillary pressure, its time derivative can be
written as

Sy Sy 3& _ 08y dpg  0Sy 8p_w

9t dpe 9t dpe Ot Ope ot

10)

in which p, = p, — pw and the value of %ST’: is determined from experimental relations. On the basis
of the equation of state for fluid phases, one can write

1 dpy 1 dpy
e 0t Kq Ot
Incorporating the appropriate constitutive relations (9), (10), and (11) into equation (8), and the
Darcy relations for water and gas phases (6) multiplied by their corresponding values of saturation, the
following continuity equations for water and gas phases are obtained after lengthy manipulations.
The continuity equation for the water phase flow [5]

[Sw(oe—n) (Sw—i-a&pc)—i-n'sw _nasw}aﬂJr

Y

K ape Ky apc ot
a—n oSy Sy | 9pa (12)
S 1-8Sy, ——
|: YK ( Y pe pc)+napc:| ot *

oSy V.vs + V.[kyw(=Vpy + pu(b))] =0

The continuity equation for the gas phase flow [5]

158 (5, B ) 250 ] e,

K, ape ap. | Ot
oa—n A Sy  n(l—=Sy)| Ipa (13)
1-S 1-Sy, —— -
[( g, ( Y Ope pc) "o T K ot +

a(l = Sy)V.vs + V.[ka(=V py + pw(b))] =0
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and a set of essential and natural boundary conditions on external and internal boundaries

u=u on Iy
Pw = p_w on pr (14)
Pa = Pa on Tp,

onr, =t on I}
Vw.lr, = quw on Ty, (15)
Va.nr, = ga on Ty,

onr, =0 on T
[vw]rr, =0 on T, (16)
[va].nr, =0 on T,

where u, py,, and p, are defined as the prescribed values on the essential boundaries I'y, I, , and
I'p,, respectively. Simultaneously, t, v, and g, are the rate of external force and flux vectors on natu-
ral boundaries of I's, I'y,, , and I'y,, . nr,, nr, and nr,, are the unit normal vectors to external boundaries
and nr, represents the unit normal vector to the discontinuity line. [vy,] and [v,] represent the amount
of water and gas fluxes attracted to the discontinuity. Equation (16) is the additional condition that
holds along the strong discontinuity surface (I';) and confirms the assumption of traction-free discon-
tinuity with no fluid exchange along the discontinuity surfaces. Therefore, the whole state of a partially
saturated multiphase deforming porous medium under static loading is expressed by the momentum
balance equation of multiphase system (1), the continuity equation of water phase (12), and the con-
tinuity equation of gas phase (13) along with appropriate boundary conditions of (14), (15), and (16).
The solid displacements, water pressure, and gas pressure are assumed to be the primary unknowns,
and the water saturation degree (S, ) and the relative permeability of phases (k,q) are introduced to
the system of equations based on the experimentally defined relations for capillary pressures.

3. NUMERICAL IMPLEMENTATION

The Bubnov—Galerkin method, in which both the test and trial functions are replaced by the MLS
shape functions, is adopted to discretize the constrained weak form of developed governing equations
by the EFG method.

The MLS shape approximations lack the property of Kronecker delta function suitable for handling
essential boundaries. As a result, imposition of boundary conditions can not be simply performed
by replacing the values of prescribed boundaries for the unknowns, as it is the case for finite ele-
ment solutions. Instead, a constrained set of governing equations must be satisfied. Here, the Lagrange

multipliers method is adopted.
Using a weighted residual method, the following constrained Galerkin weak form of the linear
momentum balance equation (1) is derived:

/S(Luu)T(a)dQ—[SudeQ— SuTidF,—S(/ A,{(u—ﬁ)dru)=o (17)
Q Q Iy Iy

The same methodology can be applied to the continuity equations of water phase (12) and gas phase

(13),
(¢ —n) Sy nSy aSw | Ipw
S(pw)T | S Sw+ —pe |+ —2 — A
/;2 (Pw) |: w K, ( w+t e Pc |+ Ko n e Y +

a—n aS aSw | 9p,
S(pw)T | S 1—Sw— —2pe Y14
»/;2 (Pw) |: v K ( v ape p(') o ope ot *

u
fQ ) am SuLy Srd + /Q 5 (L po )" k(=Y puo + puo (B)]d 2+

[ 80w quwdrs, -3 ( /
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aS 9
/8(pa)T (1_ w) ) Sw+_wpc +l’l pwdQ

apc ap(; 3[

d J 1 - w d
[ swor [a-s.)° (1_Sw_ﬁpc)_n So 10 5u)] ey,
@ a

0pe ope
ou
[ 8o et = Sm Ly a0 + [ 8 (Lp,pa)” Ra(=Vpa + pub)laR+

/ 8@0T@dma—6([
Ty Tp

where §(u), §(pw), and §(p,) are variations of solid displacement, water pressure, and gas pressure,
respectively. Ly, Ly, , and L, are the differential operators defined as

19

Az;a (pa_p_a)drpa)zo

a a

ki)
x 0 s
5 ax
L=|0 2. %ﬁgf[ﬂ 20)
FR) dy
Jdy dax

As explained before, solid displacement (), water pressure (py, ), and gas pressure (p,) are taken as
the main unknowns. On the basis of the enrichment strategy to capture discontinuities, values of the
unknowns at an arbitrary point x of the domain are approximated by the enriched MLS approximations,

Nsrd Nenr

2,th(x) — Z <D1;,std (x)ulstd + Z <DLIt,enr(x)uIenr
I=1 I=1

Nsrd Renr

Pbo) = 3 o (r7) o+ 3 @ (18, e
I=1
Nstd Renr

pg(x) — Z @Pa Std(x) ( std) + Z (Dpa enr(X)( enr)
I=1

where @’;’Std, @fw’”d

de“’”d are the standard MLS shape functions and ®7"", ®7*“"" and
@f“ “"" represent different enrichment functions defined in Section 4. n;4 is the number of nodes in
the regular support domain and 7., is defined as the number of extra DOFs in the support domain of
point x.

