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Chapter 1 

Introduction 

1.1 Discontinuum Mechanics, Why? 

An interesting set of problems which have recently attracted special attention, includes the general 
behaviour of granular materials. In this class of problems, large number of interacting bodies, usually 
simple rigid elements, are interacting in a domain which will govern the general response of the 
medium through these individual interactions. The best example, may be the filling or emptying a 
silo with/from granular materials as depicted in Figure 1.1 [lJ. 

This lack of success was not only limited to that simple case; almost anywhere in the industry 
and academic world, several applications could have been found that analysts ceased to be able to 
accurately simulate. One of the major deficiencies was in the field of new advanced materials being 
subjected to dynamic and hazardous loadings. 

Figure 1.2 represents the progressive fracturing and fragmentation phenomena in a typical com­
posite specimen subjected to impact loading. This schematic representation, is perhaps only related 
to the failure observed in high velocity impact. For low velocity impact, however, while it is unlikely 
that extensive fragmentation will be observed, material fracture and delamination will be the likely 
modes of failure that exist. 

The traditional approach to the simulation of stress distributions in arbitrary shaped components 
under possible nonlinear geometric and material conditions is by finite element techniques. However, 
the traditional finite element method (FEM) is rooted in the concepts of continuum mechanics and is 
not suited to general fracture propagation problems since it necessitates that discontinuities be prop­
agated along the predefined element boundaries. The corresponding elasticity and fracture mechanics 
concepts are applicable only in situations dealing with a single crack or a low-fractured area without 
any fragmentation [2J. In contrast, the discrete element method (DEM) is specifically designed to 
solve problems that exhibit strong discontinuities in material and geometric behaviour [3]. The dis­
crete element method idealizes the whole medium into an assemblage of individual bodies, which in 
addition to their own deformable response, interact with each other (through a contact type interac­
tion) to perform the same response as the medium [4]. A far more natural and general approach is 
offered by a combination of discrete element and finite element methods. 

1 
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Figure L 1: Filling a silo with granular material [1~. 

Fragmentation 

Material fracture 

-~,....-------- -­

Delamination 

Figure 1.2: Progressive fracturing and fragmentation in a typical composite specimen subjected to 
impact loading. 
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1.2 Discontinuum Mechanics , A Review 

To attain a realistic overview of the extent a contact based algorithm can be used for analysing various 
academic, engineering and industrial problems, a quick review of potential applications are provided. 
It is not intended, primarily, to compare the results with available data in the literature, as it is 
usual in academic papers, but to illustrate to the reader the applicability of the method to different 
applications that may be analysed by the use of the computational discontinuum mechanics. It is also 
aimed at sparking new ideas for further research and future challenges in this subject. 

This chapter reviews the following engineering applications, amongst many others, which are 
currently being researched in many of research institutions throughout the world, 

• Geomechanical applications 

• Granular materials 

• Impact analysis (progressive fracturing) 

• Particulate flow 

• Computer graphics 
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1.2.1 Rock Blasting 

Rock blasting is an interesting area for application of discrete element method. Results shown in this 
section are taken from [5], based on using a simplified solid rock - detonation gas interaction models. 

13.00(m) 

'.000m '.!lOOm 

n~al time:ll O.CKXl real time "'0.004 

Figure 1.3: A 2D bench blasting simulation [5]. 

1.2.2 Shear Band Slope Stability 

III contrast to the DDA method, a shear band slope stability analysis may be performed by using 
a fully deformable nonlinear finite element simulation. An adaptive remeshing scheme has to be 
employed to avoid excess distortions of the finite elements close to the highly deformed shearing band. 

The concept of shear band deformation can be best understood from Figure 1.4 which depicts 
the deformation process of a simple plate with an initial circular hole subjected to a set of tensile 
forces [6]. 

Figure 1.5 illustrates two different examples of slope instability simulations performed by Stead et. 
a!. [7] and Cramer et. a!. [8] in two and three dimensions, respectively. In the 2D case, an h-adaptive 
finite element method has been adopted, whereas in the 3D example, only large deformation theory 
has been considered. 

1.2.3 Granular Flow in Silos 

Silos represent a vital part of the industrial infrastructure. Failure of a silo often causes great economic 
losses either by wasting the ensiled materials, delaying production lines or disrupting transportation 
plans. In this example, the prediction of pressure and flow in silos has been investigated utilizing the 
discrete element method. (Silo and granular material are both modelled in this approach) [9, 10]. The 
results of typical conducted analyses may be used to guide the silo design procedures by pointing out 
any unanticipated loading conditions and pressure distributions which might arise during operation, 
as well as phenomena such as arching, different filling/emptying regimes, seismic loading, etc .. 



5 Introduction 

Figure 1.4: Remeshing process and the 45° shear band development in a tensile plate undergoing large 
lateral necking phenomenon. 

Figure 1.5: Two shear band slope instability problems [7, 8]. 

