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Chapter 1

Introduction

1.1 Discontinuum Mechanics, Why 7

An interesting set of problems which have recently attracted special attention, includes the general
behaviour of granular materials. In this class of problems, large number of interacting bodies , usually
simple rigid elements , are interacting in a domain which will govern the general response of the
medium through these individual interactions. The best example, may be the filling or emptying a
silo with/from granular materials as depicted in Figure 1.1 [1].

This lack of success was not only limited to that simple case; almost anywhere in the industry
and academic world, several applications could have been found that analysts ceased to be able to
accurately simulate. One of the major deficiencies was in the field of new advanced materials being
subjected to dynamic and hazardous loadings.

Figure 1.2 represents the progressive fracturing and fragmentation phenomena in a typical com-
posite specimen subjected to impact loading. This schematic representation, is perhaps only related
to the failure observed in high velocity impact. For low velocity impact, however, while it is unlikely
that extensive fragmentation will be observed, material fracture and delamination will be the likely
modes of failure that exist.

The traditional approach to the simulation of stress distributions in arbitrary shaped components
under possible nonlinear geometric and material conditions is by finite element techniques. However,
the traditional finite element method (FEM}) is rooted in the concepts of continuum mechanics and is
not suited to general fracture propagation problems since it necessitates that discontinuities be prop-
agated along the predefined element boundaries. The corresponding elasticity and fracture mechanics
concepts are applicable only in situations dealing with a single crack or a low-fractured area without
any fragmentation [2]. In contrast, the discrete element method (DEM) is specifically designed to
solve problems that exhibit strong discontinuities in material and geometric behaviour [3]. The dis-
crete element method idealizes the whole medium into an assemblage of individual bodies, which in
addition to their own deformable response, interact with each other (through a contact type interac-
tion) to perform the same response as the medium [4]. A far more natural and general approach is
offered by a combination of discrete element and finite element methods.
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Figure 1.1: Filling a silo with granular material [1].

Fragmentation

Material fracture

Delamination

Figure 1.2: Progressive fracturing and fragmentation in a typical composite specimen subjected to
impact loading.
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1.2 Discontinuum Mechanics , A Review

To attain a realistic overview of the extent a contact based algorithm can be used for analysing various
academic, engineering and industrial problems, a quick review of potential applications are provided.
It is not intended, primarily, to compare the results with available data in the literature, as it is
usual in academic papers, but to illustrate to the reader the applicability of the method to different
applications that may be analysed by the use of the computational discontinuum mechanics. It is also
aimed at sparking new ideas for further research and future challenges in this subject.

This chapter reviews the following engineering applications, amongst many others, which are
currently being researched in many of research institutions throughout the world,

»

Geomechanical applications

L

Granular materials
o Impact analysis (progressive fracturing)
e Particulate flow

o Computer graphics
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1.2.1 Rock Blasting

Rock blasting is an interesting area for application of discrete element method. Results shown in this
section are taken from [5], based on using a simplified solid rock - detonation gas interaction models.

13.00(m}

0.00(m)
~T000my
19(m) L orom | 10em)
| | ~11.00
4.000m 4.000m
real time = 0.000 real time = 0.004

Figure 1.3: A 2D bench blasting simulation {5].

1.2.2 Shear Band Slope Stability

In contrast to the DDA method, a shear band slope stability analysis may be performed by using
a fully deformable nonlinear finite element simulation. An adaptive remeshing scheme has to be
employed to avoid excess distortions of the finite elements close to the highly deformed shearing band.

The concept of shear band deformation can be best understood from Figure 1.4 which depicts
the deformation process of a simple plate with an initial circular hole subjected to a set of tensile
forces [6].

Figure 1.5 illustrates two different examples of slope instability simulations performed by Stead et.
al. [7] and Cramer et. al. [8] in two and three dimensions, respectively. In the 2D case, an h-adaptive
finite element method has been adopted, whereas in the 3D example, only large deformation theory
has been considered.

1.2.3 Granular Flow in Silos

Silos represent a vital part of the industrial infrastructure. Failure of a silo often causes great economic
losses either by wasting the ensiled materials, delaying production lines or disrupting transportation
plans. In this example, the prediction of pressure and flow in silos has been investigated utilizing the
discrete element method. (Silo and granular material are both modelled in this approach) [9, 10]. The
results of typical conducted analyses may be used to guide the silo design procedures by pointing out
any unanticipated loading conditions and pressure distributions which might arise during operation,
as well as phenomena such as arching, different filling/emptying regimes, seismic loading, etc..
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Figure 1.4: Remeshing process and the 45° shear band development in a tensile plate undergoing large
lateral necking phenomenon.

Tiwe: 2T 3610

-
» Ty
m:' ~witey

)
ffen <
HACETN

.

Figure 1.6: Discrete element modelling of granular flow in a typical silo [9].
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1.2.4 Penetration of a Missile

Structural design of a shelter, armored military equipment and safety measures for bullet-proof vests
may force a designer/analyst to check for impenetrability response of a structure subjected to a high
velocity object. A complete analysis of an object penetrating a structure and developing extensive
damage in it, has only become possible by the use of combined finite/discrete element techniques.

Figure 1.7, illustrates how the crack patterns are propagated within a typical ceramic plate as a
bullet penetrates the plate in different time steps.