Putting the enriched approximations (21) and the effective stress (3) into equations (17), (18), and
(19) and after some algebraic and variational manipulations, the complete discretized set of constrained
equations for a fully coupled partially saturated three-phase deforming porous medium is obtained:

, and

KnHpn+l _ C:;lpwnﬂ _ C:;—lpanJrl — F,"H GTA”“
C&-s{—ll']n+1 +P3_;1P.wn+1 C“HP +Hn+1Pn+1 F,mt! Ggwl'}Il 22)

C::—]Un+1 + C;l;iv-l Pw + Pl‘l+1 Pn+1 + Hn+1Pn+1 Fn+1 Ggﬁx;;}-l

along with the set of constraint equations

U = GﬁUn+l
Py = G;, P,," 1! (23)
Isa — G[_)aPan+1
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where
(Gi) g = —/ cbl;de]"u
Ty

(Gr)ix =— /F 7" NidTp, 24)

Pw

(GP—a)IK:_/ (D?adeFPa

Pa

Ni(x) = 8(x — xx), and x represents the set of points located along the essential boundaries. U, Py,
and P, are the vectors of prescribed essential boundaries over x. A detailed description of the system
matrices/vectors in equation (22) is given in Appendix A.

The time derivatives of unknown variables are obtained by assuming a linear variation of the
unknown variables in each time step,

Un+1 _yn
At

Putting (25) in the total constrained system of equations (22) and using the Newton—Raphson method,
the following equations for the fully coupled formulation can be written as

Pyt —pn
At ’

n+1 n
Pa — Pq

Un+1 —
At

prtl — Pt — (25)

El

Rll;y'l+1 — Kn+1Ui,n+l _ Csnw+1Pll;J,n+1 _ Cst:l+1 P‘l;y'l+1 _ F:+1 + GﬁTA‘z+1
Riy'l+1 _ Cll+1 Un+1 -un + Pn+1 P3V+1 B Pa + Cn+1 P;H—l B P:
pw - Yws A[ ww Al‘ wa Al
+ Hyg'Py = Fo*t + Gp ant!

+1 +1 +1 (26)
eintt _ pntt (VU g (PRHPRY L (PR P
e VA A U G v R Gy Vi
n+1 pn+1 n+1 T n+l
+H, P, —F, +GﬁaA'Pu
in+1 _ 1 i ,n+1 p 1 i ,n+1 5 1
Rl: =U_GﬂUn+ > R;: =Pw_GI;wPa+ ’ R;’Z :Pa_GﬁaP:+
w a
and the unknown and residual vectors can be expressed by
in+1
Ui,n+1 Ru
. i,n+1
P in+1 Rpw
w
in+1 i,n+1
. P, . Rpa
Xl =0 imst R = int1 (27)
u R,
u
in+1 .
)'Pw R;’”+l
i n+1 o
Ao Rim+1
APa

Differentiating the residual with respect to the unknowns vector X gives the Jacobian matrix for the
constrained system of equations:

[ K —Cyy —Cu G 0 07
Cws wa Cwa = T
At ar t Hyw At 0 Gy, 0
Cas Caw Paa T
J= AL At At +H,, O 0 Gl_)a (28)
—G; 0 0 0 0 0
0 -Gj,, 0 0 0 0
| 0 0 —Gp, 0 0 0 |
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2014)

DOI: 10.1002/nag



M. GOUDARZI AND S. MOHAMMADI

The following fully coupled nonlinear system of equations should be solved at each time step to
compute the unknown increments.

RiFLAHL _ Rintl 4 ggxitlatl _ (29)

—dUi+1,n+1 =
i+1,n+1

d Pt
i+1,n+1

dPa _Ri,n+1

dxi-‘rl,n-'rl _ P41 1 — ) (30)
dl:l-l- n+

i+1,n+1
drst

i+1,n+1
ALt

in which R is given in (27) and is computed as

—Ui,n+1 = 3 _

pintl Fy
w Fw
i ,n41

int1 P‘l’n Fo n
R =T jimer | = 0 —P (D)

u

Ai,n+1 I'_)w
Pw _

),;”H-l L Pa .

where P" is the value of converged solution from the last time step of analysis:

P = | Cu(L)+Caw (A—';’) + Paq (%) 32)

Then, the unknown vector is updated at each iteration until the required convergency is achieved:

_Ui+1,n+1 - _Ui,n+1 1 —dUi+1,n+1 1
i +1,n+1 i,n+1 i+1,n+1
p.T P, dpP,
w w w
i+1,n+1 i,n+1 i+1,n+1
P! P d pith
i+1n+l | = int1l | T i +1,n+1 (33)
A:{‘l‘ n+ A;,Il‘l‘ d)‘:‘+ n+
i +1,n+1 i,n+1 i+1,n+1
AL A% datth
Py Pw Pw
i+1,n+1 i,n+1 i+1,n+1
— AI’a - — A'I’a - — dA‘Pa -

4. ENRICHMENT STRATEGY FOR SIMULATION OF DISCONTINUITIES IN
POROUS MEDIA

On the basis of the partition of unity property of MLS shape functions, the approximation field at
an arbitrary point x can be defined by (21). Two types of strong and weak enrichments are used in
this study.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2014)
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4.1. Weak discontinuity enrichments

Because of the continuity of EFG mesh-free method that results in a smooth strain/pressure gradient
distribution throughout the domain, handling the material discontinuity cannot be simply performed
by just putting a set of nodes at the line of material interface. In fact, instead of a discontinuity in
the gradient field of the form of Heaviside function, low accuracy oscillatory results in both unknown
fields and their derivatives may occur. To avoid such oscillations, special methods should be incorpo-
rated to suitably introduce discontinuity in the first derivatives. In the method presented by Krongauz
and Belytschko [59], the field solution at each point intersected by the discontinuity line is defined as
a combination of standard EFG solution and a set of additional enrichments parts.

The enrichment functions (®7*"" = ¥ (7)) are defined so that to have a compact support domain,
ensuring a banded system of equations. These set of enrichment functions retain the continuity in the
main variables while their first derivatives are equal to a multiplication of the Heaviside function.

Two sets of enrichment functions ¥ (r) are examined:

1 - The first function is a cubic spline function, defined as

1_3 1_2 1_ 1 -
—er +5r _5r1+g ry<=1 _ r

ViE) = {

0 ry>1

in which r; is the distance from the J’th line of discontinuity and 7. is a characteristic length
of the same order as nodal spacing.
2 - The second function is a localized ramp function and is defined by the following expression:

I//J(;J)=<X—XJ>—Z®1(X)<X1—XJ> (35)
1

where x is the location of weak discontinuity and the ramp function < x > is defined as

x ifx>0

0 otherwise (36)

<x>={

Additional DOFs for capturing the weak discontinuity (¢7) are interpolated by one-dimensional
shape functions Ny along the line of discontinuity,

aly = Nig{ + Nag3 37)
where s is the local coordinate of the projected point along the J’th line of discontinuity.