Figure 1.6: Discrete element modelling of granular flow in a typical silo [9]. 
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1.2.4 Penetration of a Missile 

Structural design of a shelter. armored military equipment and safety measures for bullet-proof vests 
may force a designer/analyst to check for impenetrability response of a structure subjected to a. high 
velocity object. A complete analysis of an object penetrating a structure and developing extensive 
damage in it, h&<; only become possible by the use of combined finite/discrete element techniques. 

Figure 1.7, illustrates how the crack patterns are propagated within a typical ceramic plate as a 
bullet penetrates the plate in different time steps. 

Figure 1.7: Progressive fracturing in a structure impacted by a high velocity bullet. 

1.2.5 Masonry Structures 

Several interesting implementations of the discrete element method have been proposed for predicting 
the bahaviour of masonry structures [1,11,12, 13J. Kevertheless, the predictive modelling of the non­
linear behaviour of masonry structures remains a challenge, due to their semi-dbcrete and composite 
nature. 

As a rea.l simulation, Figure 1.8 shows a 50 years old railroad two span masonry bridge and the 
finite/discrete element modeL The bridge was incrementally loaded in place until severe cracking and 
large bridge key deformation were observed as reported by Marefat et. al. [14]. 

A combined finite/discrete element simulation was performed to simulate the failure behaviour of 
the structure. Cracking patterns similar to the test observations were predicted according to Figure 
1.9 [15J. 

Another example; the Strathmashie Bridge, 150 years old, was of rubble masonry, in reasonable 
condition and showing little distortion, but there seemed to be very little mortar in parts of the arch. 
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Figure 1.8: A two span masonry bridge and the finite element model [14]. 

An experimental test was performed to assess the performance of the masonry bridge until the 
collapse of the structure, Figure 1.10. A numerical simulation was performed by Klerck [13] based 
on a combined finite/discrete element technique, as depicted in Figure 1.11. The failure modes are 
interestingly similar to one observed in experimental test [16]. 
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Figure 1.9: Crack propagation patterns at different times [14]. 

Figure 1.10: An experimental collapse test for a masonry bridge. 
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Figure 1.11: Finite element simulation of the collapsing bridge [13]. 



Chapter 2 

Constraint Enforcing Methods 

2.1 Introduction 

lVl<wy different methods have been developed for enforcing a constraint condition Oll the govemillg 
equation of a well established physical behaviour. In this chapter, the following four met.hods for 
011foJ'(:ement of constraints within a finite element analysis are reviewed: 

• Penalty method 

• Lagrange multiplier method 

• Perturbed Lagrangian method 

• Auglllented Lagrangian method 

Here only the penalty method is described in detail. 

2.2 Definition of a Constraint 

A constraiut either prescribes a value for a freedom (single point constraint) or a relationship between 
two or lllore freedoms (multipoint constraint). Figure 2.1 represents a typical "'I11'l1P'l1P,tro 

straillt between two contacting bodies. This constraint defines the necessary conditiolls to the 
bodies from penetrat ing each other. 

The mathematical description of a constraint equation may be written in the form 

Cu=Q 

where C is a matrix of constraints, u is the vector of freedom and Q is a vector of' constants. Q ill 

many cases may become 11 null vector. 

11 
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Body] 

Contact 
Constraint 

Body 2 

Figure 2.1: Impenetrability constraint for two contacting bodies. 

2.2.1 An Example 

Two straight bars which are just in contact are depicted in Figure 2.2. Each node has a single degree 
of freedom along the bar direction. A 0.1 unidirectional rightward displacement is applied to node 1 
of the left bar. 

Ea.ch bar behaves as a linear spring, so 

-10 ] (2.2)
10 

The assembled system of equations will be 

10 -10 o 

-r 10 o 
(2.:5 )o 10 

[ o -10 

since the equations are uncoupled, the results will be: 

U2 = 0.1 
(2.4){ U3 = 0 
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nodes 2 and 3 are 
just in contact 

uj =+O.l ~... 
··]----------2···3--------4­

kJ =10 k2 =10 

l l 

Figure 2.2: A simple two bar model. 

0.1 
I----l 

1 •• ---------. 2 

3
• 

Figure 2.3: Uncoupled solution for the two bar problem. 

Figure 2.3 shows the deformed shapes of the bars for this analysis, which clearly shows overlapping 
the elements. 

To avoid this, the following constraint equation should be enforced: 

(2.5 ) 

We will later use this simple example to verify the methods adopted as constraint enforcing meth­
ods. 

2.3 Constraint Enforcement 

Equation (2.1) should be added to the conventional equations of the system and solved simultaneously. 
Different approaches have been proposed for solving this set of equations which will be briefly reviewed 
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alld compared. 