Figure 1.7: Progressive fracturing in a structure impacted by a high velocity bullet.

1.2.5 Masonry Structures

Several interesting implementations of the discrete element method have heen proposed for predicting
the bahaviour of masonry structures [1, 11, 12, 13]. Nevertheless, the predictive modelling of the non-
linear behaviour of masonry structures remains a challenge, due to their semi-discrete and composite
nature.

As a real simulation, Figure 1.8 shows a 50 years old railroad two span masonry bridge and the
finite/discrete element model. The bridge was incrementally loaded in place until severe cracking and
large bridge key deformation were observed as reported by Marefat et. al. [14].

A combined finite/discrete element simulation was performed to simulate the failure behaviour of
the structure. Cracking patterns similar to the test observations were predicted according to Figure
1.9 [15].

Another example; the Strathmashie Bridge, 150 years old, was of rubble masonry, in reasonable
condition and showing little distortion, but there seemed to be very little mortar in parts of the arch.
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Figure 1.8: A two span masonry bridge and the finite element model [14].

An experimental test was performed to assess the performance of the masonry bridge until the
collapse of the structure, Figure 1.10. A numerical simulation was performed by Klerck {13} based
on a combined finite/discrete element technique, as depicted in Figure 1.11. The failure modes are
interestingly similar to one cbserved in experimental test [16].
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Figure 1.9: Crack propagation patterns at different times [14].

Figure 1.10: An experimental collapse test for a masonry bridge.
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Figure 1.11: Finite element simulation of the collapsing bridge {13].



Chapter 2

Constraint Enforcing Methods

2.1 Introduction

Many different methods have been developed for enforcing a constraint condition on the governing
equation of a well established physical behaviour. In this chapter, the following four methods for
enforcement of constraints within a finite element analysis are reviewed:

Penalty method

Lagrange multiplier method

Perturbed Lagrangian method

Augmented Lagrangian method

Here only the penalty method is described in detail.

2.2 Definition of a Constraint

A constraint either prescribes a value for a freedom {single point constraint) or a relationship between
two or nmore freedoms (multipoint constraint). Figure 2.1 represents a typical impenetrability con-
straint between two contacting bodies. This constraint defines the necessary conditions to prevent the
bodies from penetrating each other.

The mathematical description of a constraint equation may be written in the form

Cu=Q (2.1)

where C is a matrix of constraints, u is the vector of freedom and @ is a vector of constants. @ in
many cases may become a null vector.

11
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Figure 2.1: Impenetrability constraint for two contacting bodies.

2.2.1 An Example

Two straight bars which are just in contact are depicted in Figure 2.2. Each node has a single degree
of freedom along the bar direction. A 0.1 unidirectional rightward displacement is applied to vode 1
of the left bar.

Each bar behaves as a linear spring, so

10 ~10
Ki=Ky= { ~10 10 ] (2.2
The assembled system of equations will be
0 -16 0 0 uy = 0.1 11
-10 10 0 0 Up 10 (2.3)
0 0 10 ~10 us 1o e
0 0 -10 10 ug = Js

since the equations are uncoupled, the results will be:

{ up = 0.1 (2.4)
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nodes 2 and 3 are
Just in contact
u=+0.1

L = 1
] k=10 23 k=104

P l t b I I

Figure 2.2: A simple two bar model.

0.1

1@ I

Figure 2.3: Uncoupled solution for the two bar problem.

Figure 2.3 shows the deformed shapes of the bars for this analysis, which clearly shows overlapping
the elements.

To avoid this, the following constraint equation should be enforced:

ug ~ ug = 0 (

B
[
T

We will later use this simple example to verify the methods adopted as constraint euforcing meth-
ods.

2.3 Constraint Enforcement

Equation (2.1) should be added to the conventional equations of the system and solved simultaneously.
Different approaches have been proposed for solving this set of equations which will be briefly reviewed
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aud compared.

One approach, which has been widely used by many researchers, is the concept of minimization of
the total potential energy for deriving the necessary equations. The total potential energy of a linear
elastic system subjected to static loading and consisting of two discrete bodies, 1, and £ may he
written as (Figure 2.4)

Figure 2.4: A system consisted of two interacting bodies.

11 :/ (?—uidjjdﬂ —/ uibidﬂ -/ uit,;dl“ (2())
2, +02 (91’3‘ Q48 +02

Using a standard discretization procedure based on appropriate trial functions

.

2uTK’U,— uR (2.7)

I(u)

where u is the nodal displacement vector, K is the system stiffness matrix and R is the force vector.
Without additional constraint equation, bodies {3 and Q5 do not interact and the system is uncoupled.

2.3.1 Penalty Method

The Penalty method was probably the first approach adopted for a constraint enforcing method. It
was developed by Hallquist and his colleagues in Lawrence Livermore National Laboratory during the
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late seventies for modelling impact/contact problems.

To obtain the necessary equations, and comparing to the first term in Equation (2.7), the total
potential energy for a constrained problem can be written as

M) = O{u) + %gTag (2.8)

where « is a normal contact stiffness, called penalty number, and in general is a diagonal matrix of
penalty terms for each degree of freedom. g is the normal gap vector and for g = 0 the constraints
are fully satisfied; IT{u} = {u}.

