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Abstract 

Analytical salutian af Shack wave prapagation in pure gas is usually addressed in gas dynamics. 

However, such a solution for granular media is complex due ta inclusion of parameters relation ta 

particles configuration in the medium, called macroscopic parameters. In this paper, an analytical 

solutian for gas flow in an isotropic homagenous granular material is presented. In this regard, 

balance equatians are first written in waveform and then in non-conservatian form. Afterwards, an 

equivalent gas is introduced by redefining thermodynamic praperties. Finally, analytical salution is 

obtained using Riemann invariants along characteristics. The solution enables expressing shock 

propagation velocity, as well as density and pressure variations, in the porous medium in terms of 

gas properties and macroscopic parameters, which is of high value in design of granular shock 

isolators. 
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1. INTRODUCTION 

Shock wave propagation modeling has always been a subject of high interest among 

researchers in many fields of engineering and science. This includes physical modeling using 

shock tube test device, as well as numerical modeling using various methods. In this regard, 

investigation of shock wave propagation in porous media is of crucial importance due to its 

application in military and industry. 

Numerical shock simulations in porous media have gained quite popularity by the advent 

of high-resolution shock capturing techniques in computational fluid dynamics. Extensive 

reviews of the methods have been presented by Lohner (2008)\ Hoffmann and Chiang 

(2000) 2 and Laney (1998) 3, among others. 

Analytical methods of shock wave modeling in fluids are often limited to solution of the 

Riemann problem and generalized Riemann problem for Euler hyperbolic system of 

equations, in which method of characteristics is mainly utilized. Lax (1973) was one of the 

pioneers of the subject and provided the mathematical theory of shock waves. Toro (2009) 

and Guinot (2008)) have described the characteristics method of solving hyperbolic system 

of equations in detail and in an application-based style. They did not entrain rigorous 

closure conditions, such as equations of state for imperfect gases, in their textbooks. Such 

analytical solutions plus many others in viscid and inviscid fluid dynamics, including viscous 

boundary layers and Prandtl-Meyer flow, can be found in Emanuel (2000). 

Analytical models for shock flow in rigid porous media have been presented by Levy et al. 

(1993, 1995a and 1995b), Krylov et al. (i996) and Sorek et al. (1996), in which significant 

evolution periods have been obtained by dimensional analyses of the governing balance 

equations of gas and solid phases after an abrupt change of thermodynamic properties of 

the fluid. The models supplied simplified governing equations for each period, but did not 

provide analytic solution similar to the one for the shock tube problem in fluids. Juanes and 

Patzek (2004) and Juanes (2005), for the first time, gave completely analytical solution for 

the Riemann Problem of three-phase flow in rigid porous media; however, they assumed 

incompressible fluids and considered only the conservation equations of mass into account 

using an extended multiphase form of the Darcy1s law. 

In this paper, analytical solution for one-dimensional weak shock wave flow through the 

pores of a rigid porous medium due to abrupt rupture of the diaphragm in the shock tube is 

proposed. It is assumed that the rigid granular material exists at both sides of the 

diaphragm. The solution is obtained using characteristic method by redefining 

thermodynamic properties of the gas inside the pores. li et al. (1995) redefined the 

properties of the gas inside the pores and wrote the flow equations in primitive (physical) 

variable formulation of [Pr Vr Prr-- Pr, Vf and Pr are density, velocity and pressure of 

the fluid, respectively-and declared that it can be applied in an analytical solution for shock 

wave propagation inside the porous medium; even though, they did not provide the 

solution based on their conservative formulation. However, it is clear that their formulation 
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is not mathematically true when shock waves are present and the solution is discontinuous. 

Toro (2009) has exemplified this and showed that this formulation is only mathematically 

true for smooth waves where rarefaction waves and contact discontinuities are present. 

In the following sections, first the governing equations are described, and then the 

solution methodology is presented. Subsequently, veracity of the solution is verified by 

comparison with the numerical solution of the Rieman problem in rigid porous materials 

produced by Ben-Dor and Levy (1997). 

2. GOVERNING EQUATIONS 

In gas dynamics, one-dimensional Euler equations for a pure gas are expressed as 

(1) 


The third equation in (1) is the energy equation, which becomes redundant in case of 

isothermal, polytropic and isentropic flows. In these cases, the equation of state for an ideal 

gas transforms to relations between pressure and density. 

