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Abstract A novel approach, based on the discontinuum concepts of the Discrete Element
Method, is presented for fracture and delamination analysis of composites subjected to
impact loading. A combined finite/discrete element algorithm is developed for damage
analysis of the progressive fracturing and fragmentation behaviour which is observed in
composite structures. The algorithm comprises various contact detection and contact
interaction schemes to construct an efficient and reliable tool for the modelling of complex
post failure phenomena. An anisotropic softening Hoffman failure criterion is adopted for
determining the initiation of a crack. The performance of the algorithm is assessed by
modelling of a series of engineering applications.
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1 Introduction

The idea of using composite materials, in their simplest form, may be traced back to
the construction of ancient monuments, where chopped fibrous plants were added to a
mixture of mortar and ash to improve its brittleness and to increase its load bearing
capacity. Centuries later, the same idea is still being used in the fabrication of advanced
composite materials.

Gradually replacing conventional materials, composite laminates are now widely used in
many applications involving dynamic loading such as machinery, pressure vessels, defense
structures, vehicles, sport equipment and notably aerospace structures [1].

One of the major problems that affects the design and performance of composite ma-
terials for structural applications is their vulnerability to transverse impact which may
cause substantial internal damage of the component due to matrix cracking, fibre failure
and delamination [2].

Figure 1 depicts the progressive fracturing, delamination and fragmentation phenomena
in a typical composite specimen subjected to impact loading. This typical representation,
is perhaps only relevant to the failure observed in high velocity impact. For low velocity
impact, extensive fragmentation is unlikely and material fracture and delamination will
be the dominant modes of failure.

Delamination

Material  fracture

Fragmentation

Figure 1: Progressive fracturing, delamination and fragmentation in a typical composite
specimen subjected to impact loading.

It should be noted that in a real situation, delamination failure is always accompanied by
inplane failures, including matrix and fibre fractures. Therefore a comprehensive study
of the behaviour of composites subjected to low or high velocity impacts, requires a
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comprehensive scheme which should be capable of modelling progressive in and out of
plane fracturing. The treatment of these classes of problems is naturally related to discrete
element concepts, in which distinctly separate material regions are considered which may
be interacting with other discrete elements through a contact type interaction [3].

In this paper, fundamental aspects of a combined finite/discrete element algorithm for
prediction of initiation, propagation and interaction of fracture and delamination phe-
nomena in laminated composites are discribed. In the following, after a general review of
the discrete element method, contact interaction formulations will be discussed in detail.
Then the crack (material and interlaminar) initiation criteria will be explained and certain
numerical issues will be addressed. Several numerical simulations have been performed
to assess the performance of the proposed algorithm which covers a variety of benchmark
finite element tests, standard experimental data, full scale laboratory tests and practical
applications.

2 Discrete element modelling of composites

It has been shown that delamination and material fracture in composites subjected to low
or high velocity impact loadings are progressive phenomena which may rapidly propagate
throughout the component. This might result in the creation of new totally separated
zones, which interact with their surrounding regions. Consequently, a comprehensive
scheme is required to monitor the fracturing process and to effectively model both indi-
vidual and interaction behaviours.

In contrast to the traditional finite element method which is rooted in the concepts
of continuum mechanics and is not suited to general fracture propagation problems, the
combined finite/discrete element method is specifically designed to solve problems that
exhibit strong discontinuities in material and geometric behaviour [4]. The discrete ele-
ment method idealizes the whole medium into an assemblage of individual bodies, which
in addition to their own deformable response, interact with each other (through a contact
type interaction) to perform the same response as the medium [3].

Consider a composite specimen subjected to an impact loading as depicted in Figure 2.
Early material cracks and interlaminar debondings are likely to appear near the position
of applied impact load. As the analysis advances, two separate regions can be distin-
guished. The first one is a highly fractured and delaminated region, and the second is
the remainder of the body which contains no delamination or fracture patterns. The
predicted fractured/delaminated regions will then be examined in the later stages of the
analysis through the developed combined finite/discrete element algorithm. The interface
boundaries will be further extended if either the material fracture or the interlaminar
debonding has reached the boundaries of the DEM region.
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DEM FEM

Possible fractured region

Impact loading

Figure 2: Composite specimen subjected to impact loading.

Figure 3 shows a typical section of the above composite specimen (here, a quarter of the
plate). In a combined FE/DE method, the possibly fractured region is modelled using a
discrete element mesh and the remainder of the specimen is modelled by a standard finite
element mesh. It is also possible to model the whole structure with discrete elements; in
which case the possibility of cracking is investigated throughout the structure. A combined
mesh enables us to prevent unnecessary contact detection and interaction calculations
which comprise a major part of the analysis time.

Bonding Interface

Transition Interface

FE Mesh

DE Mesh

Figure 3: Discrete element modelling of a composite plate.