Minimization of the total potential energy will result to

- g1l . dg .
6 = | —6 Ta2s 2.6
[{m u+g ag u} {2.9)
. on Og
Sl = | — Ta 2 .
I L?u+g a@u} bu (2.10)
To maintain equilibrium, 811 should be equal to 0.
The first term on the right hand side of {2.10) is the well known stiffness equation
an .
5o =Ku-R (2.11)
and for the second term, we have
g=Cu—-Q (2.12)
og
5. =C (2.13)
r_Og T T T
g aé—dz(Cu—Q) aC =C" aCu ~ C* aQ (2.14)
Therefore, the modified stiffness equation will be
(& + c’f‘ac] u=R+CTaQ (2.15)

The term, CTaC should be added to the system stiffness matrix to incorporate the impenetrability
constraint stiffness.

The main features of this method are:
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o Enforcement of constraints requires no extra equations.

¢ The constraints are only satisfied in an approximate manner and the correct range of penalty
numbers have to be chosen. If « is too low, the constraints are poorly satisfied, while if o is
too large, the stifiness matrix becomes poorly conditioned (the difference between in and out of
diagonal terms becomes very high). As an initial estimate for o

05F <a<2.0F (2.16)

where £ is the young modulus of the contacting bodies.

¢ For explicit dynamic applications, large values of @ may result in a reduction in the critical time
step. Large penalty values simulate stiff constraint spring, increasing the global stiffuess and so
reducing the required critical time step.

s og corresponds to the penalty force required to enforce the constraint.

The development and implementation of the penalty method for contact applications may be at-
tributed to the work by Hallquist {17] in the late seventies.

The general aspects of the penalty method for imposing a constraint equation has been discussed
in the previous section. Here, further details of the scheme as a contact interaction algorithin are
discussed. In a contact mechanics analysis, the constraint condition is the impenetrability of the
contacting objects. The impenetrability constraint equation for two nodes in direct contact may be
expressed from equation (2.1}

C=uy~u; =0 {2.17)

In some applications, the exact impenetrability is strictly sought. For instance, in simulations
of molecular dynamics or animations. These cases usually comprise sparse populations of bodies
moving around at high speed and interact by collision. The collisions are brief and ean be modelled as
instantaneous exchanges of momentum, in which energy may or may not be conserved by the particle
pair [18].

In a penalty method, penetration of the contactor object is used to establish the countact forces
between contacting objects at any given time {See Figure 2.5).

The general form of equation (2.17) for contact between two bodies may then be defined by [19, 20]

g=z-2']' n>0 on I, (2.18)

where g is the gap function, ! and x? are the deformed configuration of body 1 and 2, respectively,
n is the normal to the body at the contact surface, and T',, is the contact domain, I', = T1 N T2,

Therefore, the variational form of the constraint equation (??) may be explicitly expressed as

SWeon — / ag 5g{u} da (2.19)

r.
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Contactor N i i time=t+dt

' ' 7 !
i Target segment / ) ‘\_V/ EL

a) Before contact b) Possible normal and tangential gaps

Figure 2.5: Contact force based on impenetrability.

SWeen = / ag %8 Suda (2.20)
. ou
Equation {2.20) may be re-written in terms of the contact force vector
o
sWeer = / £ 28 suda (2.21)
. du

Attention is now focused on a single boundary node in contact to formulate the residual contribu-
tion of contact constraint, r¢. The component form of the virtual work of the contact forces associated
to the contact node is then given by [21}:

CO 7 COTL 8 3 8 N
SW = [ Sgi = ff % S (2.22)

where k = n,t and i = z,y, and u{ is the the i-component of displacement vector at node s, g = (g,,. &)

is the relative motion (gap) vector in normal and tangential directions, respectively, and £ is the
contact force vector over the contact area A€,
Oilg i,
= Aot cC=ag=|"" on 2.2
f ; g 0 o lla (2.23)

where o is the penalty term matrix, which can vary for normal and tangential gaps and even between
single contact nodes. The corresponding recovered residual force is then evaluated as:

Ok
ous

k3

,r; — f{g(}‘n

(2.24)
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nodes 2 and 3 are
Jjust in contact
u=+0.1

¢ 0
I k=10 23 k=104

{ ; [ E|

i l i i Z 1

Figure 2.6: A simple two bar model.

The partial derivative part of equation (2.24) defines the direction and distribution of normal and
tangential contact forces. The calculated contact force has then to be distributed to the target and
contactor nodes.

2.3.2 An example

To illustrate how to use the penalty method for enforcing a constraint equation, Example 3 of Section
2.2.1 is re-considered (Figure 2.6).

The constraint equation may be written as

ug —uy > 0 (2.25)
with
Uz ug %
(2.2
C =] -1 +1 ] (2.26)
for a constant value of o
aCTC = (x[ _11 ”“11 ] (2.27)

which is similar to the stiffness of a spring attached to the bars.

The assembled system of equations will then be
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PFigure 2.7: Remaining penetration in a two bar contact problem using the penalty method.

