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Abstract. Orthogonal machining is one of the most complex metal forming operations involving a 
diversity of physical phenomena, such as large deformation, complicated contact/friction condition, 
thermo-mechanical coupling and chip separation mechanisms.  In this study, numerical simulation 
of this class of problems has been performed using advanced adaptive re-meshing procedures for 
inelastic problems, making it possible to capture shear band localization of realistic orthogonal 
machining. Blanking is another complex metal forming process which needs adaptive re-meshing 
procedure to avoid large finite element distortion. Both orthogonal machining and blanking have 
been numerically simulated and discussed. 
 

Introduction 

Numerical simulation of metal forming problem presents higher complexity compared to its elastic 
structural counterparts. Large plastic deformations not only bring complications from the 
mathematical point of view, but can also cause rapid solution degradation due to element distortion. 
Therefore, application of adaptive re-meshing techniques to this class of problems seems essential as 
emphasized and employed by many researchers [1-3] to simulate shear-band phenomena in 
machining titanium alloy.  

In machining processes chips are generally classified as continuous, discontinuous (shear-band), 
continuous with built-up edge and shear plane oscillations [4]. The chip separation mechanisms have 
not been fully explained and several factors are said to affect the process whose mechanism is 
frequently described through plastic shear strain, shear stress and shear stability models. In the first 
case, chip separation is reported to occur when the plastic shear strains reach a fracture limit.  On the 
other hand, shear stress models assume the fracture onset is governed by a critical value of shear 
stress. For some materials and cutting conditions, formation of a discontinuous chip is explained by 
shear instability models, which usually assume that localized plastic deformation associated with 
thermal softening causes the material to fracture according to a defined pattern [1].  

Several studies on numerical simulation of sheet blanking process have been reported. Brokken [5] 
proposed an Euler-Lagrangian method combined with re-meshing techniques. Morancay [6] used a 
failed elemenet deactivation procedure for simulating this class of problems. Rachik [7] used 
Arbitrary Lagrangian Eulerian (ALE) method for re-meshing process. In all cases, a predefined 
deformable mesh is expected to experience large distortions, accompanied by very noticeable errors. 
This suggests the use of re-meshing techniques in order to reduce the overall error and provide a 
reliable solution. 
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Adaptive Re-meshing 

The key to the efficient and economic solution of problems is not merely the number of nodes and 
elements but also their placement. Regions with large gradients (e.g., a discontinuity or stress 
concentration) will need a high mesh density, with quiescent regions requiring a comparatively 
coarser mesh. The ideal is that every element contains the same predefined, allowable error, thus 
yielding an optimal mesh. In general, adaptive re-meshing techniques encompass two main aspects:  
error estimation and transfer operations:  

 

Error estimation 

Error estimation has gained considerable momentum when Zienkiewicz and Zhu [8] introduced 
error estimates based on post-processing techniques of the finite element solutions which could 
easily be used in conjunction with mesh refinement strategies.  

The theory of continuous damage mechanics postulates the elasto-plastic degradation of the 
material, which is quantified by the damage variable, D, and is governed by a damage law. In this 
paper, Lemaitre's [9] isotropic damage model has been adopted, in which D is the local ratio 
between the areas of micro-voids and the total areas of the material and ranges from 0 (virgin 
material) to 1 (rupture). The damage strain release rate parameter, Y , is defined by  
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Where H and 2J are the hydrostatic stress and Von Mises equivalent stress respectively and T is the 

rotated stress tensor. The rate of the damage work, D , is 
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The approximation error for a generic element K and its corresponding global value are 
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The ideal mesh requires as equal distribution of element errors, K,D
 , which have been defined as 
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where m is the number of elements and D and D
h  are given respectively by 
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Therefore, the target error, K , and current error, K,D
 , define the error index, K , as 
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The new element size h is computed by (p is the degree of the interpolation polynomial) 
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Transfer Techniques 

In elastic-plastic problems, there exist two basic types of variables to be transferred, i.e., nodal 
values such as displacements and velocity, and quantities associated to the quadrature points such as  
internal energy density, the equivalent plastic strain, plastic strain tensor. Here, the methodology 
proposed by Peric[10] and Dutko [11] is adopted, where two separate but compatible transfer 
operators, namely 1 and 2  for Gauss point and nodal variables, respectively, are defined.  

