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Abstract: The checkerboard patches are known as one of major instabilities in topology optimization algorithms that should be 
overcame in order to sure the manufacturability of the final topology. In this paper the relationship between stress/strain distribution 
and checkerboard formation is investigated and with some examples it is illustrated that smoother stress/strain distributions result in 
topologies with fewer checkerboards. Based on this fact, a checkerboard controlling filter is introduced. This new approach dose not 
restricts the design domain and no direct modification is applied to design variables or sensitivities. In this approach the only revision 
is smoothing stress/strain distributions. Different numerical examples are solved using this approach and all results were free from 
checkerboards. The results showed that the approach may also overcome the local minima problem which is another common 
instability in topology optimization problems. A detailed comparison between the new approach and a known checkerboard 
controlling filter is made. 
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1. Introduction 
Finding the best topology of structural layout or Topology Optimization is of great importance in design process, and a great amount 
of work has been done in this area during the last decade. In structural topology optimization problems, material distribution methods 
are very common due to their precise and simple definition of the problem and their satisfactory results. In these methods topology is 
represented by material distribution in the design domain of the problem. By modifying material properties one can model different 
topologies in these methods and hence there is no need for remeshing. Using Solid Isotropic Material with Penalization or SIMP 
method is one of the material distribution methods, which is frequently used in structural topology optimization. In this method, 
which is to be considered in this paper, the element relative densities are considered as design variables. Within each element, the 
material properties are assumed constant and are described by the so-called power-low interpolation [1, 2, 3]. Design variables 
(element relative densities) vary continuously between 0 (void) and 1 (solid). The power-law interpolation penalizes the intermediate 
densities and pressurizes them into boundary values. The topology obtained here is represented by a grey scale image which consists 
of solid (black) elements, void (white) elements and elements with intermediate densities (grey elements).  
The SIMP method, like the other material distribution methods, suffers from numerical instabilities such as checkerboards, mesh-
dependency and local minima [4]. In this paper we deal with the checkerboard problem which refers to the formation of areas of 
alternating solid and void elements in a checkerboard-like pattern. It is demonstrated by Diaz and Sigmund (1995) that these patches 
may generate unrealistic high stiffness in displacement based finite element analysis (see [5]) while the reason is not quite known. In 
this study the relationships between stress/strain distribution and checkerboard formation are investigated. This investigation might 
be found useful in finding the source of this instability. 
In the literature there are some known approaches that can overcome the checkerboard problem [6]. These approaches could be 
classified into three categories. The first category, sometimes referred to as Restriction methods, consists of those approaches that 
restrict the design space by introducing additional constraints for example on perimeter or density slopes (see [7], [8]). There is 
another class of approaches in which design variables or sensitivities are modified in order to remove the checkerboard pattern. These 
methods are usually referred to as Filtering approaches and are more widely used with SIMP method [3]. Finally one may use special 
types of finite elements to overcome the instability. Higher order finite elements as well as non-conforming finite elements could be 
used here. Although higher order finite elements do not completely resolve the checkerboard problem [5], using non-conforming 
finite elements, as reported by Jang et al. (2000), could overcome this instability completely [9]. 
In this paper, it is shown that checkerboard formation is influenced by stress/strain distributions and smoothing stress/strain 
distributions in finite elements may remove checkerboard patches completely. Based on this result, a simple algorithm for 
suppressing checkerboard patches is introduced. This approach dose not restricts the design domain and doesn’t need special finite 
elements. Besides, no direct modification is applied to design variables or sensitivities. In this approach only modification is 
smoothing stress/strain distributions and hence it can be regarded as a filtering approach. During verification tests, this approach did 
not show any kind of checkerboard instabilities and besides, some tests showed that local minima problem is overcame as well. 
An overview of the paper is as follows. In section 2, through some examples relationships between checkerboard formation and 
stress/strain distributions are demonstrated. In section 3, we define our filtered version of the well-known minimum compliance 
topology optimization problem and a simple algorithm for smoothing stress/strain distribution is introduced. Some of the well-known 
problems in structural topology optimization are solved using this new approach and results are reported for verification in section 4. 
A comparison between the present approach and Sigmund’s sensitivity filter [3] is made in section 5 and finally in section 6, the 
findings are summarized and a conclusion is made. 
 