10 ~10 0 0 up = 0.1 f
~10 10+« - (¥ ] Ug N 0
0 - 1W+a -10 U3 T 0 (2.28)
0 0 -10 10 g = 0 fa
Equation {2.28) is a coupled equation due to the existence of non-diagonal o terms.
To continue the solution procedure only consider the active part
10+ a —qv ug | 11 ’
[ —x 104—&’}1:%%}—{0} (2.29)
solving for unknown usy and uy
uy | 1 10 + & o 1 s
[ Uug } - (10 + )2 — o? [ o 10+« } { 0 (2.30)
Te get some numbers, for a = 10
up ] 1 T2 10][1]_[o0.0667 _
{ s ] ~ 300 { 10 20 } { 0 ] = [ 0.0333 (2.31)

the results show the existence of some penetration of bar 1 into the bar 2 (See Figure 2.7).

Table 2.1 summarizes the results obtained for the same equation using different penalty nuinbers.
It is clearly seen that by increasing the penalty number the solution converges to the exact solution.
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« U2 Uz
10 .0667 .0333
100 0523 0476
1000 | .0502 .0497

10000 | .0500 0500

Table 2.1: Results for different penalty numbers.

2.4 Contact Instability

One of the concerns of using the penalty method as a numerical constraint scheme for explicit analysis
is its stability. The reason can be attributed to the fact that the impenetrability condition (g = 0)
is only approximately satisfied by this method. This is clearly observed from Equation (2.8) where a
non-zero term is added to the total potential energy of the system. Without any additional treatinent,
the penalty method will cause the system to gain energy artificially, although somectimes this extra
cuergy is a compensation for the loss of deformation energy due to contact penetration.

In a central difference one dimensional contact analysis based on the penalty method, the contact
force may be defined as

con __ ag Zf g > 0 .
f = { 0 otherwise (2.32)

where g is the normal penetration. One may expect the central difference scheme to be stable wheu
applied with

K=Yarca (2.33)
m

However, numerical tests show that in some cases considerable energy is added to the systein
because the central difference scheme becomes unstable [22] (For details of the central difference
method see Section 77).

To clarify the problem, consider the impact of a material point (ball) on to a rigid wall as depicted
in Figure 2.8.

When the material point enters the wall boundaries, it may happen that for some time 7 < At,
the scheme generates no contact force to resist penetration. When the material is leaving the wall
boundaries, it can happen that for some time 7 < At, the contact force continues to be pushing out
the material point from the boundary, although there is no penetration any longer. Consequently, the
material point gains some additional energy each time it enters and leaves the wall boundary. It may
happen that 7 = 0, but in general this is not the case [22].
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Y 1, +dt fy+dt 4
o1 —9© o—3— 0
a) The ball penetrating into the wall. b) The ball escaping out of the wall.

Figure 2.8: A material point entering and leaving a rigid wall at successive time steps.

2.5 Equilibrium Equation

Consider a body, B, occupying a region §2 with a boundary I subject to body forces £%°*¥ throughout
its domain Q. Here, the boundary is assumed to consist of a part with prescribed displacement u;,
I'y,, and a part with prescribed traction force fiswf, I',, (Figure 2.9). The boundary conditions may
then be described as

on fSurf on Ty,

X :_)"( on T’ (2.34)

where o represents the Cauchy stress tensor and n represents the unit outer normal along T',;.

For this body to be in a state of static equilibrium, the following condition must be satisfied

/F £l da + /Q e T (2.35)

and for a state of dynamic equilibrium,

/ fS“'dea_'_/bedydU:/p’lld’l) (2.36)
r, Q Q

Applying the divergence theorem to the first term in the above equation and using equation (2.34),
the following strong form of equilibrium equation is finally obtained

dive + oY% = pii (2.37)
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Figure 2.9: Description of the boundary value problem.

which represents the dynamic equilibrium condition at a point within the body.

Here, a weak form of the equilibrinm equation is derived, since this is utilized as the basis of the Finite
Element procedure:

/ o : Vuwdy +/ puwdy = / FrMudy + £ wda (2.38)
) o Q r.

According to the Galerkin weighted residual approach for solving the boundary value problem,
the weighting functions are chosen as the field of virtual displacements du, and the weak form of the
equilibrivm conditions represented in equation (2.38) is equivalent to the principle of virtual work.
More details may be found in Zienkiewicz et al. [23].

In addition, it is assumed that a part of boundary, I',, may be in contact with another body
{(Figure 2.9) according to the contact boundary conditions [24, 19]

on =20 on . if gn>0 (2.39)
on=f" onT, if g <0 -
where gy is the gap between the bodies. By denoting
Vi= {du: fu; =0 on I, } (2.40]

the space of admissible variations, the variational (weak) form of the dynamic initial/boundary value
problem may be expressed as {25, 26]
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W (Su,w) + M{(Su,u) = W™ (Su) + WO (u) (2.41)
where
W (fu,u) = /Q de(u) : o{u)dv (2.42)
M(bu,u) = /Q dupirdu {2.43)
W (fu) = . Su- FPOU dy + ‘ / y Su- (2.44)
W (fu) = . sg(u)-f*"da (2.45)

denote, respectively, the virtual work of internal forces, the inertia forces contribution, the virtual
work of external forces and the virtual work of contact forces. Here & is the Cauchy stress tensor, €
is the strain tensor, w is the displacement vector, while g represents the contact gap vector. Observe
that in the present formulation the contact terms correspond to a penalty formulation of contact
interaction.