For simplicity of notation, the state array ),(ˆ),(
~

),( nhnhnh    is defined, which contains all 

nodal, ),(ˆ nh , and Gauss point, ),(
~

nh , information at a given time step nt  and mesh h. When the 
estimated error of the solution ),( nh  violates a prescribed criterion at time t, a new mesh, h+1, is 
generated and a new solution )1,1(  nh  is computed.  

 

The transfer operator 1  

The process comprises three distinct steps, i.e., projection of the Gauss point variables to nodes, 
transfer of the nodal values from the old to the new mesh and projection of the corresponding nodal 
quantities to new quadrature points. 

 

 

a) Projection of variables to nodes b) Transfer from old to new mesh c) Nodes to Gauss point interpolation 

 

Figure 1– Transferring Gauss point variables from old to the new mesh. 

 

(a) Projecting Gauss point variables to nodes 
The transfer of Gauss point variables to nodes is performed using the well-known 
projection/smoothing technique, largely used for error estimates and based on Zienkiewicz and 
Zhu’s [12] approach. Fig. 1(a) illustrates the operation for constant strain triangles, where the 
subscripts N and G indicate nodal and Gauss point variables, respectively. 

(b) Transferring the nodal projection to the new mesh 
The second step (Fig. 1(b)) is the most complex, in which the projection/smoothed components of 

the state array, ),,(
~

Nnh , are transferred from old mesh h to the new mesh h+1. The process can 
be subdivided into three stages. In the first stage, for every node A of the new mesh h+1 with 
coordinates A,n

1h x , a background element, eh , is found in the old mesh for which eh
A,n

1h x  . 



The second stage constitutes the evaluation of the local coordinates, ),( A
h

A
h  , of the node A of 

the new mesh within the background element by solving 
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where  r is the number of nodes of element and N is the interpolation function. In the third stage, the 
state variables ),,1(

~
Nnh   are mapped from nodes B of the old mesh to nodes A of the new mesh 

h+1 by using the interpolation function ),(N A
h

A
h

b
h   as  
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(c) Interpolating Gauss point variable in the new mesh 

In the final step, which is illustrated in Fig. 1(c), Gauss point variables ),,1(
~

Gnh   of the new 

mesh are obtained by using the interpolation function of the element )e(1h   as 
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in which ),( G
1h

G
1h    are the Gauss point coordinates. 

 

The transfer operator 2            

The present task reproduces the mapping of the nodal values operation as 
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Numerical Simulation 

Chip Separation 

In order to simulate the discontinuous chip separation; in which the cutting plane should not be 
predefined, Owen [2] used a failure criterion based on the Lemaitre's damage model [12] for this 
class of problems as 
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This criterion has shown good agreement with the experimental results [2] and has been adopted in 
this work. In this criterion any node which reaches to a critical value, would be separated, therefore, 
to avoid spurious fractures, the criterion should be able to predict the fracture zone and to exhibit a 
high gradient near the critical zone. These requirements have already been in the failure criteria 
introduced by Komanduri [13], using experimental techniques based on scanning electron 
microscopy and a high-speed movie camera, proposed a chip formation model for titanium alloys 
(Ti-6Al-4V). In this paper the same material data have been adopted from the Komanduri's 



experimental work. The experimental results, initial mesh, material properties and problem 
specification are depicted in Fig 2.  