Each ply or a group of similar plies is modelled by one discrete element. Each discrete
element will be discretized by a finite element mesh and may have nonlinear material
properties or geometric nonlinearities (large deformations). The interlaminar behaviour of
discrete elements is governed by bonding laws, including contact and friction interactions
for the post delamination phase.

One important aspect of this type of modelling, which distinguishes it from other contact
based delamination algorithms [5, 6], is that it does not require any predefined interface
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Figure 4: Weighted averaging of the failure indicator and the crack direction for a failed
point.

element. Being free from the restrictions of interface elements provides major advantages:
Firstly, there is no need for the nodes on different layers to match each other, which eases
the way in which data is prepared. This is essential in defining the transition interfaces.
Secondly, in progressive cracking, particularly material fracturing, we may end up with
new nodes, edges and boundaries that could destroy the compatibility required for these
interface elements.

2.1 Remeshing algorithm

Material fracture may result in the creation of new discrete bodies which are in contact by
friction interaction with neighbouring bodies. A special remeshing algorithm is adopted
to maintain compatibility conditions in newly fractured regions.

The failure indicator and the crack direction for each individual element are evaluated
within the material model routines. A weighted averaging scheme is then used to evaluate
both the failure indicator and the average crack direction of each node. Figure 4 illustrates
this scheme for a two dimensional problem.

The next step is to geometrically simulate the crack and perform the necessary split,
separation and the remeshing processes. Figure 5 represents the two dimensional remesh-
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Crack
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  Divide uncracked element
for compatibility at new node

New node

Figure 5: Remeshing scheme for modelling of fracture at a failed point.

ing algorithm which comprises four steps: splitting the element, separating the failed
nodes, creating new remeshing nodes, and dividing uncracked elements to enforce com-
patibility at new nodes. Adopting this local remeshing algorithm will provide a relatively
finer mesh in the fractured region and prevents the distortion of the elements in this
region, improving the finite element approximation of the analysis.

3 Governing equations

The standard variational (weak) form of the dynamic initial/boundary value problem
is taken as the point of departure. Let Ω represent the body of interest and Γ denote
its boundary. In a standard fashion the boundary is assumed to consist of a part with
prescribed displacement ui, Γui

, and a part with prescribed traction force f surf
i , Γσi

. In
addition it is assumed that a part Γc may be in contact with another body. By denoting

V: = {δu : δui = 0 on Γui
} (1)

as the space of admissible variations, the variational form of the dynamic initial/boundary
value problem can be expressed as

W int(δu,u) +M(δu,u) = Wext(δu) +Wcon(δu) (2)

where
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W int(δu,u) =
∫

Ω
δε(u) : σ(u)dv (3)

M(δu,u) =
∫

Ω
δu · ρüdv (4)

Wext(δu) =
∫

Ω
δu · fbodydv +

∫
Γσ

δu · f surfda (5)

Wcon(δu) =
∫

Γc

δg(u) · f conda (6)

denote, respectively, the virtual work of internal forces, the inertial forces contribution,
the virtual work of external forces and the virtual work of contact forces. Here σ is
the Cauchy stress tensor, ε is the strain tensor, u is the displacement vector, while g
represents the contact gap vector. Observe that in the present formulation the contact
terms correspond to a penalty formulation of contact interaction.

4 Contact interaction

Once the possibility of contact between discrete elements is detected (by a contact detec-
tion algorithm), contact forces have to be evaluated to define the subsequent motion of
the discrete elements from the dynamic equilibrium equation. In a penalty method, pen-
etration of the contactor object is used to establish the contact forces between contacting
objects at any given time.

To formulate the residual contribution of contact constraint, rc, for a single boundary
node, the component form of the virtual work of the contact forces associated to the
contact node is given by:

δWcon(δu) = f c
k δgk = f c

k

∂gk

∂us
i

δus
i (7)

where k = n, t and i = x, y, and us
i is the i-component of the displacement vector at node

s, g = (gn, gt) is the relative motion (gap) vector, and f c is the contact force vector over
the contact area Ac,

f c = Ac σc , σc = αg =
[
αn 0
0 αt

][
gn

gt

]
(8)

where α is the penalty term matrix, which can vary for normal and tangential gaps and
even between single contact nodes. In theory, larger penalty numbers provide better
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Figure 6: Normal and tangential gaps.

approximate solutions (better enforcement of the contact constraint), but they may cause
numerical instabilities. In fact, αn and αt are contact stiffness parameters which are
usually evaluated based on the normal and tangential young modulus of the interface (or
normal and transverse modulus of the contacting objects), respectively




αn = (0.5 ∼ 2.0)En

αt = (0.5 ∼ 2.0)Et

(9)

The corresponding recovered residual force is then evaluated as:

rs
i = f c

k

∂gk

∂us
i

(10)

The partial derivative part of equation (10) define the direction and distribution of normal
and tangential bonding forces.

