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Abstract. Numerical errors may be introduced in some numerical methods of solving 
differential equations because of their nature. Discretizing a continuum medium would result 
in changing the wave velocity and inducing numerical errors into the solution. Some methods 
using strong formulations are based on the Taylor expansion. Therefore, using only a finite 
number of Taylor series terms for particle simulations introduces truncation errors. 
Truncation of the Taylor expansion is also the reason for developing two other types of error. 
The first, called dispersion error appears in the form of extra vibration in high frequency 
modes that can result in solution instability in some problems. Another type of error is 
dissipation and may cause decrease in wave amplitude. 
Particle methods such as SPH [1] and CSPM [2], are also involved with truncation errors. A 
number of methods have already been proposed for removing dispersion from particle 
methods such as adding artificial stress. However these methods become energy dissipative 
resulting in wave amplitude decays after several time steps. 
In this paper further investigation is performed to study the roots of dispersion and 
dissipation errors in particle methods. A new procedure is proposed for eliminating 
dispersion and stabilizing the solution, based on the CSPM particle method and the Newmark 
time integration scheme. The results are compared with other existing methods. 
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1 INTRODUCTION 

The smoothed particle hydrodynamics method, SPH, was originally developed by Gingold, 

Monaghan and independently by Lucy in astrophysical problems. The method has been 

widely applied in many fields such as hydrodynamics, solid mechanics and simulating many 

other natural phenomena. Nevertheless, it has encountered some physical and mathematical 

problems, such as lack of consistency in boundaries and failure in satisfying boundary 

conditions. Chen et al [1,2] proposed a new method by using the Taylor expansion series 

which can satisfy consistency conditions needed for the second order problems, and boundary 

conditions can be directly applied. 

Another problem associated with SPH simulations in some applications is its instability, 

and loss of accuracy. Particularly in modeling solid media, this problem may cause tensile 

instability resulting in particle clumping similar to phenomenon of creation of non-physical 

fracture in brittle materials that may be difficult to distinguish physical fracture from 

nonphysical one [5].     

Many methods have been already proposed to remove this instability. It was first studied 

by Swegle et al. who related it to the signs of pressure and the second derivative of the 

interpolating kernel. A short-wavelength instability identical to tensile instability was 

analyzed by Philips and Monaghan for the case of magneto gas dynamics. Many efforts have 

been done over the years to modify interpolation kernel for removing tensile instability. 

Randles and Libersky used dissipation terms to remove the instability, while Monaghan et al, 

presented artificial stress approach which improved the results for fluid and solid dynamics 

problems [5]. 

The most conventional method is adding an artificial term to the stress state in equilibrium 

equation in hydrodynamics or solid mechanics problems. 

In this paper, first the main source of numerical error is investigated and then methods of 

prevention are discussed. The method of artificial stress will be reviewed and a new method 

using CSPM procedure without any artificial stress will be presented for solid mechanics 

problem. Numerical tests are used to compare the proposed approach with other available 

methods. 

2 PARTICLE METHODS 

2.1 SPH methodology 

The SPH method offers a way of solving a differential equation in a strong form similar to 

the finite difference method. Superiority of SPH to the finite difference method is its 

capability of simulation of any medium with complex geometry and irregularly distributed set 

of particles. In addition, particles can move freely in a medium, which simplifies simulation 

of fluid dynamics and large deformation of solids in Lagrangian space. 

SPH method is based on evaluation of values of a function and its derivatives at a particle 

in terms of values of the function and its derivatives in neighbor particles. The main concept 

of SPH is based on the following Dirac delta function property: 

 

(1)  )( )()( )()( iiii xudxxudxu =−=− ∫∫
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∞−

+∞

∞−
ξξδξξδξ  

 

where δ  is the Dirac function, )( ixu  is the value of function u  at point ix . SPH uses a 

weight kernel function w  instead of the Dirac function, while assuming the main 

characteristics of the Dirac function. Therefore, equation (1) is transformed into: 
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where Ω  is the smoothing domain having a radius of  two times of the smoothing length 

h . The discrete form of equation (2) becomes similar to a weighted average of the neighbor 

nodal values within the smoothing domain, 
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where N  is the number of neighbor particles located in the smoothing domain Ω , 

)( ji xxw −  is the value of weight function that depends on the distance between nodes i  and 

j  and the smoothing length h , and jv∆  is the space that occupied by particle j . In one 

dimensional problems, jv∆  changes to jx∆ , that is an average distance from adjacent 

particles. By increasing the distance of nodes ji, , the effect of particle j  in evaluation of a 

function value at particle i  is reduced. 

The first and second derivatives of a function can be estimated using equation (2) and the 

rule of integration by part. By choosing an appropriate weight function, residual or boundary 

terms of the integration by part can be neglected; therefore: 
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To remove residual terms of the integration by part in equation (4), the first derivative of 

the weight function should be anti symmetric, whereas in equation (5), it is difficult to remove 

all boundary terms by choosing an appropriate weight function. 