2.6 Energy Balance

Nisnerical instabilities are normally associated with a large growth of energy. Therefore, monitoring
the stability and accuracy of the solution can be performed by continuously checking the encrgy
balance of the system. The energy balance equation at time £, can be expressed as [1],

iW?;z::t _ U;‘;zn _ U';it?“ _ ngni < & iw’ﬂ] (24())

where WS is the work of external forces, UF is the kinetic energy, US'" is the strain energy, W, dam

k23
is the dissipation energy due to work by damping forces, 4 is the specified allowable tolerance of the

analysis, and W), is some norm of energy,
(W, | = |UF™| + o3 (2.47)
which is suitable for discrete element contact problems. These energy terms may be expressed as,

L’Vimf’ — Wfé urf + I/Vré;oc{y &2’18)
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T,

Wguv’f — /F[ . fsu?‘fdft] da (249)
a

Ty
oy _ / [ f&odyde o (2.50)
‘ 1 (o 511
U::”n — 5 '/Q ’%);‘:p’l)nd?} {2.51}

€.
U = / [ / ade] dv (2.52)

o

331’!
Wgam :/ codx (2.53}

Lo

Within the context of a step-by-step finite element solution, and applying a trapezoidal integration
rule, the following expressions can be derived,

N
" . 1 ; . : i st E )
W;:M, — Vriitl + §Z {’“fn _ u;_I}T {( zgitl)l 4 ( it) } (254)
1=1

which has to be determined based on midpoints velocities

% 1 rkin in e
ki = : (Uf”‘_% " Uéi%) (2.56)
and
13
. T A -
UM = U 4 53 okt oh) AV (2.57)
i=1
1 7 : :
‘Vgam — I’V«,(:Eril + 5 Z {u}n - u;-l} C {U:z—i + ‘U;} (258)
i=1

where N and N,, are the number of nodes and the number of integration points for the given body,
respectively, C = ¢M is the linear viscous damping matrix, and V* is the vohune associated to the
integration point .



Chapter 3

Discontinuum Contact Mechanics

3.1 Introduction

The pioneering work by Cundall and his colleagues, who completed the original work by Goodman
in 1968 {27! on jointed rocks, marks the beginning of modelling of discontinuum media 28], They

developed an algorithm for modelling the behaviour of jointed rigid rocks, soon termed as the Distinct
Element Method.

By advancing the capabilities of the finite element method, and increasing power of computing
facilitios, fully deformable blocks replaced the original rigid bodies, with the new Discrete Flement
Method terminology.

Nowadays, the discrete element method has reached to an ever increasing popularity for moedelling
all potential discontinuum media. Nevertheless, it is mainly used for two classes of problems:

o Granular flow : where a large number of simple elements (usually rigid) are interacting with
cach other and with the surrounding boundaries (rigid or deformable). Granular flow in silos
and the slope stability analysis are the most attractable types of problems in this class.

e Progressive fracture : where a continuum is subjected to an extremely high condition such as
explosive loading or high velocity impact, causing extensive cracking and possibly fragmentation.
The behaviour of the model is continuously changing toward the discontinuity and the original
geometry of the body is changing by the extension of cracking.

The essential point is that the finite element method is rooted in the concepts of continuum
mechanics, thus not suited to general fracture propagation and fragmentation problems. The finite
clement method may only effectively deal with a single crack or a low fractured area without any
fragmentation, whereas the discrete element method is specifically designed to solve problems that
exhiibit stroug material and geometrical discontinuities.

Before dealing with the main issues, a quick review of historical developments and present indus-
trial/scientific applications is provided.

25
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3.1.1 Historical Development

As mentioned earlier, the original development of the discrete element method may be attributed to
the work by Cundall in 1871, In the following, a brief review of the main historical developments of
the method is provided:

» 1968 : Analysis of jointed rocks by Goodman (27

e 1971 : Analysis of jointed rocks by Cundall [28].

» 1988 : Fully deformable discrete elements included (Ghaboussi [29]).

+ 1990 : Beginning of large scale simulations.

¢ 1995 : Combined finite/discrete element method for fracture simulation of brittle media (3],

e 1995 : Coupling discrete elements with fluid or gas flow [30].

¢ 1996 : Parallel and object oriented computing {31, 32].

¢ 1996 : Modelling granular flow in silos [1].

e 1998 : Metal cutting using adaptivity techniques [33].

¢ 1998 : Impact analysis of anisotropic three dimensional composite shells [34].

¢ 1999 : Damage investigation and repair modelling of masonry structures/bridges.

It should be noted that for each case, earlier less sophisticated models can also be found in the
literature and the mentioned years show the time of major advancements of the method.

3.2 Contact Detection

L1 this section, the contact detection procedures are briefly reviewed and their main advantage/disadvantage
points are discussed [35]. Then, the alternating digital tree, as one of the fastest geonietric uttersection
scarch algorithms, are explained in detail and its application to general contact detection problems

will be reviewed by providing sample problems.

Tlie problem of detecting the bodies that interact with each other, also known as the geometric
intersection search, has become a serious computational task in multi-body analyses.

Assume there is a system of N interacting bodies; all may happen to come into contact with any
othier body. A naive contact detection method requires the checking for contact between each body
and every other bodies within the system. Figure 3.1 shows how such a simple approach requires a
checking link between each (target) body and the remaining {contactor) bodies.