 

 

 

Rake  angle 

Flank angle 

Cutting speed 

Cutting depth 

Initial temperature 

Initial yield stress 

Initial plastic strain 

-3 deg 

5 deg 

10 m/s 

0.5mm 

298 K 

1231.5 MPa 

0.008 

 

Young's modulus 

Poisson's ratio 

Specific mass 

Thermal conductivity 

Hardening parameter 

Specific heat 

Coulomb friction 

115.7 GPa 

0.321 

4420 Kg/m³ 

586.2 J/Kg.K 

0.059 

582.2 J/Kg.K 

0.1 

Figure 2- Initial mesh, experimental results, material properties and problem specification 

 

The yield stress adopted in the simulations is given as an input to the program by the equation  
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Fig. 3 shows the procedure of adaptive re-meshing in different time steps, corresponding to the 
deformation of tool, Δu, for three different tool advances Δu = 0.156, 0.258 and 0.536 mm. In this 
figure, formation of two shear bands is clearly observed at the final stage of the process. Fig. 4 
illustrates the distribution of plastic strain. According to figures 3 and 4, two regions with higher 
mesh density distribution during the re-meshing procedure are observed. The first region is the area 
between the tool and work piece in which a high contact stress exists and so finer elements are 
generated. The second region belongs to high value of plastic strain (strain localization) region, 
where shear band is expected to occur. 

 

 

 

Figure 3 - Adaptive re-meshing and chip separation 

 

A good agreement with experiental data by Komanduri [13] which reported formation of shear 
bands at angles near to 45 degrees is observed.  The same problem has been simulated by Owen [2, 



3] (Fig. 5). It is clearly found that more realistic formation of chip separation; especially the first 
chip, tool advance and formation of the shear-band are achieved by the present work. 

 

 

Figure 4 – Distribution of plastic strain 

 

 

Figure 5 – Adaptive re-meshing reported by Owen and Vaz Jr [3] 

 

Blanking 

The same algorithm for chip separation has been used to simulate another metal cutting process 
called blanking. The geometry of problem and problem specifications are depicted in Fig. 6. The 
punch moves downwards at 10 m/s while the die and upper support hold the metal sheet. 

 

 

 

Shear  angle 

Thickness 

Punch  speed 

Clearance 

Initial temperature 

Initial yield stress 

Initial plastic strain 

0 deg 

3 mm 

10 m/s 

0.09 mm 

298 K 

1231.5 MPa 

0.008 

Young's modulus 

Poisson's ratio 

Specific mass 

Thermal conductivity 

Hardening parameter 

Specific heat 

Coulomb friction 

115.7 GPa 

0.321 

4420 Kg/m³ 

586.2 J/Kg.K 

0.059 

582.2 J/Kg.K 

0.1 

 

Figure 6- Material properties and problem specification 



The distribution of mesh density by using adaptive re-meshing in blanking process is presented for 
different punch displacement (Δu) in Figure 7. At the beginning of the procedure (Δu=0.024 mm) 
two regions have more density of mesh than other regions, where the first region is the interface of 
punch with the work piece; the place of high contact stress, and the second is the region that work 
piece is forced by the corner of the lower die, which creates a very high stress concentration due to 
the sharp corner. 

 

 

Figure 7- Adaptive re-mesh in blanking process 

 

At Δu=0.348 mm the high mesh density region is generated along the cutting plane across the 
thickness of work piece. At this load step because of the deformation of the work piece, the contact 
area between work piece and punch is less than previous load step (Δu=0.024 mm), so mesh 
refinement occurs only in that small part. By following the procedure, it is found that at the end of 
the process no high-density mesh is generated and a rather uniform distribution of coarse mesh is 
required for discretization of the model, and no major element distortion exists within the model. 
The distribution of plastic strain in this process is presented in Figure 8. 

 

 

 

Figure 8 – Distribution of plastic strain 

 

 



 

Conclusion 

Element distortion is a major factor in machining and cutting simulation, thereby requiring 
periodical re-meshing. Within the present work, error indicators based on the rate of damage work 
has been proposed for damage of materials. The assessment of the estimator is based on several 
metal cutting tests and shows that this indicator is able to capture shear band formation efficiently. 
The successful application of the error estimator based on the integration of Lemaitre's damage 
model to orthogonal machining and blanking, confirms the good performance as previously 
reported. 
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