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ABSTRACT 
 
In this study, a combined finite/discrete element algorithm is developed to simulate delamination and 
inplane fracture in laminated composites subjected to dynamic loadings. The application of the 
finite/discrete element strategy to modelling of dynamic loading of composites is innovative, and will 
provide a significant advance in comparison to presently available capabilities of numerical modelling 
of this complex physical problem. In this method of modelling of composites, the possible delaminated 
region is modeled using a discrete element mesh, and the rest of the structure is modelled by a standard 
finite element mesh. Each group of similar plies is modelled by one discrete element. Each discrete 
element will be discretized by a finite element mesh and might have material or geometric 
nonlinearities. The interlaminar behaviour of discrete elements is governed by bonding laws which 
include contact and friction interactions for the post delamination phase. Once two layers are 
delaminated, the corresponding interface will still be capable of further contact and friction interaction. 
The performance of the model to correctly simulate the physical behaviour of composites subjected to 
impact loadings will be assessed by solving several test cases available in the literature. 
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INTRODUCTION 
 
It is evident that impact loading can cause severe damage in composite laminates. The phenomenon of 
failure by catastrophic crack propagation poses problems in all applications, particularly in the 
aerospace industry in which safety is of paramount importance, but where over-design carries heavy 
penalties in terms of excess weight. Therefore, the development of reliable models for determining the 
failure behaviour of growing advanced materials are vitally important.   
 
In general, according to the orthotropic laminated nature of composites, the failure modes may be 
classified into four different types : matrix failure, delamination, shear cracking, and erosion damage. 
There is, however, agreement that the most dominant causes of damage during impact are matrix 
cracking coupled strongly with complex mode delamination mechanisms Ambur[1995].   
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Numerical simulation of arbitrary shaped components is traditionally performed by the finite element 
techniques, which is rooted in the concepts of continuum mechanics and is not suited to general 
fracture propagation and fragmentation problems. In contrast, the discrete element method (DEM) is 
specifically designed to solve problems that exhibit strong discontinuities in material and geometric 
behaviour Munjiza[1995]. The discrete element method idealizes the whole medium into an 
assemblage of individual bodies, which in addition to their own deformable response, interact with 
each other (through a contact type interaction) to capture the characteristics of the discontinuum and to 
perform the same response as the medium itself.  
 
In this paper, some of the main aspects of modelling of composites by DEM are discussed. The final 
summary and conclusions will follow some representative results of the numerical tests for assessing 
the performance of the method.  
 
 
DISCRETE ELEMENT MODELLING OF COMPOSITES 
 
Figure 1 shows a typical combined FE/DE mesh for a quarter of a composite plate subjected to 
concentrated central loading. In a combined FE/DE method, the fractured region is modelled using a 
discrete element mesh and the remainder of the specimen is modelled by a standard finite element 
mesh. A combined mesh enables us to prevent unnecessary contact detection and interaction 
calculations which comprise a major part of the analysis time Mohammadi[1997_3].  
 
 
 

 
 
 

 
Figure 1: Combined FE/DE mesh 

                                                                                          
Each group of similar layers is modelled by one discrete element and each discrete element is 
discretized by a standard finite element mesh. The interlaminar behaviour of discrete elements is 
governed by bonding laws, including contact and friction interactions for the post delamination phase. 
Interactions between finite elements and discrete elements are modelled by transition interfaces 
(Figure 1).  
 



Inplane fracture may result in the creation of new discrete bodies which are in contact and friction 
interaction with neighbouring bodies. A special remeshing algorithm is adopted to maintain 
compatibility conditions in newly fractured regions. 
 
From the computational point of view, the discrete element procedure comprises three steps: object 
representation, contact detection, and contact interaction. The first two steps are closely associated to 
each other and are usually discussed within the framework of the contact detection algorithms. 
 