Weak shock waves are usually associated with low gas Mach numbers, Mg. From 

thermodynamics point of view, as a gas is forced through a tube, when ratio of the gastp
ve locity, V" to th e speed of sound in the gas, '. = ' , is muc h less than unity

Pg 

(Mg =Vg / ag < 1) in an adiabatic shock tube, the process maybe considered reversible; Le., 

in view of the second law of thermodynamics, entropy of such a system is not increased and 

remains constant. Such a flow is an isentropic flow, in which the ideal (caloric) equation of 

state simplifies to 

(2) 


Where V is the specific gas constant and C is a constant depending on the type and 

temperature of the gas. Details on the thermodynamics can be found in any relevant source, 

e.g. Sonntag et at. (2003). 
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In order to have an insight over the variations of the gas Mach number in shock tube 

test, we consider two shock tube tests: Sod (1978) test as a representative of weak shock 

wave and Woodward and Colella (1984) test as a representative of blast wave (Table 1). Gas 

Mach number for the two tests are depicted in Fig. 1 based on the classical analytical 

solution of the Riemann problem. It is clearly seen that the gas Mach number in the case of 

weak shock (Sod test) is well below unity, i.e., subsonic. 

It is worth mentioning that the assumption of isentropic flow in granular media is not 

always the case, since heat transfer from gas to the solid particles plays great role on 

changing the flow type. 

Table 1. Data for the two shock tube tests; 'L' and 'R' subscripts denote properties at the left and right of the 
diaphragm 

Sod (1978) 1 o 1013250 0.1 o 101325 

Woodward and Colella (1984) 1 o 101325000 1 o 101325 
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Fig. 1. Gas Mach number versus shock tube length for the two tests of Table 1, as representatives of weak 
and strong shock waves 
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Based on the above, the governing 1D Euler equations for an isentropic flow is written as 

(3) 

with the closure conditions specified in Eq.(2). 

With the assumption of isentropic flow in rigid granular media in case of weak shocks, 

the Euler equations of the pure gas in Eq. (3) can be averaged over a Representative 

Elementary Volume (REV) to incorporate the effect of solid matrix on the gas flow inside the 

pores. Bear and Bachmat (1990) introduced an REV model that takes into account 

macroscopic (geometric) properties of the solid phase. The model is highly versatile and can 

be used in a variety of flow and transport phenomena. Present authors have further 

improved the model and derived completely analytical functions that excellently match 

empirical data for the macroscopic properties. The averaged flow equations are mentioned 

here without detailed manipulations and assumptions of the model, for which reference is 

made to Bear and Bachmat (1990): 

(4) 

where T; is the tortuosity scalar, which represents the tortuous flow path a gas particle 

traverses through the granular medium and its value is between zero and unity; the lower 

limit pertaining to a porosity of zero and the upper limit to the porosity of one. As the 

porosity increases, T; also increases. Detailed discussion on this scalar and how it is related 

to the porosity of a homogenous granular medium is found in Ahmadi et al. (2010). 

Observation of the Eq. (4) and its comparison with Eq. (3) reveals that for isentropic flow 

in rigid granular media, in which variations of porosity can be neglected, the solid phase 

interacts with the gas phase through modification of the pressure term in the momentum 

equation. Assuming T; = 1 in Eq. (4) leads to the isentropic flow equations of (3) for the 

pure gas. 

3. ANALYTICAL SOLUTION 

To solve the system of equations of Eq. (4), we write it in conservation form: 
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(5) 

where 

(6) 

is the vector of variables and 

{7} 

is the vector of fluxes. 

To employ the characteristics method of solution on Eq. (5), it should be written in non­

conservation (characteristic) form: 

8U +A(U)8U =0 (8)
at Ox 

where A(U) = dF is the Jacobian matrix. 
dU 

To calculate the Jacobian matrix, we write 

(9) 

and using Eqs. (2) and (9), 

(lO) 

Thus, 

0 

A- 2 (11)
- -U2 T'C Y-I-2-+Y grU1 

U1 


After substituting for u1 and u2 from Eq. (6) in (11), 
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(12) 


The Jacobian matrix has the following two real distinct eigenvalues, and therefore is 

strictly hyperbolic: 

(13) 


in which af is the speed of sound inside the granular medium: 

(14) 


Now, by defining an equivalent specific gas constant, Yeq =yT; , and importing it in Eqs. 

(12) and (14), the system of equations pertaining to the gas flow inside the solid matrix 

transforms to the classical Riemann problem of gas dynamics in which a pure gas --with 

modified specific gas constant-- flows inside the shock tube. 