The number of operations required to detect all contacts between N bodies will then be propor-
tional to
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Figure 3.1: All to all check, the simplest contact detection procedure.
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(3.1)

In multibody analysis, however, the above method obviously becomes extremely expensive. Several
other algorithms have been proposed to improve the detection procedure. In the best case, the
computational efforts has been reduced to a factor of

Nlogy(N) 3.2
2

The existing detection methods have so far laid in between the two extremes.

The alternating digital tree (ADT) algorithm, which developed initially to solve the problem of
mesh generation, reduces the number of operations required to determine the contacts between hodies
by creation of short lists of potential contactors for each target body. Figure 3.2 shows a saunple part
of the created short list for a set of N contacting bodies. In this case, a direct checking is undertaken
for the number of relevant bodies of a target, and the procedure is repeated for other target objects.

3.2.1 Contact Geometry

Depending on the type of modelling, two types of discrete elements may be defined:

O
O OQ

Figure 3.3: Simple rigid discrete elements.

1. Rigid bodies (Figure 3.3)

2. Deformable finite elements {meshed polygons) (Figure 3.4)

The contact geometry is then either computed from the input definition of rigid bodies, c.g. a
cireular disc is defined by a centre point and radius, or automatically evaluated for deformable finite
element bodies by evaluating all exterior edges/facets and grouping them for each discrete elewment,
as depicted in Figure 3.5.
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Figure 3.4: Deformable discrete elements (meshed polygons).

3.2.2 Global Search Algorithms

A general global search algorithm must be efficient in dealing with a large number of bodies, suitable
for both rigid and deformable bodies, and efficient for both loose and tight packs of elements. A single
approach might not achieve all the mentioned goals, and different approaches may be adopted for
different applications.

3.2.3 Binary Tree Structures

A binary tree structure is a specific method of sorting data that allows new data to be easily added
{inserted) or removed (deleted). Binary trees are one of the most important non sequential types of
data structures. At each node, the information stored consists of data and two pointers kiiown as the
left and right links that point to further data. Each added link can either be equal to zero or cqual
to the position in memory where another node of the tree is placed.

Compared to a linear sequential array, the binary tree structure requires only two extra storage
locations per item; left and right links, and provides a much greater degree of flexibility.

The first node in the tree is known as the root node. From one node of the tree it is possible to
poiut at most two other nodes, while for each node (except the root), there is one aud only one link
pointing at it. A node without any pointer to other nodes is called a terminal node.

Figure 3.6 shows a typical binary tree structure with three levels of information and six nodes.
The pointers on each node refer to the memory location for the left and right links, respectively. For
example, pointer Lp refers to the memory location that holds the set of D data, i.e. left link to the
B set.
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L DE | Contact Geometry
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Figure 3.5: Definition of contact geometries for discrete elements.
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Figure 3.6: A simple binary tree data structure.
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Figure 3.7: Degenerated and well balanced binary trees.

Creation of a Binary Tree

The first step in creation of a binary tree structure is selecting a root node. Adding new data items to
the binary tree depends on definition of a criterion for choosing between the left or the right branch for
insertion. Every insertion then starts by checking this criterion at the root node and then traversing
the tree until an empty place is found.

The criterion for insertion of data items and traversal of the binary tree is in fact a measure of
relative spatial position of two nodes of the binary tree.

The order of object{body) insertion determines the final shape of the binary tree structure. The
shape of the binary tree substantially influences the cost of the global contact searching as well as the
cost of insertion of new data items. Poor performances are expected from highly degenerated binary
trees (Figure 3.7a), as opposed to the very low insertion and search costs obtained from well balanced
trees (Figure 3.7b).

An optimized ordering procedure for node insertion can be developed to consider the possibility
of balancing a tree structure by adopting a new order of insertion. Such an optimized tree structure
may be found extremely efficient if a binary tree for geometric intersection search has to be rebuilt
and searched through relatively often.

3.3 Object Representation

In this chapter the main classes of object representation methods are discussed. It includes circular
disks, ellipse shaped disks, and the general superquadric forms. Additionally, the meshed polygon
systeins, which frequently encountered in general finite element contact analyses are also among the
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Figure 3.8: Geometry of two interacting disks.

object representation techniques. They usually provide specific problems within a coutact detection
or interaction procedure which have already been discussed and will not be addressed again.

3.3.1 Circular Disks

circular disks/spheres are probably the most frequently used type of element in modelling of granular
flow by the discrete element method. They have been used as rigid body objects interacting each
other in a granular How simulation. Both penalty and continuum mechanics based methods have been
used for contact interaction formulation.

From the object representation point of view, they consist the simplest forms for two and three
dimensional modelling. Their geometric representation includes the coordinates of the centre and the
magnitude of radius. The motion of particles can be readily calculated from the cquations of rigid
body dynamics.

Figure 3.8 shows the geometrical description of a system of two interacting 2D disks.