To assemble the discretized matrices of the system, derivatives of the enrichment functions with
reference to the global coordinates x-y are required:

du"  d | & d
L=E[Zq’(s)w(f)} 3 da )y, (>+Z W0 yrs)
J=1

dx et
dg’(s) = (dNrds\ ; (dNids\ ;  (dNyds\ , (38)
dx _12:=1(ds E)q (ds dx)q +(Wa)q2
dyri _ Ay dr
dx dr dx

It should be mentioned that in contrast to the local enrichment approaches used for strong discon-
tinuities in the extended finite element method or extrinsically enriched mesh-free methods, 7., in
equation (21) for the case of weak discontinuity is the number of discontinuity segments rather than
being the number of enriched nodes in the support domain of x [59]. Also the effect of enrichment is
considered only on gauss points for which the value of enrichment function is nonzero (Figure 1). See
[63] for further details on numerical integration and enrichment definition.
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DOI: 10.1002/nag



M. GOUDARZI AND S. MOHAMMADI

x *oxoxxox
. X XXX . == 1) function

o X 5+5 %o [}
* x X XX X X X * * x

| o

T —<
L&k i+§ LI o

Y ¢ Enriched nodes
o x s x " "Z

(<] . .
Z « d‘; b x*x o ? <O o Approximation Nodes

x x X x xlx x X X x x x . . . .

o X X :+E X0 o —— Discontinuity line
* x X x xlx x X x * x x
Y xoox o x « Background integration points

N °
x x oxOx

x x % ok oxox x

DR P

x o
*

(e * —

Figure 1. Enriched nodes for weak discontinuity representation.

The following algorithm is used for integration of system of equations:

1 - Loop over integration gauss points

2 - Loop over lines of discontinuity (14)

3 - Evaluate the minimum distance from point x to the line segment J of discontinuity (ry)
4 - Evaluate the value of enrichment function Wy (7).

5 - Compute system submatrices and assemble the total system of equations.

4.2. Strong discontinuity enrichments

In the case of strong discontinuity, it is assumed that the solid displacement and the water pressure are
discontinuous along the discontinuity length. Therefore, the following Heaviside function is used as
the enrichment function for both solid and fluid phases along the discontinuity length:

I if(x—x).e, >0

0 otherwise (39)

H(x) = {
where x¢" is the closest point of a discontinuity to the point x and e, is the normal vector of the
discontinuity at point x¢”.

For tip enriched nodes, on the basis of the analytical solution of Williams [64], the displacement
field is enriched by the following well-known enrichment functions that introduce discontinuity in the
displacement field and singularity in the strain field at the discontinuity tip:

F,(r,0) = [ﬁsin(Q) Jreos(0)  \/rsin (%) cos(0) frcos (g) cos(@)] (40)

For water pressure near a discontinuity tip, on the basis of the solution of pressure fields at a singular
point and assuming no fluid exchange across the discontinuity, the following enrichment function is
used as the tip enrichment (Khoei et al. [46] and Yosibash [65]),

B, (r,0) = /Fsin (g) 1)

Function (39) introduces discontinuity in the pressure field and its gradients across the discontinuity,
whereas the function (41) produces a singular gradient field at the tip of strong discontinuity. These
functions are used throughout this paper for modeling problems, which include additional impermeable
strong discontinuities, where no fluid exchange is permitted across the discontinuity [46,66,67].
Selection of enriched discontinuity-length and discontinuity-tip nodes are performed by the level set
method, developed in [55]. Due to the existence of high gradients at a discontinuity tip, higher order
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integrations must be considered in the near tip region which can be attained by proper subtriangulation
of near tip elements. In addition, if the support domain of a node intersects the line of discontinuity, it
is enriched only if sufficient integration points exist in both sides of the discontinuity. To avoid numer-
ical instabilities for marginal cases, the support domain can be gradually increased to include sufficient
background gauss points at both sides of the intersection.

5. NUMERICAL SIMULATIONS

5.1. One-dimensional consolidation of a soil column

As the first problem a one dimensional multilayer saturated soil column subjected to a constant surface
loading is selected. This problem is of the simplest form of problems in multilayer porous media for
which the analytical solution is available. A two dimensional plane strain model is constructed with
the developed enriched EFG formulation and the results are compared with the reference solutions.

A saturated soil column of 2 m width and 24.384 m height is assumed, and a constant initial surface
load of 1 kN is applied at its top edge to reproduce the initial uniform pressure along the column height.
The bottom edge is assumed to be fully fixed in all directions, whereas the side edges are constrained
only in the horizontal direction. Similar to [68], two different states for water pressure conditions at
boundaries are considered. Case I addresses the state in which water is drained from both top and
bottom edges, whereas case Il represents water drainage from the top boundary only. A total of four
layers are considered with material properties defined in Table I. The layers are assumed to have differ-
ent material properties so as to have a weak discontinuity in solid displacements and water pressures.
As an extension to one-dimensional consolidation theory of Terzaghi, which holds for only single layer
conditions, the following analytical solution, presented by Schiffman and Stein [69], can be used for a
soil layer consisting of n contiguous sublayers and a total thickness of H =Y /_, h;

00 t
. dg _g ._
Ui = Z gmi(2) [Cme_ﬂmlt + Dm/ d_ie Bmi ¢ T)dfjl .
0

m=1

Coi
:Bmi = ?&fm- /’l—2 (42)

gmi(2) = Amisin (uikmli) + Bmicos (uilmli)
hy hy
in whichi = 1,2,...,n. For a more comprehensive explanation on the solution and parameters used
in equation (42), see Lee et al. [68] and Schiffman and Stein [69].

Geometry of the problem and the uniformly distributed nodes are shown in Figure 2. This figure also
shows the selected enriched nodes for describing the material discontinuity and two different enrich-
ment functions of type A and type B and their derivatives defined along the column height. The value of
I'jc is taken from (dm/3) in which dm is the size of nodal support domain that is constant throughout
the domain for the uniform nodal arrangements used in this problem.

