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Abstract  
A new approach is proposed to model a crack in orthotropic composite media using the extended finite 
element method (XFEM).  The XFEM uses the concept of partition of unity in addition to meshless basic 
idea of approximating a field variable by its values at a set of surrounding nodes. As a result, higher order 
approximations can be designed with the same total number of degrees of freedom. In this procedure, by 
using meshless based ideas, elements containing a crack are not required to conform to crack edges. 
Therefore mesh generating is performed without any consideration of crack conformations for elements 
and the method has the ability of extending the crack without any remeshing. Furthermore, the type of 
elements around the crack-tip is the same as other parts of the finite element model and the number of 
nodes and consequently degrees of freedom are reduced considerably in comparison to the classical finite 
element method. 
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INTRODUCTION 

 
Since the strength to weight ratio of composite materials is higher than other conventional engineering 
materials, industrial and engineering applications of such materials have widely spread in recent years. 
Considering their strength, they are applied in the shape of thin layers while remain very imperfection 
sensitive. As a result, fracture behaviour of orthotropic materials has turned into an interesting active 
research subject. Some analytical investigation have been reported on the fracture behaviour of composite 
materials such as the pioneering one by Muskelishvili [1], Sih et al. [2],  Tupholme [3], Viola et al. [4], 
Lim et al. [5] and Nobile and Carloni [6]. 
Owing to the fact that analytical methods are not considered as feasible methods for solving arbitrary 
problems, numerical methods such as the boundary element method, the finite element method, and 
meshless methods have been widely expanded and utilized in engineering applications. In many meshless 
methods, simulation of arbitrary geometries and boundaries is so cumbersome.  However, the finite 
element method is more convenient and applicable because of its ability in modeling general boundary 
conditions, loadings, materials and geometries. One of its main drawbacks is that elements associated with 
a crack must conform to crack faces. Furthermore, remeshing techniques are required to follow crack 
propagation patterns. To improve these drawbacks in modeling discontinuities, Belytschko and Black [10] 
combined FEM with the partition of unity (proposed by Melenk and Babuška [11], Duarte and Oden [12]), 
soon to be known as the eXtended Finite Element Method (XFEM). In the XFEM, the finite element 
approximation is enriched with appropriate functions extracted from the fracture analysis around a crack-
tip. The main advantage of the XFEM is its capability in modeling discontinuities independently, so the 
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mesh is prepared without considering the existence of discontinuities. In 2D isotropic media, Moёs [13] 
and Dolbow [14] proposed an improvement to the work by Belytschko [10], and Sukumar [15] extended 
the method to 3D  problems. 
In the present study, a new set of enrichment functions is derived to simulate orthotropic cracked media 
using the extended finite element method. Crack-tip enrichment functions used in the extended finite 
element method are derived from already developed complex functions that determine the stress and 
displacement fields around a crack-tip. In this paper, first, essential formulations of orthotropic materials 
are reviewed. Then, the extended finite element method is concisely examined and the crack-tip (near-tip) 
enrichment functions are obtained. Thereafter, a method used for evaluating stress intensity factors is 
presented. Finally, in order to examine the robustness and validity of the proposed method, it is used to 
analyze various numerical examples and to evaluate mixed mode stress intensity factors and to compare 
them with available results. 
 

ORTHOTROPIC MEDIA 

 
Consider an orthotropic medium with axes of elastic symmetry co-incident with the Cartesian co-ordinates 
x-, y- and z-axes. The displacement component along the z-axis and all its derivatives with respect to z are 
assumed to be zero. The stress-strain equations can be defined as 
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where Cij (i,j=1,2,3) are the relevant components of the compliance matrix of the material in x- and y- 
directions. Now the set of equations for an in-plane elastostatic problem can be expressed as 
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Following the methodology proposed by Viola et al. [4], a transformation is applied in order to express the 
formulation in terms of complex functions. Eqs. (2) can be represented by 
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Eigenvalues of the matrix A can be obtained by  
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where λ is the Eigen value of matrix A. Two types of orthotropic materials can be defined, 21 aa   (type 

I) and 21 aa   (type II); based on the existence of the real part of the solution. The first type of 

orthotropic materials was studied by Asadpoure et al. [17], and only the type II is considered in this paper. 
The basic complex variables can then be written as 
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where 
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Now, consider an infinite orthotropic plate, consisting of a traction free line crack, which is subjected to 
uniform biaxial (T and kT) and shear (S) loads at infinity. Fig. 1 shows the crack geometry, loading 
conditions and the Cartesian and polar co-ordinates utilized in this study. 