A relatively simple computational sequence for disk element analysis can be summarized according
to the following:

For all contact pairs, follow the force-displacement law:
¢ Relative velocities (¢ = 1,2)

Xi = (g — &10) — (BaRa + O, Ry
f = Xiny , i = Xt
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Relative displacements
An =nAt At = iAt

Contact force increments
AF, = a,An , AF; = a; At

-

e Total forces at time j
Fi=Fi-'4+AF, , F =F"+AF

o Check for slip
F} = 771’1’.73(?;‘, Fnta‘ncb/" + C)

For all particles, used the equations of motion

o (alculate moment
My=SF.Ra , My=YFR,
e Assumne constant force and moment from ¢/~ % to t7+4#

o Acceleration

ZF, @j:ZA/I

i = 4 | T
o Velocity

AR YN

6% = §9~% 4+ Atd?
e Assume constant velocities from ¢/ to t/F!
¢ Displacements

i1 P il
2T = 2l At T2

gitl = g7 4 AtfiTE

At the end of sequence, the time is incremented and the whole procedure is repeated. A more
sophisticated approach is presented here to clarify the main specifications of a disk based discrete
element technique as described by Petrinic [1].

Normal Contact Force

Although the size of the overlap is small compared to the radii of the disks, only the contact zone is
cousidered to be deformable. The contact force is assumed to be proportional to the overlap size of
the two disks in contact and their relative velocity in the normal direction {model described in Figure
3.9),

F,=P,+ Cnv;; (33)
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Figure 3.9: A model for normal contact force between two circular disks.

where P, = P,{u) is the spring force , C), is the viscous damping coefficient, v/, is the relasive velocity
in the direction normal to the contacting surfaces.

The spring force P, is defined using the elasticity solution for two disks in contact,
14 Ka®
i+ %, Ri+ Rs

P,== 3 b2 3.4
4Ky + Ky RiRs ( )

where R is the radius of disk, G is the shear modulus, v is the poisson’s ratio, b is half the width of
the surface of contact (defined in Figure3.10) and,

K =iz
o= e 5)

2 3.
Ky = 2(K1 + Ky)

1T -2y
Ky =7 e

W)

For small overlaps, the nonlinear spring behaves linearly which can be expressed as

P, = Kyu, (3.6)

where K, is the spring stiffness,

K,= —=2 (3.7)

The viscous damping coefficient is represented by a chosen percentage of the critical damping for
a collision of two disks,
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Figure 3.10: Normal contact between two circular disks.

Co = £,C°" (3.8)

cor - 2v/ MM, (3.9)

MI+M2 "

where M; is the mass of the disk 4.

Tangential Contact Force

Geometrical idealization causes disks to be less resistant to rolling than the actual round shaped bodies
they represent. Therefore, in order to model the formation of phenomena such as arching in granular
flow using circular disks, an additional part of tangential component of contact force between disks
has to be employed. Here, a so called rolling resistance is applied by means of a viscous damping
force.

Sliding Friction

This part of the tangential component of contact force is represented by the model shown in Figure
3.11.

The actual expression for sliding friction is obtained following study of the sliding coutact for
locomotive driving wheels,
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K;

Figure 3.11: A model for sliding friction force between two circular disks.

Fo =P, +Cuf {3.10)

where P = Py{w;) is the spring force defined as

2
wl
Pt:;L‘{Fy 1 - 1— lf’ (311)
l ( %FH(KI +A2)RL1{!~E§_2

where p s the coeflicient of friction, F,, is the normal component of the contact force, u} is the rclative

tangential displacements of the contacting disks, C; is the viscous damping coefficient and »] is the
relative tangential velocity.

The relative tangential displacement between the two disks is obtained from the solution of the
global equations of motion,

Uy = Uy + U Al {3.12)

The relative tangential velocity is determined from the disks kinematics (Figure 3.12),
’U; = {v, — ’UQ) ot - (RIW]. -+ RQUJQ) (3.13}
and the duration of contact is defined by:

At. =mm{3‘if,m} (3.14)
?}?

n

where u, is the size of normal overlap, At is the length of the time step during which the contact
occurred and v is the disk velocity vector, while
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ellipse j

Figure 3.15: Contact between two ellipses.

Vei = (Vg — BiTeisin e )t + (vy; — 0570 cos ;)

The relative velocity of the contact between i and j is then

dv, = dvggt + dvg,j

dv, = [(vgi — Os7ci 8D oy) — (Ugy — G577y sinay )] i+
vy + Bireisinag) — (vy; + 8o sinag)l J

41

(3.29)

(3.30)

(3.51)

where the terms with v are attributed to individual particle translation, and € to particle rotation.
This relative velocity may be resolved parallel and perpendicular to the contact normal to yield the

incrementals normal and tangential contact velocities:

dven = dvgn = {dv,-ntjn
= (dveani1 + dugynoln

dvy = dut = (dv, - t)t
= (dvmti + dvcytg)t

noting that

(3.32)

(3.33)
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v;

Figure 3.12: Kinematics of two contacting circular disks.

vy, = (V1 — V)M (3.15)

is the relative normal velocity.

Figure 3.13 illustrates the relation between the relative tangential displacement and the frictional
spring force.

The viscous damping coefficient Cy is represented by a chosen percentage of the critical dampiug

Co = &CF (3.16)
. [ MMy
CF = 24—t K 317
U I VA VA (317
withh f; as the spring stiffiness
dP,
Ky = =t (3.18)
dug |, _g

Rolling Friction

Consider the situation where the disk is set to roll on a rough horizontal plane {Figure 3.14)

The sliding friction cannot provide any resistance to the movement of the disk rolling on a rough
surface since there is no relative tangential velocity at the comtact point (v] = 0). Therefore, an
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"~

Figure 3.13: Relation between the relative tangential displacement and the {rictional spring force.