One approach, which has been widely used by many researchers, is the concept of minimization of 
the total potential energy for deriving the necessary equations. The total potential energy of a linear 
elastic system subjected to static loading and consisting of two discrete bodies, nI and lh may he 
written as (Figure 2.4) 

,, Body 2 

Figure 2.4: A system consisted of two interacting bodies. 

n (2.6) 

a standard discretization procedure based on appropriate trial functions 

(2.7) 

where u is the nodal displacement vector, K is the system stiffness matrix and R is the force vector. 
Without additional constraint equation, bodies HI and n2 do not interact and the system is ullcoupled. 

2.3.1 Penalty Method 

The Penalty method was probably the first approach adopted for a constraint enforcing method. It 
was developed by Hallquist and his colleagues in Lawrence Livermore National Laboratory duriug the 
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late seventies for modelling impact/contact problems. 

To obtain the necessary equations, and comparing to the first term in Equation (2.7). the total 
potential energy for a constrained problem can be written as 

~ 1 T 
II(u) = IT(u) + 29 et9 

where et is a normal contact stiffness, called penalty number, and in general is a diagonal matrix of 
penalty terms for each degree of freedom. 9 is the normal gap vector and for 9 0 the constraints 
are fully satisfied; Il(u) = IT(u). 

Minimization of the tot.al pot.ential energy will result to 

(2.9) 

(2.10) 

To maintain equilibrium, Jil should be equal to O. 

The first. term on the right hand side of (2.10) is the well known stiffness equation 

oIT 
Ku R 11)UU 

and for the second term, we have 

9 Cu-Q (2.12) 

09 
C (2.au 

(2. 

Therefore, the modified stiHness equation will be 

[K + C T etC] u R + C T etQ (2.15) 

The term, C T etC should be added to the system stiffness matrix to incorporate the impenetrability 
constraint st.iffness. . 

The main features of this method are: 
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• 	 Enforcement of constraints requires no extra equations. 

• 	 The constraints are only satisfied in an approximate manner and the correct range of penalty 
numbers have to be chosen. If 0' is too low, the constraints are poorly satisfied, while if 0' is 
too large, the stiffness matrix becomes poorly conditioned (the difference between ill nnd out of 
diagonal terms becomes very high). As an initial estimate for 0' 

0.5E < 0' < 2.0E 	 16) 

where E is the young modulus of the contacting bodies. 

• 	 For explicit dynamic applications, large values of 0' may result in a reduction in the critical time 
step. Large penalty values simulate stiff constraint spring, increasing the global stiffne::;s and so 
reducing the required critical time step. 

• 	O'g corresponds to the penalty force required to enforce the constraint. 

The development and implementation of the penalty method for contact applications may be at­
tributed to the work by Hallquist [17] in the late seventies. 

The general aspects of the penalty method for imposing a constraint equation Ims been diliclliOiOed 
ill the previous section. Here, further details of the scheme as a contact interaction algorithm are 
discussed. In a contact mechanics analysis, the constraint condition is the impenetrability of the 
contacting objects. The impenetrability constraint equation for two nodes in direct contact may be 
expressed from equation (2.1) 

(2.17) 

In some applications, the exact impenetrability is strictly sought. For instance, in simulations 
of molecular dynamics or animations. These cases usually comprise sparse populations of bodies 
llloving around at high speed and interact by collision. The collisions are brief and ean be modelled a.'l 
instantaneous exchanges of momentum, in which energy mayor may not be conserved by the particle 
pair [18]. 

In a penalty method, penetration of the contactor object is used to establish the cOlltact forces 
bctween contacting objects at any given time (See Figure 2.5). 

The general form of equation (2.17) for contact between two bodies may then be defillcd by 

on rc 	 (2.18) 

where g is the gap function, Xl and are the deformed configuration of 1 and 2, respectively, 
n is the normal to the body at the contact surface, and r c is the contact domain, I\: = r 1 II 

Therefore, the variational form of the constraint equation (??) may be explicitly expressed as 

Jwcon = r O'g6g(u)da 	 (2.19)
Jr" 
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time={ 

Targcl segrneru 

a) Be/ore contact b) Possible normal and tangential gaps 

Figure 2.5: Contact force based on impenetrabilit.y. 

ag 
ag au Juda 

Equation (2.20) may be re-written in terms of the contact force vector 

r ron ag Juda (2.21 ) Jre au 

Attention is now focused on a single boundary node in contact to formulate the residual contribu­
tion of contact constraint, rC. The component form of the virtual work of the contact forces associated 
to the contact node is then given by [21J: 

where k = TI, t and i = x, 'Y, and is the the 'i-component of displacement vector at node 8, g (g", gtl 
is the relative motion (gap) vector in normal and tangential directions, respectively, and r'OT! is the 
contact force vector over the contact area Ac, 

(2.23) 

where a is the penalty term matrix, which can vary for normal and tangential gaps and even between 
single contact nodes. The corresponding recovered residual force is then evaluated as: 

(2.24) 
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nodes 2 and 3 are 
just in contact 

... 	 ~·-1-------2-·-3----4­kJ =]0 	 k2 =]0 

I 	 I 

Figure 2.6: A simple two bar modeL 

The partial derivative part of equation (2.24) defines the direction and distribution of normal and 
tangential contact forces. The calculated contact force has then to be distributed to the target and 
contactor nodes. 