2. Influences of checkerboard formation and stress distribution on each other 
In topology optimization problems, one may easily find some relationships between stress/strain distribution and formation of 
checkerboard patches. In the following some examples are given on this issue. 
As the first experiment we investigate the stress distribution of a checkerboard patch to find the influence of these patches on stress 
distribution. To do this a same problem (MBB problem, see fig 5-a) is solved once using normal SIMP method with no controlling 
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technique and once using a sensitivity filter to overcome checkerboards. Optimum topologies are illustrated in fig. 1-a and 1-b and 
stress distributions of these topologies are depicted in fig 1-c and 1-d respectively. It should be noted that in fig 1-c and 1-d, absolute 
values of stresses are depicted. It could be seen that in the left solution, stresses fluctuate considerably within checkerboard patches 
(fig 1-c) while stress distribution of the right solution is not oscillating (fig 1-d). The reason is that solid elements (black elements) 
have higher stiffness in contrast to void (white) elements and so solid elements bear much more stress than void elements. 
 

 
(a) (b) 

(c) (d) 
Figure 1. Topologies obtained by normal SIMP method without any instability control (a) and by using sensitivity filter (b) stress 

distributions of optimum solutions (c), (d) 
 
At the next step, the influence of stress distribution on forming checkerboard patches is investigated. It is known that utilizing higher 
order finite elements which generate smoother stress/stain solutions, results in topologies with fewer or even no checkerboards 
[5,10]. For further study we compare solutions of two different types of finite elements namely Constant Strain Triangles (CSTs) and 
four-node quadrilateral finite elements. CST elements model the stress (strain) distribution by a constant stress (strain) within each 
element while within four-node quadrilateral elements, stress and strain distributions are assumed bilinear. Hence stress and strain 
distributions obtained by four-node quadrilateral elements are smoother compared to CST results. The so-called Short Cantilever 
Beam or SCB problem (see Fig. 4-a) is solved here using SIMP method without any modification with CST and four-node 
quadrilateral finite elements. Obtained topologies are illustrated in fig 6-a and 4-b respectively. It could be seen that the topology 
obtained through using four-node quadrilateral finite elements has less checkerboard patches in contrast to the case of CST finite 
elements.  
Through these facts and results one may conclude two major conclusions that are (a) stresses and strains fluctuate extremely within 
checkerboard patches and (b) smoother stress/strain approximations result in topologies with fewer checkerboards.  
Based on these results an approach for controlling checkerboard formation is introduced in the next section. 
 
3. Statement of the problem and introducing the new approach 
To investigate the influence of smoothing stress distribution on forming checkerboard patches it is necessary to reformulate the 
problem so that stress/strain modifications can adjust design variables. The well known compliance minimization is considered 
which is defined as (see [6], [3]) 
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where c(x) is the mean compliance, x is the vector of design variables, xmin is a vector of minimum relative densities (which are 
considered positive to avoid singularities), V(x) and V0 are material and design domain volumes, respectively, and f is a prescribed 
value known as the volume fraction. 
Mean compliance, c(x), can be formulated in terms of stress and strain vectors as: 

Tc = ∫ d
Ω

ε σ Ω                (2) 

and if the design domain Ω is divided into Ne finite elements, we have: 
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In which Ωe, εe, and σe represent volume, strain vector and stress vector of the finite element e, respectively. 
For simplification a new parameter ce is introduced as:  
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Using Eq.(4), Eq.(3) can be rewritten as follows: 
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The stress vector is a function of design parameters. To show this, stress-strain relationships from the finite element method and the 
power-law interpolation from SIMP method are recalled [1, 6, 10] 
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Here D0 is the material matrix and p is the penalization power. 
By introducing the parameter σe0 as 

e = ⋅D0 0σ           (7) 
and using Eq.(6) and Eq.(7) in Eq.(4) results in: 
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To make use of the optimality criteria technique and the heuristic updating scheme [6, 3], it is also necessary to reformulate the 
sensitivity of the objective function in terms of stress and strain vectors which leads to: 
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or simply: 
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Now if the stress and strain vectors were modified through a smoothing algorithm, the modified compliance within each element can 
be found as: 
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in whichˆ and ˆ are smoothed strain and stress vectors respectively. Using Eq.(11) in Eq.(10), new sensitivities can be calculated 
as follows: 
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In the new statement of the problem, equations Eq.(4) and Eq.(9) are replaced by equations Eq.(11) and Eq.(12), respectively. 
 