Figure 3.14: Rolling disk on a rough horizontal surface.
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additional term for the tangential component of the contact force is also required; called the rolling

friction,

”
Fr=Cruy,

where

Cr =605

is a chosen percentage of the critical damping (3.17}, and

vy, = {vy — vz} - L

is the relative tangential velocity of the centroids of the disks in contact.

The rolling friction force should also satisfy the following condition

|Fe + Fr| < pFy

Also, if the rolling friction obtained from (3.19) results in

!Ft +F7»! > F,

it should be re-calculated in order to give priority to sliding

B = sign(v) [pFn — (|

{3.19)

(3.20)

(3.21)

(3.22)

(3.23)

{(3.24)

Condition {3.22} is often satisfied automatically since the critical damping (3.17) depenuds on the
shiding friction stiffness (3.20), which decreases when approaching the maximum allowed friction force
uF, (Figure 3.14). This is why the rolling part of the tangential component of the contact force is
chosen to be applied in a form of damping. It ensures good co-operation of sliding and rolling friction.

Applying the force at the centroids of the disks also implies adding a resisting moment in the

direction opposite to the direction of rolling as

M, = -F.R
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3.3.2 Ellipse Shaped Particles

With more widespread use of disk and sphere based numerical codes, and the recent developimnent of
sphere based coustitutive inodels for granular assemblages, it is particularly important to assess the
degree to which these models are applicable for real non-spherical materials.

One commion problem when using disk and sphere based discrete element modelling of soil is the
low aggregate friction angle inherent in these systems, regardless of the angle of inter particle sliding
friction, which is used.

Particle shape has the largest effect on mechanical behaviour, with reported increases in peak
internal friction angle up to 10° for systems consisting of angular particles compared with round
particles.

With the realization that disk based discrete element model has serious deficiencies when used for
wmodelling real granular materials, it has recently become popular to use the ellipse as the basic particle
shape. The ellipse shape has the advantage of having a unique and continuous outward normal and
no singularities along its surface.

Solution for ellipse-ellipse contact detection requires solution of fourth degree algebraic equations,
which can be done analytically rather than with iterative procedures. For these objects, normal contact
forces acting eccentrically on a particle can generate applied moments which potentially inliibit particle
rotation. As a result, this shape is well suited physically and numerically to modelling granular soils,
powders and grains.

Contact Decomposition

Figure 3.15 indicates the nomenclature for two ellipses in contact. Points A and B, which can be used
as a measure of the total normal overlap (penetration) between the two objects, are determined from
the current ellipse-ellipse intersection algorithm.

To assess the relative importance of rolling and sliding mechanisms of deformation within the
granular assemblage, the contact deformation is separated into portions due to individual particle
rotation and particle translation.

For particle 7, the vector from the centroid in the direction of the presumed point of contact is:
Tei = Ly — & (3.26)
Tei = (repcos )t + (e sinag}j {3.27)
The velocity of the contact on particle 1 due to rotation and translation of ¢ is:

Vei = Vs + ik X Ty {3.2%)
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t; = ity

o — (334

where n is the unit outwards normal at the contact for ellipse ¢ and ¢ is the unit vector perpendicular
to the normal, defined clockwise positive to particle 4.

At a given instant, the individual terms in {3.32, 3.33) may be separated into the incremental net
contact deformation, net normal contact deformation, or net tangential contact deformation due to
particle translation or particle rotation.

The contribution of rotations of particle 7 and j to the net tangential contact deformation is:

dvlt = [(~fresinay) + (0570 sin o) to — [(8ires cos @) — (=87, cos ;)] £ (3.35)

while the contribution to the net normal contact deformation is,

dvl™ = [{(—Orusinag) + (Ojre sinag)] ng+ (3.36)
{(eirci cos ;) — (-9]‘7‘{:]‘ cos ij)} %] R
The contribution of translation to the net tangential contact deformation is:
dvi‘t = (Vg — Vgl by — [y — vy;] (3.37)
d’l?zn = h”xi - 'Ug;j] ™ 4+ {HW -~ ‘Uy_;,'] (2% (338)

Numerical tests have shown that the particle rotation accounts for twice as much contact motion
for round particles as does particle translations [36].

3.3.3 Superquadric Objects

Superquadrics (superquads) are a generalization of mathematical functions known as quadric surfaces.
The extension comes about by raising the exponents of the variable terms to values other than 2.
They are a family of parametric functions, introduced in mid 60’s and later proposed for use in
multibody dynamic analysis by Williams [37]. 1t is estimated that about 80 percent of all manufactured
components can be represented by boolean combinations of the superquadric forms.

From the family of possible superquadric functions, the best known is the super ellipsoid [32}:

€I~ Xy, 2 Y— %Yo 2 5 Z—Z0,2 .
Tooa) = (LR 4 LR T 2y (3:30)
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Figure 3.16: Superquadric elements [32].

Pigure 3.17: Superquadric elements [32].

43
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where (2o, yg, 20) is the origin of the function, (a),as,e3) are the dimensions of the superquadric
semi-major axes extents, and « and 3 are the roundness-squareness parameters of function in two
perpendicular directions, respectively.

Figures 3.16 and 3.17 illustrate various objects that can be represented by a superquadric function.
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