2.3.2 An example 

To illustrate how to use the penalty method for enforcing a constraint equatiotl, Example 3 of SC~('ti()ll 
2.2.1 is 	re-considered (Figure 2.6). 

The constraint equation may be written a8 

with 

112 113 

C -1 +1 

for a constant value of 0 

OCT C 0 [ ~1 11] 	 (2.27) 

which is similar to the stiffness of a spring attached to the bars. 

The assembled system of equations will then be 
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0.0333.. 4 
3e e 

1e e2 

0.0667.. 
Figure 2.7: Remaining penetration in a two bar contact problem using the penalty method. 

-r 
10 -10 0 


10 + 0: -0: 

(2.28) 

-0: 10 + 0:
[ o -10 

Equation (2.28) is a coupled equation due to the existence of non-diagonal 0: terms. 

To continue the solution procedure only consider the active part 

(2.29) 

solving for unknown U2 and U3 

0:[ ~: ] = ..,-__I-,,-_coc [ 10: 0: (2.;)())
10 + 0: ] [ ~ ] 


To get some numbers, for 0: = 10 


1 [20 10] [ 1 ] = [ 0.0667 ] (2.31)
300 10 20 0 0.0333 

the results show the existence of some penetration of bar 1 into the bar 2 (See Figure 2. 

Table 2.1 summarizes the results obtained for the same equation using different penalty Humbers. 
It is clearly seen that by inereasing the penalty number the solution converges to the exact solutioll, 
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a 112 113 

10 .0667 .0333 
100 .0523 .0476 

1000 .0502 .0497 
10000 .0500 .0500 

Table 2.1: Results for different penalty numbers. 

2.4 Contact Instability 

One of the concerns of using the penalty method as a numerical constraint scheme for explicit analysis 
is its stability. The reason can be attributed to the fact that the impenetrability condition (9 = 0) 
is only approximately satisfied by this method. This is clearly observed from Equation (2.8) where a 
non-zero term is added to the total potential energy of the system. Without any additional tre8t.mPllt, 
the penalty method will cause the system to gain energy artificially, although sometimes this extra 
energy is a compensation for the loss of deformation energy due to contact penetration. 

In a central difference one dimensional contact analysis based on the penalty method, the contact 
force may be defined as 

if 9 > 0 
otherwise 

where g is the normal penetration. One may expect the central difference scheme to be stRble when 
applied with 

K 
k 

= -t:::.t2 < 4 
m 

However, numerical tests show that in some cases considerable energy is acldc'd to the systelll 
because the central difference scheme becomes unstable [22] (For details of the central difference 
method see Section ??). 

To clarify the problem, consider the impact of a material point (ball) on to a rigid wall as depicted 
in Figure 2.8. 

When the material point enters the wall boundaries, it may happen that for some time T < t:::.t, 
the scheme generates no contact force to resist penetration. When the material is leaving the wall 
boundaries, it can happen that for some time T < t:::.t, the contact force continues to be pushing out 
the material point from the boundary, although there is no penetrRtion any longer. Consequently, the 
material point gains some additional energy each time it enters and leaves the wall boundary. It may 
happen that T = 0, but in general this is not the case [22]. 
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• • •
t, 

aJ The ball penetrating into the wall. bJ The ball escaping out ofthe wall. 

Figure 2.8: A material point entering and leaving a rigid wall at successive time steps. 

2.5 Equilibrium Equation 

r

Consider a body, B, occupying a region n with a boundary r subject to body forces tV()(!I! throughout 
its domain n. Here, the boundary is assumed to consist of a part with prescribed displacement Hi, 

n " and a part with prescribed traction force f;"UTj, ra, (Figure 2.9). The boundary conditions may 
then be described as 

f surf an ~ on ra 
(2.34)

X=X on ru 

where a represents the Cauchy stress tensor and n represents the unit outer normal along r a. 

For this body to be in a state of static equilibrium, the following condition must be satisfied 

bady1 rUT j da +1t dv = 0 (2.35) 
r a II 

and for a state of dynamic equilibrium, 

r r UTj da + rtvadYdv = 1pudv (2.30)
Jra Jll II 

Applying the divergence theorem to the first term in the above equation and using equation (2.34), 
the following strong form of equilibrium equation is finally obtained 

badydiva + t = pu (2.:37) 
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Figure 2.9: Description of the boundary value problem. 

which represents the dynamic equilibrium condition at a point within the body. 