 

Fig. 1 Crack geometry, loading condition and global and local co-ordinates. 

 
Neglecting the velocity of the crack propagation for the present static case, the basic solution proposed by 
Viola et al. [4] results in the following displacement fields in x ad y directions 

    
         

      
       

       2sin2sin22

2cos2cos2

2sin2sin2

2cos2cos2cos2

2

221113443

1122214433
133

22115453

22115463
133

223114131241
4

13









ccarYkpkp

ccarXXkpkp
DC

S

ccarkpkp

ccarrakpkp
DC

T

XBpXApBpYBpBpApu











 (11)

 
    

       
       

         
      2sin2sin2

2cos2cos2cos2
2

2sin2sin22

2cos22cos2
2

22114132

22114231
133

221116251

221215261
133

221121121221211











ccarkk

ccarrakk
DC

S

ccarYkk

arcarXXkk
DC

T

XBXBAYBBAv











 (12)

where 
 
 

  2121432
21

21
21 , ippiipp

i

i
ipp 




 



 

33

11
42

33

11312
1 2,

2

C

C
pk

C

CpC
k 




     , 
33

12
44

33

12322
3 2,

2

C

C
pk

C

CpC
k 




  

116225 2,2   pkpk  

(13)

with 



 

   sincos 2
11 rlraX      ,        sincos 2

12 rlraX   

 sin2
21 rlY   
 
 324133

13
1 kkkkC

Tkkk
A




                  ,      54631 kkkkD   

    
 3241

62515364

633633
1 22 kkkk

kkkkkkkkk

kC

T

kC

S
B




  

    
 3241

62515364

633633
2 22 kkkk

kkkkkkkkk

kC

T

kC

S
B




  

(14)

and 

      .2,1,,2sin)1(sincos
12

2
2
1

2212222 


jlllc j
j   (15)

 
.2,1,

sin1cos

sin
2

1

2
2 










 j

l

l
arctg

jj 
  (16)

It is noted that the displacement fields in Eqs. (11-12) are only valid for 1
a

r
; near the crack-tip. 

EXTENDED FINITE ELEMENT METHOD 

 
X-FEM was originally proposed by Belytschko and Black [10] and Dolbow [14] and later modified and 
applied to various crack analysis problems by Sukumar et al. [15]. A numerical X-FEM model is 
constructed by dividing the model into two parts; first part is generating a mesh for the domain geometry 
(neglecting the existence of any crack or other discontinuities) and second part is enriching finite element 
approximation by appropriate functions for modeling any imperfections. 
Consider x is a point of R2 (for 2-D space) or R3 (for 3-D space) in the finite element model and N is a set 
of nodes defined as  mnnnN ,....,, 21 , m is the number of nodes in the element. The enriched 

approximation of displacement can be defined by: 
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where uI is the classical nodal degree of freedom in FEM, Ja is the added set of degrees of 

displacement freedom to the standard finite element model, I is the shape function associated to node I, 
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Fig. 2 Influence (support) domain for node J in an arbitrary finite element mesh 



 

In Eq. (18), Jω is the influence domain of J  for node Jn (Fig. 2) and g is the domain associated with a 

geometric entity such as crack surface, front, hole or any other discontinuities. According to the type of 
discontinouity, )(x can be chosen by applying its associated analytical solutions. 
 
For modeling an arbitrary crack, Eq. (17) can be re-written as [14]: 
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where Jb  and l
kc  are vectors of additional nodal degrees of freedom, )(F1 xl and )(F2 xl are near-tip 

enrichment functions derived from the two-dimentional asymptotic dispalcement field near crack-tip and 
K1 and K2 are the set of nodes in which the crack-tip is in its suppurt domain for tip 1 and tip 2, 
respectively. )(xH is the generalized Heaviside function which takes the value +1 if x is above the crack 

and –1, otherwise. If x* is the nearest point on the crack to x and ne is the unit vector normal to the crack 

alignment in which zns eee   ( se is the unit tangential  vector), then: 
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To select enriched nodes, the nodes that belong to K1 or K2 are enriched with the crack-tip enrichment 
function (Fl(x)) and those which contain the crack within their support domain and do not belong to K1 or 
K2 are enriched with Heaviside function (H(x)).  
 
Crack-tip enrichment functions are obtained from the analytical solution for displacement in the vicinity of 
a crack-tip. These functions must span the possible displacement space that may be occurred in the 
analytical solution. Therefore, from Eqs. (11-12), it can be concluded that the functions having preceding 
properties are as 
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where  and  jc   have been defined in equations (15) and (16). 