The possible normal and tangential gaps for each contacting couple are evaluated by
monitoring the coordinates of contacting couple nodes in each time step. Then by pro-
jecting the coordinates in the current and previous timesteps to a reference configuration,
the possible gaps are calculated (Figure 6).

5 Delamination initiation

Figure 7 represents a node to face contact/release algorithm for an interface of two layers
during the debonding process. The resultant contact forces over the associated contact
area will play the role of required interface stress state to be checked against a delamination
criterion.
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Contactor Node

Target Segment

Figure 7: Node to face contact algorithm for delamination interaction.

Several criteria exist that can be used in prediction of the initiation of delamination
in composite structures [7, 8]. Reasonable results can be achieved by employing maxi-
mum normal stress or strain criteria, but for obtaining more rational results, some other
more sophisticated interactive criterion should be adopted. It is widely accepted that
the Chang-Springer criterion can be properly used for predicting the initiation of delam-
ination. Three dimensional representation of this criterion in local axes is defined by
[9]:

(
σz

2

N2
) + (

σxz
2 + σyz

2

T 2
) = d2

{
d < 1 no failure
d ≥ 1 failure

(11)

where N and T are the unidirectional normal and tangential strengths of the bonding
material, respectively.

Once the initial failure is predicted, a further criterion should be introduced to simulate
the growth of the local damage as the loading continues.

6 Material model

The imminence of material failure is monitored by the orthotropic Hoffman criterion [10].
According to the Hoffman criterion, a geometric yield surface is constructed from three
tensile yield strengths σT , three compressive yield strengths σC , and three shear yield
strengths σS. It may be defined as :
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Figure 8: Fracture energy softening model.

Φ =
1

2
σT Pσ + σT p − σ̄2(κ) (12)

where the projection matrix P , and the projection vector p are defined based on the nine
material yield strengths and a normalised yield strength σ̄ (see Schellekens et al. [11]),
and κ is a softening/hardening parameter.

7 Crack propagation

Forming a crack is followed by releasing energy and redistributing the forces which caused
the initiation of the crack. If this procedure happens immediately after occurrence of a
crack, it will lead to inappropriate energy release, and more importantly, to results that
strongly depend on the size of the elements used in the analysis.

A bilinear local softening model (the Rankine softening plasticity model) is adopted
in this study to account for release of energy and redistribution of forces which caused
the formation of a crack. It may properly avoid the mesh dependency of the results by
introducing a length scale, lc, into the softening material model [12].

The fracture energy release is defined as the integral of the area under the softening
branch of the stress-strain curve

Gf =
[
1

2
ft (εu − εt)

]
lc (13)

where ft is the tensile strength and εu and εt are the tensile fracture and ultimate strains
respectively, and lc is the localisation bandwidth. In general, lc is contained within one
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element and, as a close approximation, it may be defined based on the area A, or the
volume of the fractured element, V ,

lc = A
1
2 for 2D

lc = V
1
3 for 3D

(14)

For a bonding check, A is the contact area associated to each contact couple of bonding
interfaces (See Figure 7).

The softening modulus is then defined as

Ep =
f 2

t lc
2Gf

(15)

8 Numerical simulations

Authors have previously published a number of papers explaining some aspects of the
method and verifying the performance of the approach in modelling the complex be-
haviour of progreeive delamination and fragmentation in composites subjected to impact
loadings [12, 13, 14]. Therefore, in this paper only further numerical simulations of some
engineering applications are presesnted.

8.1 Fracture and delamination buckling analysis of an orthotr-
opic composite beam

Two orthotropic composite specimens with different laminate layouts are considered. Each
laminate is composed of T300/976 graphite epoxy prepreg tape (See Table 1 [7]). The
composite [90n, 0n, 90n] and [0n, 902n, 0n] ply layouts are assigned to the beams with
(LHW = 10.16, 0.249, 2.54cm) and (LHW = 7.62, 0.228, 2.63cm) geometric descrip-
tions, respectively. The specimens are subjected to quasi-static concentrated loading
(P = 2300KN) applied at their centre lines. Eight and nine layer finite/discrete element
meshes were used to model half of the beams, respectively.

Figures 10a,c illustrate the buckling modes of delaminated layers for both beams. Liu
et al [7] reported the same delamination patterns at the interface of the bottom [0n] and
[90n] plies for the [0n, 902n, 0n] specimen. However, no buckling mode was reported at the
top delaminated interface for the [90n, 0n, 90n] specimen (See Figure 9).

In addition to a delamination analysis, a fracture analysis was performed to predict the
real damage modes of the beams (Figure 10b,d). Matrix cracking across the thickness
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Table 1: Material properties of the orthotropic composite beam.