Figure 3 shows the results obtained for the water pressure along the column height at times 740, 2930
and 7195 days for the boundary type I compared with the analytical solutions (42), which shows a very
good agreement. In addition, Figure 4 illustrates variations of vertical displacements at the interface
points for different times.

Table I. Material properties for the problem of multilayer one-dimensional
consolidation.

Layer number Layer height (m) Young’s modulus (KN/m2> Permeability (m/s)

1 3.0480 1.560 x 10% 2.8350 x 1078
2 6.0960 24510 x 10* 8.4132 x 10~8
3 9.1440 49020 x 10* 1.1931 x 108
4 6.0960 24510 x 10* 2.9982 x 1078
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2014)
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Figure 2. Nodal arrangement for the one-dimensional consolidation example and values of enrichment
functions along the column height: up, spline function; down, ramp function.
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Figure 3. Pore water pressure distribution along the column height (boundary type I).
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Figure 4. Settlements at layer interfaces (boundary type I).

Figures 5 and 6 show the corresponding values for the boundary type II. Again, the results obtained
from the present enriched EFG formulation is in complete agreement with the reference analytical
solutions reported by Schiffman and Stein [69] and Lee et al. [68].
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Figure 6. Settlements at layer interfaces (boundary type II).

In order to show the effects of enrichments on predictions of gradient fields, the values of verti-
cal strain (€,,) and gradient of water pressure normal to the discontinuity line are plotted along the
column height in figures 7 and 8. It is clear that the unenriched EFG fails to reproduce the existing dis-
continuity in the first derivatives, whereas the enriched solution captures the discontinuity. The results
from the enrichment type B, ramp function (35), show minor oscillations in contrast with the smooth
response of the enrichment function type A, representing the cubic spline function (34).

To assess the effects of proposed enriched solution on the convergence of the problem, a convergence
test with different uniform nodal arrangements of 51, 132, 342, 873, 2254, and 3417 nodes are exam-
ined. L, norm of the error in solid displacements and water pressure are computed by the following
equations:

o e, 1) —ub (e, 02
lewllz,
Ve IuGe, 02
Vo I1pwe,0) = pl e )12

Jo lpw(x. 0|12

(43)

”ePw ||L2 =

where uP(x,7) and pz’} (x, 1) are the approximated values for displacement and water pressure, whereas
u(x,?) and py,(x, ) are the reference displacements and water pressure values. Variations of the con-
vergence ratio resulted from the ramp function, the cubic spline function, and the unenriched EFG for
different nodal arrangements for displacements and water pressure are shown in Figure 9. It is clear
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Figure 7. Gradient of water pressure along column height for spline function, ramp function, unenriched
EFG method, and FEM at time ¢ = 3000 days.
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Figure 8. Gradient of vertical displacements along column height for spline function, ramp function,
unerniched EFG method, and FEM at time ¢ = 3000 days.

that the optimum convergence rate of EFG using a linear basis tends to be a value between 2 and 3 for
both water pressure and displacements, which fits the findings of others [17,19,70]. Results of unen-
riched EFG method with no constraints for imposition of weak discontinuity show that neglecting the
enrichment part leads to low accurate results with a relatively low rate of convergence for both solid
and fluid phases.

5.2. Two-dimensional consolidation of multilayer saturated porous media

Two dimensional problems of consolidation of saturated multilayer soils under strip loadings are con-
sidered. First, the problem previously addressed by Booker and small [71], which accounts for two
different layers with a material discontinuity at mid-height is solved and then the more complicated
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Figure 9. Convergence test results for the problem of multilayered one-dimensional consolidation after
2900 days of analysis.

problem of water seepage through the resting foundation of a dam consisting of different sublayers and
in the presence of a cut-off wall is considered.

5.2.1. Double-layer soil foundation under strip loading. Booker and Small [71,72] introduced semi-
analytical solutions based on the Fourier transformation of the governing equations in conjunction with
the finite difference method to solve the problem of two-dimensional two-layer soil resting on a rigid
base. They also examined the effect of finite boundaries on the solution and determined the minimum
width required to eliminate the boundary effects on infinite problems. Therefore, the present model is
assumed to be wide enough to ensure that the infinite boundary prevails.

The soil specimen is assumed to have 1 m height and 6 m width, and two equal sublayers with a
material discontinuity at the mid-height are assumed.

Two sets of material properties with different values of stiffness and permeability are considered. A
discontinuity in the strain field and the pressure gradients is present along material interfaces, mean-
ing that both solid and water phases should be enriched by appropriate functions to properly capture
the discontinuity in derivatives. Similar to [71], to study the effects of material discontinuity on solu-
tions, the upper layer is assumed to be less stiff and more permeable. For the upper layer, the Young’s
modulus is equal to 10* Pa, the intrinsic permeability k = 10~’m?, and the fluid viscosity is taken as
1073 Pa.s. For the lower sublayer, the Young’s modulus is set to be double of the upper layer’s one, and
a lower permeability equal to a quarter of the bottom layer’s permeability is adopted. The Poisson’s
ratio is set to be 0.3 for both layers, and the problem is solved under the plane strain conditions. As a
natural boundary condition, a strip load of 1000 kPa is exerted at a length 0 < a < L and held constant
during the consolidation analysis. A fully drained boundary for the water pressure is assumed at the
top edge while the other boundaries are considered impermeable to fluid flow.

Again, a set of nodes are placed along the line of discontinuity and are enriched by the weak discon-
tinuity functions of (34) and (35) to capture the weak discontinuity in solid displacements and water
pressures. The nonuniform nodal arrangements and the enrichment nodes are shown in Figure 10.
The problem is solved for two different situations of the resting base: (I) The first type defines a state
that displacement constraints are applied in the x direction for the left, bottom and right edges and in
the y direction for the bottom edge. (II) the next type enforces displacement constrains along the x
and y directions only for the bottom edge. Analytical solutions of a single layer case were presented by
Gibson et al. [73] by assuming the material properties to be similar to the upper layer of the bi-material
case with a zero Poisson’s ratio. Figure 11 shows the variations of water pressure and displacements
in time for the single layer case and for two different situations of the resting base. It is observed that
the reference analytical solutions of Gibson et al. [73] and the numerical solutions by Samimi and Pak
[23] closely match with the present EFG results.
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Figure 10. Nodal arrangement for the problem of fully saturated two-layered consolidation.
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Figure 12. Water pressure distribution along the soil height: left, boundary type I; right, boundary type II.