In Eq. (20), the third and forth functions in the right-hand side of the equation are discontinuous across the 
crack faces while the others remain continuous.  
 
The discrete system of linear equations in the XFEM in global form can be written as [16] 
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where K is the stiffness matrix, d is the vector of degrees of nodal freedom (for both classical and enriched 
ones) and f is the vector of external force. The global matrix and vectors are calculated by assembling 
matrices and vectors of each element. K and f for each element are defined as 
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where Ωe is an element, Ωh is an element with a crack lying along its edges, Ω denotes the boundary of 
the domain Ω, t  is the traction and b is the body force. In Eqs. (24), B is the matrix of shape function 
derivatives,  
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Because the ordinary Gaussian rules do not accurately calculate the integration of enrichment functions in 
elements cut by a crack, the element is subdivides into subquads. In this method, a node is enriched if there 
exist Gaussian points at both sides of the crack in the influence domain of the crack. Fig. 3 shows a mesh 
that contains a crack while the second method was applied. Although the crack cuts the element in 
Fig.3(a), node J must not be enriched because there is no Gaussian point above the crack. In contrary, node 
J in Fig. 3(b) has to be enriched.  
 

 
(a)     (b) 

Fig. 3 (a) Node J is not enriched because Gaussian points of its support domain are not present at both 
sides of the crack, (b) node J must be enriched since there are Gaussian points at both sides of the crack. 

 

NUMERICAL EXAMPLES 

 
In this section some examples are presented. For comparing the results, Stress Intensity Factors (SIFs) and 
J-integral are calculated and compared. These parameters are among the best parameters for determination 
of the path of crack propagation. In this section, SIFs and J-integral are obtained by the method proposed 
by Kim and Paulino [16]. In the subsequent plane stress examples, the following parameters, being the 
function of independent engineering constants (Eij, νij, Gij, i,j=1,2.), would be used 
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where E is the efficient Young’s modulus, ν is the effective Poisson’s ratio, δ4 is the stiffness ratio and κ0 is 
the shear parameter. In all examples, elements containing a crack are partitioned into ten subquads and a 
2×2 Gaussian rule is utilized for integrations in each one; while, a 2×2 Gaussian rule is applied in 
calculating regular finite element parameter.  
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1. Plate with a crack parallel to material axes of orthotropy 

 
In this example, a crack aligned along the axis of orthotropy in the center of a plate is studied. At edges 
parallel to the crack, a fixed-grip loading or constant traction is applied. The constant stress is obtained by 
utilizing a uniform stress (σ=1) and the fixed-grip loading is obtained by a load equivalent to strain (ε0=1) 
in the corresponding uncracked plate. Geometry and boundary conditions for the problem are illustrated in 
Fig. 4. 
 

 
Fig. 4 Geometry and boundary conditions for a plate with a crack parallel to material axis of orthotropy. 

 
In the FEM discretization, 2116 nodes with 2025 four-noded quadrilateral elements are used (Fig. 5). The 
size of crack-tip element is one-sixteenth of the crack length, i.e. 81ahe . Stress intensity factors are 

calculated and compared with those reported by Kim and Paulino [16], using a total of 2001 elements and 
5851 nodes, as shown in Table 1. 
Table 2 shows the rate of convergence for various integration domain sizes (rd) for enrichment with and 
without crack-tip enrichment functions. As provided in Table 2 small domain sizes can not be used without 
the inclusion of crack-tip enrichment functions and in order to compensate for the local effects of the 
crack-tip, larger domains are preferred.  
By including crack-tip enrichment functions, higher rates of convergence are anticipated, even for smaller 
domain sizes around the crack-tip. Numerical results show that when 5.0ard , the values of SIFs are 

independent from the domain size. 
 

      
(a)                                                                     (b) 

Fig. 5The discretizated model for a plate with a crack parallel to material axis of orthotropy, (a) whole view of FEM 
discretization model, (b) details of descretization around the crack-tip. 
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Table 1. Values of normalized SIFs for a plate with a crack parallel to material axis of orthotropy. 

Method IK  IIK  

Kim and Paulino [16] 0.997 0 

Proposed method 1.018 0 

aKK II   and aKK IIII   for the applied uniform stress 

aEKK II  0
2  and aEKK IIII  0

2   for fixed-grip loading 

 

Table 2. Comparison of normalized SIFs with and without crack-tip functions . 