Because of the lack of consistency of the SPH method in and near boundaries, many 

studies have been directed towards improving this property resulting in development of many 

modified SPH approaches; RKPM [6], CSPM [1,2] and MSPH [7]. 

2.2 CSPM methodology 

CSPM was proposed by Chen et al. in 1999 [1,2] using the Taylor series. The Taylor 

expansion can be written as: 
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For evaluation of the first derivative of u , the first two terms of the series are taken in to 

account. Multiplying (6) by a weight function a
w  and neglecting higher order terms and 

integrating over the smoothing domain, results in equation (7) in a discretized form  
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In order to avoid zero denominator, the weight function a
w  should be anti symmetric. 

Equation (7) ensures elimination of boundary errors that appear in the standard SPH . 

For evaluation of the second derivative of  u  , the first three terms of the series are 

considered. Multiplying (6) by a symmetric weight function s
w  and neglecting the fourth and 

higher order terms and integrating over the smoothing domain, results in one equation with 

two unknown variables h
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Derivative of a
w , or any other symmetric function may be chosen to replace s

w  , in order 

to avoid zero denomator. 

Another similar method called MSPH solves the first and second equations simultaneously 

[7]. Multi dimensional problems can be also solved by using multi dimensional Taylor 

expansion [1,2,7]. 

3 TRUNCATION ERROR 

Differential equations can be solved in a strong form, using the Taylor expansion for 

determination of the values of derivatives of a function at a node in terms of its neighbor 

nodes. 

Neglecting higher order derivatives in the Taylor series, results in approximate estimation 

of function derivatives, causing creation of truncation error. For example the first derivative 

of a time dependent function u  is obtained by: 
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where n  is the time step number and i  is the particle number. 

The error term in estimating the first derivative using the finite difference method can be 

defined as  
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The same equation can be written in time domain, 
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The procedure can lead to evaluation of the error for the second derivatives, 
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The same equation can then be written in time domain 

 

)(
2

)( 22

11

2

2

tE
t

uuu

t

u
n

i

n

i

n

in

i ∆+
∆

+−
=

∂

∂ −+

  

(13)  

 ).(
)!2(

.2
)(

2

2

2

22

2

n

ip

p

p

p

t

u

p

t
tE

∂

∂∆
−=∆ ∑

∞

=

−

  

 

Equations (10-13) define the total error in various PDEs with the maximum order of two. 

For instance, error of solving the first order partial differential equation using FDM can be 

obtained as, 
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)(1 xE ∆ , )(1 tE ∆  can be calculated using (10), (11). By using closed form solutions of PDE 

in (14), time derivatives in equation (11) can be written in terms of displacement derivatives. 

Therefore, the total error totalE  in numerical form of PDE in (14) can be written as, 
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It has been discussed in literature [8] that neglecting terms with odd order of derivatives in 

(15) will induce dispersion in solution, while neglecting even order derivatives will cause 

dissipation. As a result, the truncation error includes both dispersion and dissipation errors. 

Dissipation error appears in the form of amplitude decay in results, causing undesirable 

numerical damping. Dispersion error causes exciting vibration modes of short wave length 

and may finally cause instability of the solution, as depicted in Figure 1. 

 

 

Figure 1: dissipation (left) and dispersion (right) errors 

Another form of PDE that should be discussed here is the second order partial differential 

equation. Closed and FDM forms of this type are defined as: 
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The error term can be evaluated similar to the first order PDE: 
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Equation (17) implies that only even order derivatives appear in error. As a result, only 

dissipation errors are induced in results. 

Adding terms similar to those of error in equations (15) or (17) to the P.D.E. is expected to 

reduce the truncation error. 

Considering the fact that SPH and CSPM, similar to FDM are based on the Taylor series, 

and in some special cases, the CSPM with some simplification reduces to FDM formulation 

[3], truncation error is expected to similarly affect the results in all these particles methods. 

4 REDUCTION OF 1-D WAVE PROPAGATION SOLUTION ERROR 

4.1 Stress based procedure 

In this method, the following three equations are written in strong forms at time step n: 
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Equilibrium equation: 
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Compatibility equation: 
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Constitutive relation: 
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Equation (18) is identical to equation (14), therefore, using CSPM or similar derivative 

estimations based on the Taylor expansion leads to truncation errors, such as dissipation and 

dispersion. 

By adding stabilizing terms to the equilibrium equation (18), these errors are prevented and 

more stable and more accurate solution is expected to be achieved. Since the equilibrium 

equation is identical to PDE in (14) these added terms are basically similar to error terms 

evaluated in (15). 

Adding stabilizing terms have been discussed in several studies. One of the most 

conventional stabilizers was first proposed by Monaghan and Gingold (1983) and can be also 

used in the standard SPH and CSPM [1,2,3]: 
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where ijc  is the average of sound velocity of particles ji, , ijρ  is the average density of 

particles ji, . ijv   is the relative velocity of particles ji,  and ijx  is the relative distance of 

particles ji, . κβα ,,  are constants, and ijh  determines the smoothing length. 