Water pressure distribution along the column height in the presence of material discontinuity for
different cases of resting base is shown in Figure 12. It is observed that even though the lower layer
is less permeable, the pore water pressure dissipates faster for the system of two-layer soils for both
boundary conditions. The same behavior was reported by Booker and Small which further confirms
the good agreement between the numerical and reference results [71]. Distributions of water pressure
gradient and vertical strains throughout the two-layer domain are shown in Figure 13, which depicts
the values for a set of fine nodes placed along the left edge height to better illustrate the discontinuity
in gradients. Again, while the inability of EFG method in reproducing the discontinuous gradients is
obvious, the best accuracy belongs to the ramp function (35).
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Figure 13. Variations of water pressure gradients and displacement gradient along the soil height for the last
time step of the analysis (boundary type I).

It is worth mentioning that because only nodes along the discontinuity line are enriched, the total
number of additional DOFs remains relatively low even in comparison with usual extrinsically enriched
methods for which a local enrichment strategy is used.

5.2.2. Multimaterial saturated porous medium containing an impermeable discontinuity. The prob-
lem of water seepage through the resting foundation of a dam under fully saturated conditions in the
presence of a cutoff wall which acts as an impermeable discontinuity is considered. It is assumed that
the soil is composed of 4 parallel sublayers and a cutoff wall is placed in a certain distance from the
dam’s base in order to reduce the amount of water seepage through the soil foundation towards the
downstream, as depicted in Figure 14. The height of the domain is 13.5m and its width is 36.5m and
the cutoff wall with the length of 5.5m is placed at a distance of 11m from the left edge. The boundary
conditions and orientation of discontinuities are plotted at Figure 14.

A series of nodes are placed along the lines of discontinuity to simulate material interfaces as the
weak discontinuity lines. To represent the cutoff wall, any node whose support domain intersects the
cutoff wall is enriched by the strong discontinuity enrichment functions. The water pressure is assumed
to be discontinuous across the cutoff wall, and a singularity in water pressure gradients at the cutoff tip
is presumed on the basis of the solutions of water pressure near the singular point.

The dam’s weight is considered as a vertical surface load and all other displacement boundaries
are constrained along their normal axis direction. For water pressure boundaries, it is assumed that
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Figure 14. Nodal arrangements for the problem of saturated porous medium with impermeable
discontinuity.
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Figure 15. Values of water pressure interpolated at background integration points (Pa).

a constant over-head of 100 kPa exists along the upstream edge, while for the downstream surface a
10 kPa water pressure is applied. Other boundaries are assumed to be impermeable with zero water
out-flow. The problem is solved under the plane strain conditions with the Poisson’s ratio of 0.4 and
the uniform elasticity modulus of 9 x 10k Pa. Solid and water phase densities are 2 x 10k g/m?> and
1 x 108k g/m3, respectively. The bulk modulus of solid and water are 1 x 10'* M Pa and 2 x 10> M Pa,
respectively, and the porosity is taken as 0.3.

Figure 14 shows the geometry of the problem and the set of nodal arrangements and enriched
nodes. It is assumed that all parts of the domain have a uniform mechanical strength but with dif-
ferent permeabilities. The fraction of intrinsic permeability to water density (K = k/uy) is equal
to 1 x 107°m?/ Pa.s while the value of the corresponding fraction for each layer (K #) is defined in
Figure 14. Contours of water pressure at different times are shown at Figure 15. The water pressure
becomes discontinuous across the cutoff wall while a singularity in water pressure gradient is expected
at the cutoff wall tip due to the use of tip enrichments. Obviously, the proposed enrichments strategy
allows proper capture of both strong and weak discontinuities that are present in this problem.

To better illustrate the existing discontinuities in gradient fields along the weak and strong disconti-
nuity lines, a section at the height of 11 m from the base of soil foundation (Section A-A) and a section
along the cutoff wall (Section B-B) are considered, as shown in Figure 14. Variations of water pressure
gradients normal to the material interfaces for the ramp function, cubic spline function, and unenriched
EFG are plotted in Figure 16. Expectedly, the ramp function shows the best performance, whereas the
unenriched EFG is unable to capture weak discontinuities. Also, as shown in Figure 17 for Section
B-B, an extremely large value for the water pressure gradient is observed at the tip of the cutoff wall,
which confirms the proper implementation of tip enrichments, whereas no singularity in the gradient
field is present for the case of no tip enrichments.

5.3. Two-phase partially saturated porous media

This section addresses a set of problems of single phase fluid flow in partially saturated media. Using
additional experimentally determined relations for the water saturation (Sy,) and the relative perme-
ability of water phase (k,y ), a fully coupled nonlinear system of equations should then be solved.
To assess the performance of developed enriched EFG formulation, two sets of problems in partially
saturated media are considered. The first problem examines a soil strata consisting of two distinct
sublayers under quasi-static conditions. Then, the same problem is solved in the presence of multiple
strong discontinuities.

5.3.1. Consolidation of a two-layer partially saturated porous medium—the Liakopoulos test. This
problem is based on the experiments conducted by Liakopoulos [74] on a single layer sand column
and has been frequently analyzed by various researchers assuming two-phase and three-phase fluid
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Figure 16. Values of water pressure gradients (Pa/m) along the section A-A of soil layers for the problem
of saturated porous medium with discontinuity at time # = 110 s.
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Figure 17. Values of water pressure gradients (Pa/m) along the section B-B of soil layers for the problem of
saturated porous medium with discontinuity at time # = 110 s.

flow under quasi-static conditions. The material properties used in this experiment are similar to the
values used for the upper layer state in Table II.

The test is performed on a 1m high column of packed Del Monte sand, initially subjected to a con-
stant flow of water from its top which results in a uniform water pressure distribution along the column
height. Then, the water flow is ceased from the top boundary and all boundaries except for the bottom
edge become impermeable to out-ward water flows. No physical load is deemed to be present and as
the experiment starts, the water is freely drained from the bottom edge. Deformations along the normal
direction to the boundary surfaces are constrained and the value of water pressure is measured along
the column height. The width of the specimen is assumed to be 0.1m.

The following experimental relations often used by various researchers are applied for the water
saturation and intrinsic permeability of water phase update during the water flow process [7,11,75]:

p 2.4279
Sy =1-—0.10152 (—C)
Pw&

krw =1—2207(1 — S,,) 10121

(44)
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Table II. Material properties for the problem of multilayer partially
saturated porous medium.