3.1. Smoothing algorithm 
In the following, a new approach for smoothing stress/strain distribution is introduced. It should be noted that although this 
smoothing approach is not the only one which can eliminate checkerboards. 
For each node of each finite element, all connected elements are considered. The nodal stress (strain) of each specified node is then 
calculated through averaging stresses (strains) of that node within each connected element. 
As an example, a 3x3 mesh of 4-node quadrilateral finite elements is considered (fig 2). Within each element, nodes are numbered in 
a counterclockwise order as depicted in fig 2. The stress (strain) vector at node j, within element k, is represented by sk

j. Using the 
described algorithm, modified stress (strain) vectors for three sample nodes which are marked in fig 2, are calculated as follows: 
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In order to calculate the integral in Eq.(11) for elements with constant or linear stress/strain distribution (like CST and 4-node 
quadrilateral elements), it is sufficient to determine the integrand at the center of specified element multiplied by the element’s 
volume. For bilinear stress/strain distributions (also valid for constant stress/strain distributions), the stress (strain) vector at the 



 
 
centre of each element can be computed by averaging nodal stresses (strains): 
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In this paper, this approach is used in combination with SIMP method. The approach is applied to smooth stresses and strains after 
each finite element analysis and the smoothed solutions are then used in Eq.(11) and Eq.(12) to calculate adjusted sensitivities. The 
flow of this procedure is depicted in fig 3. 
 

 
Figure 2. An example of a mesh of 9 four-node quadrilateral elements 
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Figure 3. Algorithm of the new approach 
 
4. Numerical examples 
To verify the present approach five examples are considered. In the first two examples as well as in the last two ones, uniform mesh 
of four-node quadrilateral square elements is used while an unstructured mesh of CST elements is used in the third example. Through 
the first three examples it is demonstrated that this approach could overcome the checkerboard problem and the fourth example 
illustrates that this approach could relieve the local minima instability. The last example deals with mesh-dependence instability. This 
example shows that this approach could not overcome mesh-dependency. 
In all of these examples the following parameters are adopted: modulus of elasticity E=1.0, Poisson’s ratio ν=0.3 and applied force 
F=1.0. All units are assumed to be consistent. The power-law approach with the exponent p=3 is used here and the material volume 
is restricted to one half of the design volume (f=0.5). 
  
4.1. Structured mesh with quadrilateral finite elements 
In the following examples a uniform mesh of four-node quadrilateral square finite elements is used. All elements are equal in size. 
The first example is the well-known short cantilever beam (SCB) problem with a mesh of 90 x 60 elements. The left side of the beam 
is fixed and a downward concentrated force is applied at the middle of the right side. The design domain of this problem is shown in 
fig 4-a. The final topologies obtained by normal SIMP method and the new approach are illustrated in fig 4-b and 4-c respectively. 
The second example is the MBB beam problem whose design domain is depicted in fig 5-a. Half of the design domain with 
symmetry conditions is modeled here (fig 5-b). A 90 x 30 mesh is used for this modeling. Figures 1-a and 5-c illustrate the topologies 
obtained using normal SIMP method and the new approach respectively. It could be seen that in both cases using smoothed 



 
 
stress/strain distribution removes the checkerboard pattern. 
 

 
  

(a) (b) (c) 
Figure 4. Short Cantilever Beam problem - design domain (a) and optimum topologies obtained by normal SIMP method (b) and by 

the new approach (c) 
 
 

 

 
(c) (b) 

Figure 5. MMB Beam problem - design domain (a), half design domain with symmetry conditions (b), and optimum solution 
obtained by the new approach (c) 

 
4.2. Unstructured mesh with CST finite elements 
This example is the same SCB problem which was solved in the first example (fig 4-a) except the mesh used here is an unstructured 
mesh of 3776 CST elements. Obtained topologies are shown in fig 6-a and 6-b. The topology obtained by the new approach in both 
cases is free from checkerboards and qualitatively remains unchanged (see fig 6-b and 4-c). This demonstrates that functioning of this 
new approach is independent of the type of mesh and elements. 
 

  
(a) (b) 

Figure 6. Using unstructured mesh of CST elements - optimum topologies obtained by normal SIMP method (a) and by the new 
approach (b) 

 
4.3. Local minima and mesh-dependency 
Through the following examples we seek if the present approach could relieve local minima and mesh-dependence instabilities as 
well. The mesh-dependence problem refers to obtaining different topologies for different mesh parameters while the problem of 
obtaining different solutions for the same mesh but different algorithmic parameters referred to as local minima [4]. 
Again the MBB problem whose design domain is depicted in fig 5-a, is considered. To investigate the local minima problem the new 
approach was implemented to different initial conditions. Initial conditions are depicted in fig 7-a and 7-b and the obtained topologies 
for each one are illustrated in fig 7-c and 7-d respectively. No qualitative difference could be found in these solutions.  
In the next example different mesh sizes with 60x20 and 120x40 quadrilateral elements are considered for the same MMB problem. 
Obtained solutions are illustrated in fig 8-a and 8-b respectively. It could be seen that using finer meshes results in introduction of 
more holes in the optimum solution. To describe the reason, Bendsøe and Sigmund (2004) stated that “the introduction of more 



 
 
holes, without changing the structural volume, will generally increase the efficiency of a given structure” (see [6]). It is clear that the 
obtained topologies are mesh-dependent and the new approach could not overcome the mesh-dependency. However it should be 
noted here that whilst mesh-independent solutions are necessary for obtaining practical simple topologies, as correctly noted by 
Rozvany (2001), “mesh-dependence actually becomes beneficial if we want to demonstrate that topologies tend to a known exact 
solution” [11]. 
 