Contact detection 
 
An Alternating Digital Tree, Bonet[1991] contact detection algorithm is employed to detect the 
possibility of contact between discrete elements. In this method, each object is represented by a 
bounding box. Each bounding box is then represented by a space bisection algorithm resulting in a 
binary tree database structure. Figure 2 illustrates the space bisection procedure and the associated 
binary tree for a typical problem. The use of binary tree structure would dramatically increase the 
performance of contact search, because once one node of the tree is found to be sufficiently far from 
an object, all its descendant nodes will be eliminated from the contact search of that object.  

 
 
 

 
 
 
 

Figure 2: The space bisection approach, and its associated binary tree data structure. 
 
 
Contact interaction 
 
Once the possibility of contact between discrete bodies is detected, another method has to be used to 
satisfy the impenetrability condition of the bodies.  Many different methods have been developed for 
enforcing a constraint condition on the governing equation of a well established physical behaviour. 
Among them the penalty method is likely to be the most  appropriate scheme for adopting into an 
explicit contact analysis. In this method, penetration of the contactor object is used to establish the 
contact forces between contacting objects at any given time (See Figure 3). 
 



 
Figure 3: Contact force based on impenetrability. 

 
According to the weak form of the boundary value problem, the component form of the virtual work of 
the contact forces associated to the contact node is given by Mohammadi[1998_1], Schonauer[1993]: 
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where α is the penalty term matrix , which  may vary between single contact nodes. The   
corresponding    recovered   residual   force  is  then  evaluated  as: 
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The calculated contact force has to be distributed to the target and the contactor nodes. 
 
 
DELAMINATION  INITIATION 
 
 The  Chang-Springer  criterion  may  be  properly  used  for  predicting  the initiation  of 
delamination.  
Chang and Springer [1986_2]: 
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where  N and   T   are the unidirectional normal and tangential strengths of the bonding material, 
respectively  and failure occurs when  d  becomes greater than or equal to one. 



 
 
MATERIAL  MODEL 
 
The imminence of material failure is monitored by the orthotropic Hoffman criterion, where a  
geometric  yield  surface  is  constructed  from  three  tensile   yield   strengths σT, three compressive 
strengths σC, and three shear strengths σS. It may be defined as: 
 

Φ =  ½ σ T P σ  + σ T p - )(2   
 
where the projection matrix  P , and the projection vector  p  are defined based on the nine material 
yield strengths and a normalized yield strength     (see Schellekens  et al. [1990]), and  κ   is a 
softening/hardening parameter. 
 
A bilinear local softening model is also adopted in this study to account for release of energy and 
redistribution of forces which caused the formation of a crack. It may properly avoid the mesh 
dependency of the results by introducing a length scale into the softening material model Mohammadi 
[1997_3]. 
 
The additivity postulate of computational plasticity is used to formulate the rate form of the stress 
return algorithm. The integration of the flow rule in a finite step is then performed by the backward 
Euler method coupled with the Newton-Raphson iterative scheme. 
 
 
NUMERICAL SIMULATIONS 
 
The author has previously published a number of papers on verifying the performance of the approach 
in modelling the complex behaviour of  progressive cracking in composites (Mohammadi 
[1997_3,1998_1], Owen[1998]). Therefore, in this paper only further numerical simulations of  some 
engineering applications are presesnted. 
 
Fracture  and   delamination   buckling  analysis   of  an orthotropic composite specimen is considered. 
The material properties used in the calculations are listed in Table 1 (Liu [1993]). The composite [90n , 
0n, 90n] ply layout is assigned to the beam with (LHW=10.16,0.249,2.54cm) geometric descriptions. 
The specimen is subjected to quasi-static concentrated loading P=2300  KN  applied at its centre line. 
An eight layer finite/discrete element mesh was used to model half of the beam.  
 