Material property Upper layer Bottom layer
Young modulus (MPa) 1.3 0.13
Solid density (kg/m3) 2000 2000
Water density (kg/m>) 1000 1000
Solid bulk modulus (Pa) 1.0 x 1012 1.0 x 10'2
Fluid bulk modulus (Pa) 2.0 x 10° 2.0 x 10°
Water viscosity (Pa.s) 1.0 x 1073 1.0 x 1073
Intrinsic permeability of water (m?) 4.5 x 10713 1.84 x 10712
Layer height (m) 0.5 0.5
Poisson ratio 0.4 0.4
Biot coefficient 1 1
Porosity 0.2975 0.2975
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Figure 18. Results of water drainage for the two-layer soil column.
in which p, = —py,, Sy is the amount of water saturation and py, is the water density. The soil column

is initially fully saturated with zero gradients of water pressure along the column height (constant pres-
sure in height), but as the water starts to drain from the lower edge, the soil column is desaturated on
the basis of the experimentally defined relations of (44), which is a function of water pressure. Analysis
continues for a total duration of 2 h in which the final static equilibrium state is recovered. The initial
time step is taken as 10 s, and after the first hour of consolidation, as the flow process rate decreases,
an increased value of time step is preferred.

Here, the presence of material discontinuity is studied. The soil column is assumed to be composed
of two different layers with an interface at mid-height. Table II summarizes different material prop-
erties used in this problem. The problem is solved with the assumption of presence of passive gas
pressure and material discontinuity in both water flow and displacements gradient normal to the line
of discontinuity. Both the displacements and the water pressure fields are enriched and the results for
the cubic spline and the localized ramp functions are evaluated.

A total of 155 nodes (5 x 31) are used, and the size of nodal support domain (di) is set to 0.0467.

Variations of water pressure, water saturations and displacements along the column height are shown
in Figure 18. The sudden changes in slope of water pressure and displacement fields are due to the
material interface and the existence of discontinuity in the gradient fields. As expected, it is also

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2014)
DOI: 10.1002/nag



WEAK DISCONTINUITY IN POROUS MEDIA USING AN ENRICHED EFG METHOD

Water Pressure (Pa) at the discontinuity Water Pressure Gradients (Pa/m) at the discontinuity
=N T i ! : 2000
2640 \ I [+ = Ramp function
I\ e | e Cubic spline function
-2650 \ || = — Un-enriched EFG 1 or
N u | = == Position of discontinuity’
—2660 |- N\ A | _2000 F
W === Ramp function
-2670 | _4000 —a— Cubic spline function
— — Un-enriched EFG
—-2680 = == Position of discontinuity|
—6000 - T ;
—-2690 [
i i _8000. i i i i A i i i i
0.49 0.495 0.5 0.505 0.51 0.515 04 042 044 046 048 0.5 052 054 0.56 0.58
x10°¢ Vertical displacements (m) at the discontinuity Vertical displacements Gradients (m/m) at the discontinuity
-2.1 T T T T 0 T T T T T T T T T
LN SERRENE SESEDE N SN e |
-2.12 I = == Ramp function 1 —0.002 |
\ [ i i| == Cubsic spline function |: " |
-2.14 \\ 1 — — Un-enriched EFG -0.004 L —— Ramp function
216} i ) ;.| = == Position of discontinuity|:..:. ] : —=— Cubic spline function
. S — — Un-enriched EFG
-2.18F -0.006 - = == Position of discontinuity| ]
—22[ o -0.008 =
-2.22
i A i i i ~0.01 i i i B A i i i i
0.49 0.495 0.5 0.505 0.51 0.515 0.52 0.45 0.46 0.47 048 049 0.5 0.51 052 0.53 0.54 0.55

Figure 19. Results at a fine scale around the discontinuity line.

apparent from the figures that for the multilayer system because of greater values of permeabilities,
the final state of water pressures for an equal instant of time is greater than the single layer case [5] and
the final equilibrium state is reached in less number of time steps. In addition, it is observed that larger
amount of outward flow exists for the multilayer model; i.e. more water is drained from the lower edge.

In order to further examine the effect of enrichments, Figure 19 shows the distributions of water
pressure and displacements and their gradients at the region of material discontinuity for both enriched
and unenriched EFG at 10 minutes after the start of the analysis. Results are produced from a set of
dense nodes placed along the column height in order to capture the material discontinuity properties
with a good resolution. Clearly, both the ramp function and the cubic spline function reproduce a sud-
den change in slopes of water pressure and displacements while values of water pressure and solid
displacements remain continuous along the discontinuity line. Also, it clearly shows a discontinuity in
the gradients normal to the line of material interface for both functions.

It is noted that the unenriched EFG shows an smooth change along the line of discontinuity and
is not capable of representing discontinuous gradients and sudden changes in slopes. The amount of
oscillations for the ramp function is negligible in contrast to the cubic spline function or unenriched
EFG method.

5.3.2. Consolidation of a two-layer partially saturated porous medium in the presence of multiple
impermeable discontinuities. As a further step, interaction of weak discontinuity and a set of ran-
domly generated impermeable strong discontinuities, in a nonsaturated porous medium is studied.
Discontinuities are assumed to be impermeable with no exchange and coupling of water through its
faces, whereas, the singularity in strain fields and pressure gradient at the tip of discontinuity is con-
sidered. The water pressure is modeled as a discontinuous field across the discontinuity surfaces by
the Heaviside enrichment function (39), while the asymptotic discontinuity-tip enrichment function
(41) is used for the tip enriched nodes. In order to capture the weak discontinuity, the ramp function
(35) is used. The boundary conditions are similar to previous example and the only difference is the
presence of discontinuities. The line of material discontinuity is placed at the mid-height and the width
of domain is 0.5m. Distribution of normal and enrichment nodes are shown in Figure 20, which also
depicts different sets of discontinuity length and discontinuity tip enrichment nodes. The experimental
relations of (44) are exploited for water saturation and permeabilities during the analysis. The problem
is solved under the plane strain conditions with the Poisson’s ratio of 0.4 and the time step is set to 20s.
Contours of water pressure at the background gauss points, depicted in Figure 21, clearly show the
effect of enrichment functions. As expected, a discontinuity in water pressure along the discontinuity
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Figure 20. Nodal points for the problem of two-layer partially saturated porous medium with multiple
discontinuities.