According to the obtained eigenvalues in Eq. (13), both characteristic fields are genuinely 

nonlinear, i.e. 

i=1,2 (is) 

where K(i) are the right eigenvectors corresponding to the eigenvalues. 

Nonlinearity of the characteristic fields implies that there is no contact discontinuity 

present in the solution. 

Rest of the procedure for finding the solution is straightforward and discussed 

thoroughly by many others, e.g. Toro (2009); thus, it will not be described here. 

Based on the above equations and the classical analytical solution to the Riemann 

problem, a Matlab code was written, the results of which are used for verification in the 

next section. 

4. Verification 

As pointed out by Ben-Dor and levy (1997), due to technical difficulty in rupturing the 

diaphragm that separates the high and low pressure chambers, in case of existence of 

granular medium at both sides of the diaphragm, the problem cannot be set up in a 

conventional shock tube. Therefore, it is unlikely to find experimental evidence to compare 

the results of the analytical solution. 
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However, in order to have a quantitative estimate of the proposed solution, reference is 

made to the one-dimensional numerical simulation by Ben-Oor and levy (1997). Initial 

conditions in their simulations are specified in Table 2. Their simulation was not limited to 

the isentropic gas flow inside the pores, as contemplated in the present paper. Instead, they 

not only accounted for all of the six governing equations of the granular medium --three for 

the gas and three for the solid phase--, but also the source terms at the right-hand size of 

Eq.(S) that have been neglected by us by assuming Euler conditions. Porosity variations 

were also allowed in their study. An upwind TVO high-resolution shock-capturing scheme 

with second order of accuracy was utilized in their simulations. 

Table 2. Initial conditions at the sides of the diaphragm in the numerical simulations of Ben-Dor and Levy 
(1997)i 'n' and 'T' are the porosity and temperature of the granular medium 

PgL =1013250 

VgL =VsL =0 

TgL == TsL =300K 

nL =0.73 

PgR =101325 

VgR =VsR =0 

TgR == TsR = 300K 

n R = 0.73 

The results of Ben-Oor and levy (1997) study showed little porosity variations under the 

specified initial conditions. Gas Mach number diagram pertaining to their initial conditions 

in Fig. 1, represented by Sod test, is an indication of subsonic or weak shock wave flow. 

Consequently, the assumption of rigid porous medium and isentropic flow for their test 

conditions is reasonable to be applied in the present analytical model for verification 

purposes. 

The results are shown in Fig. 2 and Fig. 3. 
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Fig. 2. Different diagrams obtained from the proposed analytical solution: gas (a) velocity (b) density (c) 
pressure (d) specific energy versus length of the shock tube at t=O.13 msec for a sample of L=40cm long; 

diaphragm is at x=O before rupture 
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Fig. 3. Different diagrams obtained from Ben-Dor and Levy (1997) simulation: gas (f) velocity (b) density (a) 
pressure versus length of the shock tube at t=0.13 msec for a sample of L=40cm long; diaphragm is at )(=0 

before rupture 

Comparison of the figures reveals very good quantitative and qualitative coherence of 

the density and pressure diagrams from the analytical solution with the numerical 

simulation. This agreement is only qualitative for gas pressure velocity, while significant 

deviation is observed between the velocity values. At first sight, this may be ascribed to two 

factors. First is the fundamental difference in the systems of conservation equations in the 

two methods. While our simplified system of equations containing two conservation 

equations is strictly hyperbolic, the system of equations in Ben-Dor and Levy including six 

conservation equations is too complex to be solved analytically and is elliptic. Apart from 

this, the other significant factor is the inclusion of source terms in the numerical simulation. 

While Euler conditions contemplated in the present study prevents source terms such as 

gravitational effects, diffusion terms, etc to be incorporated, there is no such limit for 

numerical simulations. 

5. Conclusion 

In this paper, analytical solution for isentropic flow of gas inside rigid granular medium 

was proposed by utilizing the macroscopic equations of the gas averaged over an REV, 

writing the equations in characteristic form, defining an equivalent gas with modified 
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specific gas constant, and finally using the classical characteristic solution to the 

conventional Riemann problem in shock tube test. 

Comparison with a rigorous numerical simulation of the similar problem showed very 

good qualitative and quantitative agreement of the results for gas pressure and density. The 

agreement for gas velocity was only qualitative, which can be attributed to difference in 

nature of the conservation equations, as well as contributions of source terms in the 

numerical simulation. 
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