Exx = 139200MPa , Gxx = 5580MPa
Eyy = 9700MPa , Gyz = 3760MPa
νxy = νyz = 0.3 , ρ = (1.38− 2)Mg

m3

Xt = 1150MPa , Xc = 1120MPa
Yt = 40MPa , Yc = 170Mpa

S = 100MPa

(a) [90n, 0n, 90n] layout. (b) [0n, 902n, 0n] layout.

Figure 9: Deformed shape of composite specimens reported by Liu et al [7].

of the top layer of the first specimen prevents the formation of a buckling mode and the
overall behaviour of the specimen reduces nearly to an unbonded multi-layer beam.

The fracture patterns for the second specimen are mainly concentrated within the weak
mid layer of the beam, specially around the loading region, while extensive delaminations
are formed at the interfaces of [90n] and [0n] layers.

8.2 Impact loading of a composite plate - delamination analysis

A numerical simulation is undertaken to assess the performance of the method for dealing
with progressive debonding phenomenon in a laminated composite plate which is sub-
jected to a high velocity impact at its centre. Because of symmetry, only one quarter
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(a) Buckling of top delaminated layer.

Please Wait..

(b) Fracture patterns.

Please Wait..

(c) Delamination patterns.

Please Wait..

(d) Fracture patterns.

Figure 10: Deformed shape and crack patterns of composite specimens. a,b)[90n, 0n, 90n]
layout, c,d)[0n, 902n, 0n] layout.
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of the plate is modelled. Also, only the central region of this model is meshed by a DE
mesh. Therefore, the possibility of delamination is only investigated in this region (See
Figure 11). Material properties and other necessary information are given in Table 2 [15].
The composite ply pattern is set to [90n, 0n, 90n, 0n, 90n]. This modelling is a numerical
simulation of the experiments undertaken by Worswick et al. [15] on evaluating impact
damage on composite plates. The impact loading is simulated by a triangular load applied
from 0 to 5 µsec with a variable peak force of 1 to 5 kN for different tests. In this analysis,
the peak loading is set to 5 kN.

FE Mesh

DE Mesh

Figure 11: FE/DE mesh of the composite plate. (del. only)

Figures 12 to 13 illustrate the debonding patterns at different layer interfaces for two
different stages of the loading. Delamination patterns are clearly developing from the
central region of the plate, i.e. the impacted zone, towards the edges of the plate. These
figures depict only the DE part of the whole mesh.

Figure 14 depicts the comparison of the displacement history of the centre of the plate
for this mesh and a coarser mesh. The comparisons are made for both the top and bottom
point across the thickness of the plate, and clearly shows the mesh independency of the
results.

It should be noted that these results were achieved without considering a material frac-
ture analysis, and only the bonding fracture was activated. In a practical test, however,
the illustrated large deformation will certainly involve extensive material fracture.
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Figure 12: Delamination patterns at layer interfaces at T=0.00006 sec.
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Figure 13: Delamination patterns at layer interfaces at T=0.00012 sec.
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Table 2: Material properties for T800/P2302-19 graphite resin.

Model size = 0.0762× 0.0508× 0.00444m
DE region = 0.050× 0.035m
Ply layout [90, 0, 90, 0, 90]

Exx = 152.4e3MPa , Eyy = 10.7e3MPa
ν = 0.35 , ρ = 1.55e3Kg

m3

Xt = 2772MPa , Xc = 3100.0MPa
Yt = 79.3MPa , Yc = 231.0MPa

S = 132.8MPa
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Figure 14: Comparison of the displacement history of the central point for coarse and fine
meshes at the top and bottom point of the thickness.
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9 Conclusions

The combined finite/discrete element has proved to be an efficient algorithm for deal-
ing with multi-fracture and fragmentation processes, which frequently arise from impact
loadings on composite structures. It is also shown that the delamination behaviour in
composite specimens can be effectively modelled by this method. The algorithm com-
prises various contact detection and contact interaction schemes to construct an efficient
and reliable tool for the modelling of complex post failure phenomena. In addition to
considering the potential pre-delamination contacts, it is also essential to take into ac-
count the contact and friction interactions for post debonding or fracture behaviour of
composites. A major advantage of the method is that it does not require any prede-
fined interface elements, which are considered inappropriate for efficient computational
modelling of combined progressive multi-fracture and delamination analysis.

An anisotropic softening Hoffman failure criterion is adopted for specifying the initiation
of a crack. A local remeshing scheme is introduced for geometric modelling of the cracks,
which plays an important role in avoiding the excess distortions of the finite elements in
the vicinity of cracks. The algorithm allows for both nodal separation and splitting a
cracked element. The imminence of a bonding crack is predicted by the Chang-Springer
criterion. A bilinear softening model is adopted for both matrix and interlaminar cracking
description to prevent the mesh dependency of the results.
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