4000 2500 2000 1 000

Figure 21. Water pressure distribution (Pa) at times 0, 120, 200, and 1000 s for the problem of partially
saturated two-phase porous medium.

length is observed, while a singular pressure gradient at the discontinuity-tip is expected. Variations of
water saturations are shown in Figure 22, which similar to water pressure become discontinuous along
the discontinuity length. To further discuss the results, a section at the left edge of domain (x = 0)
is considered. Figure 23 depicts the profiles of displacements and water pressure gradients along this
section at a finer scale, which clearly shows the presence of both discontinuity types. It is also observed
that as the flow of water continues, water pressure gradients are dissipated and a uniform water pres-
sure gradient along the column height is reached. Contours of vertical strains and pressure gradients
computed by a fine background mesh are shown in Figure 24, which better illustrate the presence of
discontinuity tip enrichment functions, as relatively large values of derivative fields are generated near
the discontinuity tips.

5.4. Three-phase deforming porous media

5.4.1. Consolidation of a partially saturated three-phase deforming porous medium. As the final part
of numerical examples, a multiphase partially saturated porous medium is analyzed. The presence of
two distinct fluid phases (water and gas) are taken into account by considering both water and gas
pressure DOFs.
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Figure 22. Water saturation values at times 0, 400, 800, 1200, and 4800 s for the problem of partially
saturated two-phase porous medium.
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Figure 23. Variations of displacements and water pressure gradients along the section (x = 0) for the
problem of partially saturated two-phase porous medium.
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Figure 24. Gradients of displacements and water pressure at time 600 s for the problem of partially saturated
two-phase porous media.
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Table III. Material properties for the problem of multilayer partially saturated three-phase
porous medium.

Material property Layer 1 Layer 2 Layer 3 Layer 4
Young modulus (MPa) 1.5 12 3 20.4
Solid density (kg/m3) 2000 2000 2000 2000
Water density (kg/m?3) 1000 1000 1000 1000
Gas density (kg/m>) 1.22 1.22 1.22 1.22
Solid bulk modulus (Pa) 0.14 x 10'°  0.14 x 10'°  0.14 x 101 0.14 x 10'°
Water bulk modulus (Pa) 043 x 1013 043 x 1013 043 x 1013 043 x 1013
Gas bulk modulus (Pa) 0.1 x 10° 0.1 x 10° 0.1 x 106 0.1 x 10°
Water viscosity (Pa.s) 1.0 x 1073 1.0 x 1073 1.0 x 1073 1.0 x 1073
Gas viscosity (Pa.s) 1.0 x 1073 1.0 x 1073 1.0 x 1073 1.0 x 1073
Intrinsic permeability (m?) 046 x 1071 2,07 x 1071 0207 x 1071 4.6 x 107!
Layer height (m) 0.25 0.25 0.25 0.25
Poisson ratio 0.4 0.4 0.4 0.4
Biot coefficient 1 1 1 1
Porosity 0.2975 0.2975 0.2975 0.2975

This problem was solved by Rahman and Lewis [10] assuming a single layer homogeneous soil
by the finite element method, which is often used as a benchmark solution to control the multiphase
porous models of an initially nonsaturated state. Recently, Mohammadnejad and Khoei [76] solved the
same problem to assess the convergence problems encountered in the extended finite element method
because of the presence of blending elements and adopted a set of corrected enrichment functions to
recover semi-optimal convergence ratios for four-noded bilinear elements.

The geometry and solid boundary conditions are the same as Liakopolous experiment (solved in
Section 5.3.1), which consists of a soil column of 1 m height and 0.1 m width.

The initial state of the problem is arranged so that the soil column remains initially nonsaturated
with an initial degree of saturation equal to 0.52 throughout the whole soil column. This implies that
initially a uniform water pressure value of -280 K N/m? and a uniform gas pressure equal to the atmo-
spheric pressure exist. A uniform downward mechanical load equal to 1000 K N/m? is exerted at the
top surface and the value of atmospheric pressure is given as 101.8967 kPa. Material properties used
in this problem are shown in Table III. The Young’s modulus is equal to 6Mpa and other material
properties of the medium are similar to layer 1 in the Table III.

At the start of analysis, the water pressure at the surface is instantaneously changed to -420 K N/m?
due to an environment change and the gas pressure for the top boundary is held constant and equal to
the atmospheric pressure during the analysis.

The relative permeability of water phase (ky, ), the relative permeability of gas phase (k,¢) and
the water degree of saturation (S, ) are determined by appropriate experimental relations proposed by
Brooks and Corey [77] (as a result, the set of system equations becomes nonlinear),

A
Sw—3S

Sw :Srw+(1_Srw) (&) B Se:u
P 1—Srw

Ky = ST (45)

242
kraz(l_Se)z(l_Sel )

c

with:
kN
Srw = 0.3966 Py =225— A=3
m
Figure 25 illustrates variations of vertical displacement and water saturation in time for different
distances from the column top, whereas Figure 26 depicts the distribution of water and gas pressures

along the column height for different time steps. Clearly, the results of the present EFG formulation
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Figure 25. Vertical displacements and water saturation for the problem of three-phase partially saturated
single-layer porous medium.
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Figure 26. Water and gas pressures for the problem of three-phase partially saturated single-layer porous
medium.

are in complete agreement with the reference results reported by Rahman and Lewis[10] and Khoei
and Mohammadnejad [11].

5.4.2. Consolidation of a partially saturated three-phase deforming porous medium in the presence of
weak discontinuities. Now, the same problem is considered in the presence of material discontinuities.
The soil column is constructed of four equally spaced sublayers with material discontinuity lines at
heights 0.25, 0.5 and 0.75 with respect to the base of column with different Young’s modules and per-
meabilities of gas and water phases, which results in discontinuity in gradient of solid displacements,
and water and gas pressures normal to the lines of discontinuities. A set of uniform 5 x 33 nodal points
are used.

The value of the intrinsic permeabilities are assumed as: k; = 0.46 x 107" (m?), ko = 4.5k,
k3 = 0.45kq and k4 = 10ky; with large discrepancies so that the material interfaces become apparent
in the pressure fields.