Relative domain 
size (rd/a) 

Without crack-tip function With crack-tip function 

IK  IIK  
IK  IIK  

0.25 0.966 0 1.018 0 
0.5 1.014 0 1.017 0 
1 1.015 0 1.017 0 

2 1.016 0 1.018 0 

aKK II   and aKK IIII   for the applied uniform stress 

aEKK II  0
2  and aEKK IIII  0

2   for fixed-grip loading 

 
Table 3. Comparison of normalized SIFs for the proposed and isotropic enrichment functions.  

Number of 
Elements 

Number of DOF 

Proposed enrichment 
 functions 

Isotropic enrichment 
functions  

IK  IIK  
IK  IIK  

2025 4278 1.018 0 1.021 0 
784 1712 1.017 0 1.019 0 
400 904 1.017 0 1.016 0 

aKK II   and aKK IIII   

 
To investigate the effect of number of elements in the numerical analysis, some coarser meshes are utilized 
and the results are given in Table 3. In this table, the results for SIFs are compared when isotropic 
enrichment functions (Dolbow [14]) and the proposed method are applied. As shown in Table 3, the results 
for both methods are different 0.2% and the values of the mode I stress intensity factors are more stable 
than the other one. 
 
2. A single edge notched tensile specimen with crack inclination 
 
The method proposed in this study is applied to a single edge notched tensile specimen. The material 
properties and geometry of the specimen are shown in Fig. 6. In this study, mixed mode stress intensity 
factors have to be evaluated because the crack has an inclination with respect to the line of symmetry. The 
finite element mesh of the model consists of 1920 4-noded quadrilateral element as shown in Fig. 7. The 
model has 14×40 fine elements with 0.075×0.075 Cm around the crack and 32×40 elements 0.075×0.15 
cm far from the crack. For the numerical approach, a 2×2 Gauss quadrature is applied to evaluating 
classical finite element parameters, while for enriched nodes belong to elements that contain crack within 
their selves, elements are partitioned into 5 sections in both directions and  in each section a 6×6 Gauss 
quadrature is utilized. The results are compared in Table 4. The calculated SIFs are based on the converged 
values corresponding to the case of eight elements far from the crack-tip position. The stress intensity 
factors reported by Jernkvist [18] were correlated to the load through the usual procedure of identifying 
displacements of nodal points on the crack surfaces close to the crack-tip by six crack inclinations φ in the 
range from 0° to 45°. 
 
According to Table 4, while the stress intensity factors are only different within 1.1% and 7.9% for mode I, 
they are different within 0% to 5.1% for mode II. When the crack inclination is low, they are more similar 



 

and the maximum differences for the two first inclinations are 1.1% and 0.6% for mode I and II, 
respectively. 
 

 

Fig. 6 Specimen geometry of a rectangular plate with single notched cracked. 
 

 

 
 

Fig. 7 Finite Element mesh for a single edge notched tensile specimen with crack inclination 
 
 

Table 4. The effect of crack angle on the normalized stress intensity factor. 

Φ 
(°) 

Proposed method  Jernkvist [22] 

 difference
a

K I %


 difference
a

K II %
  a

KI

 a

K II


 

0 2.960 (2.2) 0.0 (0.0)  3.028 0.0 
15 3.000 (1.1) 0.361 (0.6)  3.033 0.359 
30 3.120 (3.3) 0.691 (0.9)  3.020 0.685 
45 3.029 (7.9) 0.908 (5.1)  2.806 0.864 

CONCLUSION 

 
The problem of modeling crack in orthotropic media was studied. The extended finite element method was 
adopted for modeling the crack and analyzing the domain numerically. In the extended finite element 
method, first the finite element model without any discontinuities is created and then the two-dimensional 
asymptotic crack-tip displacement fields with a discontinuous function are added to enrich the finite 
element approximation using the framework of partition of unity. The main advantage is the ability of the 
method in taking into consideration the crack without any explicit meshing of the crack surfaces, and the 
growth of any crack can readily be applied without any remeshing. The analytical solution for the 
displacement is applied to obtain the two-dimensional asymptotic crack-tip functions. Mixed-mode stress 
intensity factors (SIFs) were evaluated to determine the fracture properties of domain. The results obtained 

Elastic properties: 
ER=0.81 GPa;  EL=11.84 
GPa 
ET=0.64 GPa;  GLR=0.63 
GPa 
vLR=0.38 ; vLT=0.56 
vRT=0 43



 

by the proposed method are in good agreement with other available numerical or (semi-) analytical 
methods. In most examples, the maximum difference between the developed method and other available 
methods is about 1.7% for mode I and 2.4% for mode II. Numerical results depict that values of stress 
intensity factors are independent from the domain size as the domain size reaches to 0.325 of the crack 
length. 
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