Here, a weak form of the equilibrium equation is derived, since this is utilized a<; the basis of the Finite 
Element procedure: 

r(7 : V'wdv + rpuwdv = rfbodYwdv + r 1''')'j .wda
in in in ir~ 

According to the Galerkin weighted residual approach for solving the boundary value problem, 
the weighting functions are chosen as the field of virtual displacements bu, and the weak form of the 
equilibrium conditions represented in equation (2.38) is equivalent to the principle of virtual work. 
T\Iore details may be found in Zienkiewicz et al. [23J. 

In addition, it is assumed that a part of boundary, may be in contact with another body 
(Figure 2.9) according to the contact boundary conditions [24, 19] 

if gN > 0 
(2.39)

i.f gN SO 

where g" is the gap between the bodies. By denoting 

V: {r5u: bu; = 0 on f n ,} (2.40) 

the space of admissible variations, the variational (\veak) form of the dynamic initial/boundary vaille 
problem may be expressed as [25, 26J 
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(2.41 ) 

where 

wint(ou, u) = J" OE(U) : a(u)dv (2.42) 

M(ou, u) J ou·pudv 
n 

wext(ou) = J ou.jbodYdv+ I ou·rurfda (2.44) 
n . l'a 

(2.45 ) 

denot.e, l'c;;pectively, the virtual work of internal forces, the inertia forces contribution, the virtual 
work of external forces and the virtual work of contact forces. Here a is the Cauchy stress tensor, E 

is the strain tensor, u is the displacement vector, while g represents the contact gap vector. Observe 
that in the present formulation the contact terms correspond to a penalty formulation of contact 
interaction. 

2.6 Energy Balance 

N11luerical instabilities are normally associated with a large growth of energy. Therefore, monitoring 
the sta.bility and accuracy of the solution can be performed by continuously checking the ellerg,V 
balance of the ;;ystelIl. The euergy balance equation at time t" can be expressed as [1], 

usl 
n " wdaml <_ o'Wn I (2.4G)n I 

where TV~ct is the work of external forces, Ur~in is the kinetic energy, U,",I1' is the strain energy, W,~("" 
is the dissipation energy due to work by damping forces, 0 is the specified allowable tolerance of the 
analysis, ami W" is some norm of energy, 

(2.47) 

which is suitable for discrete element contact problems. These energy terms may be expressed as, 
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(2.50) 

(2.51 ) 

(2.52) 

Ix" 
w~am = cvdx (2.53) 

Xo 

Within the context of a step-by-step finite element solution, and applying a trapezoidal integration 
I'llle, the following expressions can be derived, 

IV 

We",I. = vVext 1 "'" { i _ i, }T {(fext)i (fC',Tt)i}
n n-1 + 2 6 un U n - l n-1 + n (2.54) 

;=1 

(2,55) 

which has to be determined based on midpoints velocities 

(2.5G) 

alld 

(2.57) 

IV 

ui~Vdllm = vVdam + ~ "'" {u i _ }T C {Vi + Vi }n n-1 2 6 n n-1 n-1 n 
i=l 

where lV and Nip are the number of nodes and the number of integration points for the given body, 
respectively, C eM is the linear viscolls damping matrix, and Vi is the volume associated to the 
integration point 'i. 



Chapter 3 

Discontinuum Contact Mechanics 

3.1 Introduction 

The pioneering work by Cundall and his colleagues, who completed the original work by Goodman 
in 1968 [27] on jointed rocks, marks the beginning of modelling of discontinuum media ~28]. They 
clev(·loped an algorithm for modelling the behaviour of jointed rigid rocks, soon termed as the Distinct. 
Element Iv!cthod. 

13y advancing the capabilities of the finite element method, and increasing power of computing 
fully deformable blocks replaced the original rigid bodies, with the new D'isCTctc Element 

Method terminology. 

Nowadays, the discrete element method has reached to an ever increasing popularity for modelling 
all potential discontinuum media. Nevertheless, it is mainly used for two classes of problems: 

• 	 Gmnular flow: where a large number of simple elements (usually rigid) are interact.ing wit.h 
encb other and with the surrounding boundaries (rigid or deformable). Granular flow ill silos 
nnd the slope stability analysis are the most attractable types of problems in this class . 

• 	 Prvgrcs8ive : where a continuum is subjected to an extremely high condition sllch as 
explosive loading or high velocity impact, causing extensive cracking and possibly fragmentation. 
The behaviour of the model is continuously changing toward the discontinuity and the ol'igillal 
geomet.ry of the body is changing by the extension of cracking. 

The essential point is that the finite element method is rooted in the concepts of continuum 
mechanics, thus not suited to general fracture propagation and fragmentation problems. The fiull.e 
('lelllelJt method llJay only effectively deal with a single crack or a low fractured area without allY 

fragmentation, whereas the discrete element method is specifically designed to solve problrllls t.hat 
exhibit ;.;f.rOllg material and geometrical discontinuities. 

13efore dealing with the main issues, a quick review of historical developments and present indus­
trial/scientific applications is provided. 