The material properties of layers are defined in Table III. As shown in Figure 27, water and gas
pressure dissipation patterns change dramatically for the new material composition as different mate-
rial properties are involved. It is apparent that because of large permeability of the top layer (ten times
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Figure 27. Water and gas pressures for the problem of three-phase partially saturated multilayer porous
medium.
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Figure 28. Variations of gradients along the column height at time # = 0.5 days for the pure EFG, enriched
EFG by the cubic spline function and enriched EFG by the ramp function.

of the lowest layers), water and gas pressures are dissipated faster. The final state is reached after 9
days of analysis in which the results for multilayer and single layer cases are equivalent to the initially
applied boundary pressures.

Figure 28 shows the results of vertical strains and vertical gradients of fluid phases, analyzed by the
developed enriched EFG formulation for the case of multilayer multiphase porous media. Although
the displacement and pressure fields are continuous at the lines of discontinuity, a discontinuity of the
form of the Heaviside function is present in the solution for the first derivative fields. The proposed
enrichment algorithm generates a continuous distribution for the field variables across the line of dis-
continuity while it is capable of reproducing a jump in its first derivatives. Only minor oscillations are
present in the solution, which can be neglected without the loss of accuracy. Figure 29 illustrates the
values of gradients in a finer scale, which shows that the ramp function is a more suitable approach
to model weak discontinuities of material interfaces. Despite the oscillatory results, the cubic spline
function can also capture the material discontinuity, and it is preferred to unenriched EFG solutions.
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Figure 29. Magnified values of gradients along the column height at time 0.5 days for the unenriched EFG,
enriched EFG by the cubic spline function, and enriched EFG by the ramp function.

6. CONCLUSION

An enriched mesh-free EFG formulation for fully coupled porous systems was proposed in this study
to handle weak and strong discontinuities throughout the domain. This work is presumed to be the first
attempt to analysis of discontinuities in porous media using the enriched mesh-free method. Adopting
extrinsically enriched MLS approximations for solid displacement, water pressure and gas pressure, the
discretized set of equations were derived. Due to lack of Kronecker delta property of MLS shape func-
tions, the constrained weak form of equations were written in the context of the Lagrangian approach.
A nonlinear iterative solution procedure was implemented to solve the nonlinear constrained fully cou-
pled system of equations in the partially saturated state. A set of examples, including one-dimensional
saturated consolidation, two dimensional saturated and partially saturated states with assumptions of
passive and active gas pressures, were numerically discussed and the derivative fields were computed
as a multiplication of discontinuous Heaviside function. It was shown that the proposed enrichment
strategy could eliminate the expecting oscillations around the material discontinuities encountered in
unenriched and constrained mesh-free methods. The interaction of multiple impermeable discontinu-
ities with material interfaces were assessed and the proposed enrichment strategies for weak and strong
discontinuities were verified by various problems in poro-elasticity.

APPENDIX A

The final forms of the discretized matrices/vectors of the governing equation (22) can be written as:

Kt Kua Kub
K= / B'DB,,dQ K=| K@ K2 K (A.1)
Q Kbv Kba Kbb

Cswupw Cswuc Csw“d
Csw :[ BEOlSmepwdQ, Csw = Cswapw Cswac Cswad (AZ)
“ Co™  Co™ ™
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CSZlupa CSauc
Csa = / B:{a(l - Sw)mNpadQ, Csa = Csaapa CSaac (A3)
Q

b be
Csa Pa Csa

Cwspwu Cwspwa Cwspwb
Cys = /;2 Ngwasw mTBudQ, Cys=| Cy™ Cys™ CwsCb (A4)

du da db
Cws Cws Cws

wapwpw wapwc wapwd
wa = / Ngw(wa)prd Q’ wa = wacpw wacc waCd (AS)
Q
Pow™  Puy™  Pyy™

Cwapwpa Cwal’wc

_ T _ CPa cc
Cya = / NI (Qua)NpdR,  Cya=| Cya Cya (A.6)

N Coa®  Cy®

waPwa wapwc wapwd
T
H,, — / (LowNps) "y (LowNp, )2, Hyw= | Ho™  Hy®  Ho® | (A7)
Q

d dc dd
wa Pw wa wa

T T Caspau Caspaa Caspab
C, = / NT (1 = Sy)mTBydR,  Coy= ) (A8)
Q : Casc“ Casca CasC
P, PaPa P _ PaC
T aa aa
Pay = /Q Np. (Qaa)Np, d 2, Paa = [ P P } (A.9)
Caw= | NI NpdS  Cay= | C C™ Caw™* A.10
aw — o pa(Qaw) Pw 5 aw — Cawcpw Cawcc Cawcd ( . )
T H PaPa H PaC
Haa = / (LPaNPa) kq (LPaNPa)dQ’ Ha = - CPa - cc (A'l ])
Q Haa Haa
F, = / NIpbdQ +[ NIpt dT, (A.12)
Q Ty
kk y
F, = / (LpwNpy ) =2 0, bd 2 — / Nt 2w gr,, (A.13)
Q Hw | Pw
kk /e
F, = / (LpaNp,) " =2 pobd 2 —/ N ey, (A.14)
Q Ha Tpa Pa
and
B.=[5% B BY]
Ne=[NS N3 N
(A.15)
std c d
Npw = [pr Npw pr]
Npa =[N NG
where the following notations are used for different enrichment types A.1,
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2014)

DOI: 10.1002/nag



WEAK DISCONTINUITY IN POROUS MEDIA USING AN ENRICHED EFG METHOD

Table A.1. Notations for different enrichment types.

Field variable  Standard Heaviside or ¥/(weak) Tip

Displacement u a b
Water pressure Pw c d
Gas pressure Pa c -

and the nonlinear terms are elaborated as follows:

[ a—n 0Sy n.Sy Sy
Quww = | Sw .(Sw+—.pc)+ —n. :|

L K 3pc Ky apc
i — aS aS
Owa = 5,2 ".(1—Sw__"’.pc)+n. ’”]
L K ) 0pe (A.16)
[ a—n 0Sw ) n.(1—Sy) 8Sw:| ’
aa=|0-=S8y A1=Sy — DPe | + —n.
0 _( ) X, ( i P X, e
i oa—n 0Syw ) 8Swi|
aw=|1-=3S8y A Sy +—.pc | +n.
Q _( ) K, ( ape P apc

Because all these terms are functions of the water pressure, so the total system of equations becomes
non linear, which requires an appropriate nonlinear algorithm to solve the fully coupled multiphase
system of equations.
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