  
(a) (b) 

  
(c) (d) 

Figure 7. Local minima - topology optimization of MMB beam problem: different initial density distributions (a), (b) and optimum 
solutions obtained by the present approach (c), (d) 

 
 

 
(a) (b) 

Figure 8. Mesh-dependency - optimum topologies of MMB problem using 60x20 (a) and 120x40 (b) mesh sizes 
 
5. Comparison 
In this section the present approach is compared with Sigmund’s sensitivity filter which is a known checkerboard controlling 
technique. In Sigmund’s sensitivity filter (SSF) the calculated sensitivities (Eq.(9)) are replaced by 
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In which Ĥf is a weight factor written as 
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Where dist(e,f) is defined as the distance between centre of element e and centre of element f and r is a parameter that defines the 
radius of the filtered area (see [3]). 
It could be seen that in SSF, sensitivity of each element is modified with respect to sensitivities of neighboring elements and the filter 
works similar to filters used in image processing. If within each element stresses and strains assumed constant, modified sensitivities 
obtained by the new approach and SSF will be somehow similar to each other as they both normalize element sensitivity with respect 
to sensitivities within neighboring elements. For more explanation we rewrite Eq.(15) using Eq.(10). 
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Noting that p is constant for all elements and using Eq.(12) in Eq.(17) we have 
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or simply 
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As stress and strain vectors within each element are assumed constant, the element compliance ce (see Eq.(4)) could be found through 
following 

T
e e ec = ε σ eV                (20) 

where Ve denotes volume of element e. Finally using Eq.(20) in Eq.(19) the following equation is derived for SSF 
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A similar equation could be found for the new approach. The element modified compliance ĉe (see Eq.(11)) can be written as 
T

e e eˆˆ ˆc = ε σ eV              (22) 
Using the smoothing algorithm described in section 3, smoothed stress and strain vectors at the centre of element e can be described 
by 
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In Eq.(23) Ŵf is a weight factor which can be calculated using smoothing algorithm and Fe denotes elements connected to element e. 
Using Eq.(23) in Eq.(22) the following equation could be derived for the new approach 
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It should be noted that the Eq.(24) which is derived for the new approach is based on the assumption of constant stress and strain 
states within elements. This assumption is not valid for many cases (such as four-node quadrilateral or higher order finite elements) 
and in these cases this equation would be more complicated. In this comparison, however, we use Eq.(24) because of its simplicity 
and its similarity with Eq.(21).  
It is clear that both approaches find filtered element compliance (and subsequently element sensitivity) through averaging stresses 
and strains within neighboring elements. However while the new approach normalizes stress and strain vectors separately, in SSF 
their scalar product is normalized. The other obvious difference is about the influence of volumes of neighboring elements in each 
technique. In Eq.(21) (SSF) the filtered parameters of each element are directly influenced by volumes of neighboring elements while 
in the new approach the filtered element compliance (and subsequently element sensitivity) within each element only depends on 
volume of that element itself. In uniform structured meshes like those used in examples 1, 2, 4 and 5, this feature is not important as 
all elements are of the same size. However in using SSF with non-uniform or unstructured meshes one should choose the filter’s 
radius carefully because if sizes of some elements are greater than the chosen filter’s radius, eliminating checkerboards is not 
assured. In these cases large element sizes, even if they are smaller than the radius of filtering area, affect filtered sensitivities of 
neighboring elements considerably (see Eq.(21)).  
A noticeable advantage of SSF in contrast to the new approach is that in SSF, one could obtain different topologies by changing the 
radius of filtering area. In this technique number of holes in the final topology could be controlled by adjusting the filtering radius. 
As a general rule, greater filtering radii result in simpler topologies with fewer holes. This feature could be used to obtain same 
topologies from different mesh sizes. In the other words SSF technique could overcome the mesh-dependency problem. 
 
6. Conclusions 
In this study it has been shown that the formation of checkerboard patches in topology optimization depends on stress distribution. 
Filtered version of minimum compliance topology optimization problem has been derived and a simple algorithm for smoothing 
stress and strain distributions has been introduced. This algorithm was used in combination with the so-called SIMP method and the 
approach was verified by numerical examples. Verification examples have shown that this technique may relieve the local minima 
problem as well. Also it was demonstrated that functioning of this approach is independent of the type of mesh and elements. at the 
end of the paper the approach was compared with Sigmund’s sensitivity filter. 
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