25 
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3.1.1 Historical Development 

As mentioned earlier, the original development of the discrete element method may he attributed to 
the work by Cundall in 1971. In the following, a brief review of the main hiHtorical developments of 
the method i~ provided: 

• 1968 : Analy~i~ of jointed rocks by Goodman [27]. 

• 1971 : Analysis of jointed rocks by Cundall [28]. 

• 1988 : Fully deformable discrete elements included (Ghaboussi ). 

• 1990 : Beginning of scale simulations. 

• 1995 . Combined element method for fracture simulation of brittle !lH,din ':3'. 

• 1995 : Coupling discrete element~ with fluid or gas flow 

• 1996 : Parallel and object oriented computing [31, 32]. 

• 1996 : lVIodeliing granular flow in silos [1]. 

• 1998 : Metal cutting adaptivity techniques [33J. 

• 1998 : Impact analysis of anisotropic three dimensional compo~ite shell~ [34]. 

• 1999 : Damage investigation and repair modelling of masonry structures/bridges. 

It should be noted that for each case, earlier less sophisticated models can ahio be found ill the 
literature and the mentioned years ~how the time of major advancements of the method. 

3.2 Contact Detection 

III this section, the contact detection procedures are briefly reviewed and their main 
poillts are discussed . Then, the alternating digital tree, as one of the falStest. geollletric illtersect.ioll 
search algorithms, are explained in detail and its application to general contact det.ectioll problellls 
will be reviewed by providing sample problems. 

The problem of detecting the bodies that interact with each other, also known as the 
illterl:lection search, has become a serious computational task in multi-body allalyses. 

A;o;oume there is a system of N interacting bodies; all may happen to come into contact with allY 
other body. A naive contact detection method reqllires the checking for contact between each body 
and every other bodies within the system. Figure 3.1 shows how such a simple approach a 
checking link between each body and the remaining bodies. 

The number of operations required to detect all contacts between N bodies will thell U(, plOp01'­

tional to 



DiscollUl1uum Contact IVIechanics 

1 

2 
3 

1----1 
4 

--------~ 

........... -.---- .. ---.--~,.: 
\, \ --'-If: 4 

'. \ 
'., \ 

'. \ 
'.,\ 

'.\ 

\ 

"" '" 
"" " ' \ --- " 

\\ 
\,\ 

'.\ 

'.~0 


Figure 3.1: All to all check, the simplest contact detection procedure. 
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Figure 3.2: Short lists of contactors. 
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"N 1 ( )l'. 2 3.1 

In mllHibody analysis, however, the above method obviously becomes extremely Several 
other algorithms have been proposed to improve the detection procedure. III the bei'lt case, the 
computational efforts has been reduced to a factor of 

N (N) (3.2) 

The existing detection methods have so far laid in between the two extremes. 

The alternating digital tree (ADT) algorithm, which developed initially to solve the problem of 
mesh generation, reduces the number of operations required to determine the contncts between bodies 
by creation of short lists of potential contactors for each target body. Figure .3.2 shows a salllple part. 
of the created short list for a set of N contacting bodies. In this case, a direct checking is uudertakeu 
for the number of relevant bodies of a target, and the procedure is repeated for other target objects. 

3.2.1 Contact Geometry 

Depending on the type of modelling, two types of discrete elements may be defined: 

1. Rigid bodies (Figure 3.3) 

Figure 3.3: Simple rigid discrete elements. 

2. Deformable finite elements (meshed polygons) (Figure 3.4) 

The contact geometry is then either computed from the input definition of rigid e.g, H 

circular disc is defined by a centre point and radius, or automatically evaluated for clefonnclble finite 
element bodies by evaluating all exterior edges/facets and grouping them for each discrete element, 
as depicted in Figure 3.5. 
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Figure 3.4: Deformable discrete elements (meshed polygons). 

3.2.2 Global Search Algorithms 

A general global search algorithm must be efficient in dealing with a large number of bodies, suitable 
for both rigid and deformable bodies, and efficient for both loose and tight packs of elements. A single 
approach might not achieve all the mentioned goals, and different approaches may be adopted for 
different applications. 

3.2.3 Binary Tree Structures 

A binary tree structure is a specific method of sorting data that allows new data to be eallily added 
(inserted) or removed (deleted). Binary trees are one of the most important non sequential types of 
data structures. At each node, the information stored consists of data and two point.ers knowll as the 
left and right links that point to further data. Each added link can either be equal to zero or equal 
to the position in memory where another node of the tree is placed. 

Compared to a linear sequential array, the binary tree structure requires only two extra storage 
locations per item: left and right links, and provides a much greater degree of flexibility. 

The first node ill the tree is known as the root node. From olle node of the tree it is possible to 
poillt at most two other nodes, while for each node (except the root), there is one and only one link 
pointing at it. A node without any point.er to other nodes is called a terminal node. 