 

                                                 
                                                                       
                      
                                            



TABLE1 
MATERIAL PROPERTIES OF THE ORTHOTROPIC COMPOSITE BEAM 

  
                                                      
                          

     
   

 
                                                  
   
 
                                                          

 
(a) Buckling of top delaminated layer.} 

 
(b) Fracture patterns 

 
Figure 5: Deformed shape and crack patterns of the [90 n,0 n,90 n] 

composite specimen. 
 
Figure 5a illustrates the buckling mode of delaminated layer. Although Liu [1993]  reported the same 
delamination patterns, however, no buckling mode was reported at the top delaminated interface. 
 
A fracture analysis was also performed to predict the real damage loading and damage mode of the 
beam (Figure 5b).  Matrix cracking across the thickness of the top layer of the specimen prevents the 
formation of a buckling mode and the overall behaviour of the specimen reduces nearly to an 
unbonded multi-layer beam. 
 
Impact loading of a composite plate - delamination analysis 
 
A numerical simulation is undertaken to assess the performance of the method for dealing with 
progressive debonding phenomena (no material fracture) in a laminated composite plate which is 
subjected to a high velocity impact at its centre (based on the experiments undertaken by Worswick  
[1995]. 
 

 
E xx = 139200 M Pa       ,    Gxx = 5580 M Pa 
E yy =  9700    M Pa       ,    G yz = 3760 M Pa 

νxy   =  νyz  = .3               ,    ρ =(1.38-2)
3m

kg
  

Xt     =  1150   M Pa        ,   Xc =1120    M Pa 
Yt    =  40   M Pa            ,  Yc =170 M Pa 
                           S=100 M Pa 



Because of symmetry, only one quarter of the plate is modelled. Also, only the central region of this 
model is meshed by a DE mesh (See Figure 6). The composite ply pattern is set to  
[90n,0n,90n,0n,90n].The impact loading is simulated by a triangular load  applied  from  0 to 5 μsec  
with a  peak force of  5   kN. 
 
Material properties  and other necessary information are given in Table  2. 
 
                           

 
                        

Figure 6: FE/DE mesh of the composite plate. 
 
   
 

TABLE 2 
MATERIAL PROPERTIES FOR T800/P2302-19 GRAPHITE RESIN 

 
 
 
 
 
 

 
 
Figures 8 and 9 illustrate the debonding patterns at different layer interfaces for two different stages of 
the loading. Delamination patterns are clearly developing from the central region of the plate, i.e. the 
impacted zone, towards the edges of the plate. 
 Figure 7 depicts the comparison of the displacement history of the centre of the plate for this mesh 
and a coarser mesh. The comparisons are made for both the top and bottom point across the thickness 
of the plate, and clearly shows the mesh independency of the results. 

 
Model  size = 0.0762 ×  0.0508 × 0.0044 m 
            DE region = 0.05  ×   .035 m 
            Ply  layout [ 90, 0, 90, 0, 90] 
E xx = 152.4e3 M Pa       ,    E yy = 10.7e3 M Pa   

    ν =  0.35                     ,    ρ = 1.55 e3
3m

kg
 

Xt     =  2772   M Pa        ,   Xc =3100    M Pa 
Yt    =  79.3   M Pa         ,  Yc =231 M Pa 
                           S=132.8  M Pa 
 



 
Figure 7: Displacement history of the central point 

 
 
CONCLUSIONS 
 
The combined finite/discrete element has proved to be an efficient algorithm for dealing with multi-
fracture and fragmentation processes, which frequently arise from impact loadings on structures. An 
alternating digital tree method is adopted to reduce the extensive numerical costs of the contact 
detection phase. A local remeshing scheme is introduced for geometric modelling of the cracks, which 
plays an important role in avoiding the excess distortions of the finite elements in the vicinity of 
cracks. Several numerical tests have been used to assess the performance of the method.  
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Figure 8: Delamination patterns at layer interfaces at T=0.00006 sec. 
 
 
 



 

 
 

 

 

 
 
 

Figure 9: Delamination patterns at layer interfaces at T=0.00012 sec. 
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