This stabilizing term is added to the stress term in equilibrium equation, Therefore the SPH 

form of the equilibrium equation can be written as   
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Another similar stabilizing term, which has been widely used in several applications of 

solid mechanics and hydrodynamics problems, has the following form: [7] 
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where βα ,  are constants. This stabilizing term is also added to the stress term in 

equilibrium equation,  
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4.2 Displacement based procedure using the Newmark’s time integration 

Combining the three sets of equations (18), (19), (20), allows derivation of the Navier 

equation, only based on displacement variables: 
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Equation (25) can be written in an incremental form: 
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By using the Newmark's formulation, the incremental values of variables can be 

determined: 
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where γβ ,  are constants, taken as 5.0,25.0 == γβ for the average acceleration method , 

and 5.0,6/1 == γβ for the linear acceleration approach.     

By using the updating procedure (27) at time step n  and the CSPM methodology for 

evaluation of the second derivative of incremental displacement, the following numerical 

form of (26) is obtained,  
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Any displacement boundary condition can be directly satisfied in (28). In case of existing 

force boundary condition, equation (28) has to be modified. By replacing n
u&&∆  from (27) into 
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where n

iσ∆  is the force boundary condition. 

It should be noted that both the Newmark’s time integration method and the second derivative 

evaluation using CSPM, are based on Taylor series expansion with first three terms. Because 

of similarity between CSPM and FDM, truncation errors of (28) and (29) are nearly identical 

to the truncation error discussed in section 3. Therefore, by considering equation (17), it is 

calculated that the truncation error of the proposed procedure only constitutes the dissipation 

error and no dispersion will be induced in results. 

Numerical tests have shown that the results of solving incremental displacement based 

equation using Newmark’s time integration method and CSPM second derivative evaluation, 

can remove dispersion error, similar to other methods that eliminate dispersion using 

stabilizing terms. The dissipation error may also be removed by adding an appropriate term to 

the Navier equation. 

5 NUMERICAL TESTS 

In this section a standard problem is adopted to compare all following solution procedures:  

a) stress based without modification using (18), (19), (20) 

b) stress based using the first modification of section 3 and equations (21), (22) 

c) stress based using the second modification of section 3 and equations (23), (24) 

d) incremental displacement based, and the Newmark’s time integration method using 

equations (28), (29) 

e) incremental displacement based, and finite difference time integration method using 

equations (28), (29) 

The problem is defined as one end fixed axial bar with 0.1 m length and 1.0 m
2
 area of 

cross section, built of steel with elasticity modulus of 2.27e5 MPa, and density of 7800 kg/m
2
 

subjected to a 10
9
 N point load applied to its free end. 

Other solution parameters such as the time step, smoothing length and the number of 

particles are assumed similar in all cases. 
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Figure 2: 1-D bar test 

101 particles are assumed for the analysis. The time step is selected in a way that, the wave 

propagation can be observed in consecutive particles in successive time steps. Therefore, 

0c

x
t

∆
≤∆ , where x∆ is the distance between two adjacent particles, and 

0c  is the sound 

velocity in media; 
ρ

E
c =0 . In the present simulations, t∆  is taken as 5.0e-8 sec and the 

smoothing length has been chosen 0.001 m. 

The time history of axial stress at the middle of the bar predicted by method (a) is depicted 

in Figure 3. 
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Figure 3: Stress time history of the middle span of the bar using stress based equation without modification 

As explained in section 3, and can be clearly observed from Figure 3, these results contain 

truncation error in the form of dispersion. 

The energy error can be defined as: 
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And is illustrated according to Figure 4:  
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Figure 4: Energy error time history using stress based equation without modification 

Although the overall energy loss is approximately zero, nevertheless, in order to remove 

instability of the method and its dispersion error, a more efficient and stable procedure such as 

(b), (c) or (d) should be adopted. 

The results of the same problem using (b), (c), (d) methods are shown in Figure 5: 
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Figure 5: Stress time history of the middle span of bar using methods (b), (c), (d)  

As expected, combining the displacement based equation and the Newmark’s time 

integration, method (d), can remove dispersion error similar to methods using stabilizing 

terms.By computing the energy error using equation (30), the time history of error can be 

derived (Figure 6): 
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Figure 6: Energy error time history using methods (b), (c), (d), (e)  
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It is clear from Figure 6 that methods capable of removing dispersion, may contain some 

energy loss, and as a result some amplitude decay may appear in results (See Figure 5). The 

proposed method (d), however, has apparently less and smoother energy error. 

Method (e) has the least energy loss (see Figure 6), but there remains some dispersion error 

as observed in its results (see Figure 7). 
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Figure 7: Stress time history of the middle span of bar using method (e) 

6 CONCLUSION: 

In this paper, the truncation error and its effect on solution of one dimensional problems 

were discussed and a quick review on methods preventing this drawback was provided In 

addition to existing methods, a new approach for dispersion reduction using incremental 

displacement based equation and the Newmark’s time integration scheme has been proposed 

and compared with other methods.The proposed method has no necessity of adding any 

stabilizing term to the main equation, and its energy error is less than other stabilized methods 

based on artificial terms. 
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