Figure 3.6 shows a typical binary tree structure with three levels of information and six nodes. 
The pointers on each node refer to the memory location for the left and right links, respectively. For 
example, pointer Ln refers to the memory location that. holds the set of D data, i.e. len link to the 
B iiet. 

http:point.er
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Figure 3.6: A simple binary tree data structure. 
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a) Degenerated tree b) Well balanced tree 

Figure 3.7: Degenerated and well balanced binary trees. 

Creation of a Binary Tree 

The first step in creation of a binary tree structure is selecting a root node. Adding Hew data items to 
the biliary tree depends on definition of a criterion for choosing between the left or the right branch for 
insertion. Every insertion then starts by checking this criterion at the root node and then traversing 
the tree unW an empty place is found. 

The criterion for insertion of data items and traversal of the binary tree is in fact a lI1ea.~ure of 
relative spatial position of two nodes of the binary tree. 

The order of object(body) insertion determines the final shape of the binary tree structure. The 
slmpc of the binary tre(~ substalltially influences the cost of the global contact searching as well as the 
cost of insertion of new data items. Poor performances are expected from highly degenerated binary 
trees (Figure 3.7a), as opposed to the very low insertion and search costs obtained from well balanced 
trees (Figure 3.7b). 

An optimized ordering procedure for node insertion can be developed to consider the possibility 
of balancing a tree structure by adopting a new order of insertion. Such an optimized tree structure 
may be found extremely efficient if a binary t.ree for geometric intersection search has to he rebuilt 
1l.lld :-;earched through relatively often. 

3.3 Object Representation 

In this chapter the main classes of object representation methods are discussed. It includes circular 
disks, ellipse shaped disks, and the general superquadric forms. Additionally, the meshed polygon 
systell1s, which frequeutly encountered in general finite element contact analyses are also among the 
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diskb 

Fignre 3.8: Geometry of two interacting disks. 

object representation techniques. They usually provide specific problems within a contact detection 
or interaction procednre which have already been discussed and will not be addressed again. 

3.3.1 Circular Disks 

circulm disks/spheres are probably the most frequently u:;ed type of element ill lllodellillg of 
fiow by the discrete element method. They have been used as rigid body objects interacting each 
other in a granular How simulation. Both penalty and continuum mechanics based methods have been 
used for contact interaction formulation. 

From the object representation point of view, they consist the simplest forms for two and three 
dimensional modelling. Their geometric representation includes t.he coordinates of the centre amI the 
magnitude of radius. The motion of particles can be readily calculated from the equHtion~ of rigid 
body dynamics. 

Fignre 3.8 shows the geometrical description of a system of two interacting 2D disks. 

A relatively simple computational sequence for disk element analysis can be smnmarized according 
to the following: 

For all contact pairs, follow the force-displacement law: 

• 	 Relative velocities (i 1,2) 


Xi - Xiv) - (OaRa + ObRv)ti 




Discol1timlllIIl Contact 1\1echal1ics 

• 	 Relative displacements 

t::..11 = itt::..t t::..t = illt 

• Contact force increments 

t::..Fn 	 <l:nt::..n 

• Total forces at time j 

Fr 1 + t::..Fn 

• Check for slip 

Fi 

For a.ll used the equations of motion 

• Calculate moment 

Afa = 2::: 
• Assume constant force and moment from tj-~ to ! 

• 	 Aecelerntion 

2::: F, fJ) _
 ". '\'!vI _£...J_ 

fir 
(7 - I 

• Velocit.y 

• AtltlllIlle constant velocities from t j to tJ+ 1 

• Displacements 
j+1 ~ At.'r·'.i+~:1: i ' 	 Ll., 

e1+ 1 	 (J.i + t::..tip+! 

At the end of sequence, the time is incremented and the whole procedure is repeated. A more 
sophisticated approach is presented here to clarify the main specifications of a disk based discrete 
element technique as described by Petrinic [1]. 

Normal Contact Force 

Aitholll!;h the si/,e of the overlap is small compared to the radii of the disks, only the contact WIle is 
considered to be deformable. The contact force is assumed to be proportional to the overlap size of 
the two disks in contact and their relative velocity in the normal direction (model described in Fil!;ure 
3.0), 

(:3.3) 
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en 

Kn 

Figure 3.9: A model for normal contact force between two circular disks. 

where Pn = Pn is the spring force, en is the viscous damping coefficient, v;; is tbe relative velocity 
ill the direction normal to the contacting surfaces. 

The spring force P" is defined using the elasticity solution for two disks in contact, 

(3.4) 

where R is the radius of disk, G is the shear modulus, v is the poisson's ratio, b is half the width of 
the surface of contact (defined in Figure3.1O) and, 

(3.5) 

Bor small overlaps, the nonlinear spring behaves linearly which can be expressed as 

(3.G) 

where Kn is the spring stiffness, 

(3.7) 

The viscous damping coefficient is represented by a chosen percentage of the critical damping for 
a collision of two disks, 

http:Figure3.1O
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disk 1 

Figure 3.10: Normal contact between two circular disks. 

(3.9) 

where 1\1i is the mass of the disk i. 

Tangential Contact Force 

Geometrical idealization causes disks to be less resistant to rolling than the actual round shaped bodies 
they represent. Therefore, in order to model the formation of phenomena such as arching ill granular 
flow using circular disks, an additional part of tangential component of contact force between disks 
has to be employed. Here, a so called rolling resistance is applied by means of a viscous damping 
force. 

Sliding Friction 

This part of the tangent.ial component of contact force is represented the model shown in Figure 
3.11. 

The actual expression for sliding friction is obtained following study of the sliding contact for 
locomotive driving wheels, 
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Figure 3.11: A model for sliding friction force between two circular disks. 

(iUO) 

where PI = Pt (Ut) is the spring force defined as 

11) 

where Ii is the coefficient of friction, Fn is the normal component of the contact u~ is the relative 
tangential displacements of the contacting disks, is the viscous damping coefficient and is the 
relative tangential velocity. 

The relative tangential displacement between the two disks is obtained from the solution of the 
global equations of motion, 

(3.12)u~ = 

The relative tangential velocity is determined from the disks kinematics (Figure 3.12), 

and the duration of contact is defined by: 

(3.14) 

where ?tn is the size of normal overlap, lit is the length of the time step during which the contact 
occurred and v is the disk velocity vector, while 
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ellipsej 

Figure 3.15: Contact between two ellipses. 

(a.29) 

The relative velocity of the contact between i and j is then 

(3.3D) 

[(Vxi - OiTcisinad - (vxj - O)Tc)sina.i)]i+ 
(3.31 )

[(Vyi + O;Tcisinai) - (vyj + OjTej sincYj)U 

where the terms with v are attributed to individual particle translation, and 0 to particle rotation. 
This relat.ive velocity may be resolved parallel and perpendicular to the contact normal to yield the 
incrmnentals normal and tangential contact velocities: 

dvcn = dvnn = (dvc' n)n 
(3.:32)

= (dvcxnJ + dvcy n2)n 

dvcl. = dvtt = (dvc' t)t 
(3.a3)= (dVcxtl + dVcyt2)t 

noting that 
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Figure 3.12: Kinematics of two contacting circular disks. 

i~ the relative normal velocity. 

Figure 3.13 illustrates the relation between the relative tangential displacement and the frictional 
~prillg force. 

The viscous damping coefficient Ct is repre~ented by a cho~en percentage of the critical damping 

(3.16) 

(3.17) 

with 1(1 as (,he spring stiffness 

(3.18) 

Rolling Friction 

Consider the situation where the disk is set to roll on 1:1 rough horizontal plane (Figure 3.14), 

The sliding friction cannot provide any resistance to the movement of the disk rolling on a rough 
surface since there is no relative tangential at the contact point (v[ = 0). an 
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Figure 3.13: Relation between the relative tangential displacement and the frictional spring force. 
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3.14: Rolling disk on a rough horizontal surface. 
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additional term for the tangential component of the contact force is also required; called the rolling 
frictioll, 

(:3.U)) 

where 

(3.20) 

is a chosen percentage of the critical damping (3.17), and 

(3.21 ) 

is the relative tallgential velocity of the centroids of the disks in contact. 

The rolling friction force should also satisfy the following condition 

(:3.22) 

Also, if the rolling friction obtained from (3.19) results in 

(3.23) 

it should be re-calculated in order to priority to sliding 

Condition (:3.22) is often satisfied automatically since the critical damping (3.17) depellds 011 the 
friction stiffness which decreases when approaching the maximum allowed friction force 

liP" 3.14). This is why the rolling part of the tangential component of the contact force is 
dlosen to be applied in a form of damping. It ensures good co-operation of sliding and rolling ii·ietioll. 

Applying the force at the centroids of the disks also implies adding a resisting moment in the 
direction to the direction of rolling as 

lvI,. = -F,.R 
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3.3.2 Ellipse Shaped Particles 

With more widespread use of disk and sphere based numerical codes, and the recent development of 
;;phere based constitutive models for granular assemblages, it is particularly important to assess the 

to which these models are applicable for real non-spherical materials. 

One common problem when using disk and sphere based discrete element modelling of soil is the 
low aggregate friction angle inherent in these systems, regardless of the angle of inter particle sliding 
friction, which is used. 

Particle shape has the largest effect on mechanical behaviour, with reported increases in peak 
intemal friction angle up to 10° for systems consisting of angular particles compared with round 
particles. 

With the realization that disk based discrete element model has serious deficiencie::; when used for 
modelling real granular materials, it has recently become popular to use the ellipse as the basic particle 
shape. The ellipse shape has the advantage of having a unique and continuous outward normal and 
110 singularities along its surface. 

Solution for ellipse-ellipse contact detection requires solution of fourth degree algebraic equations, 
which can be done analyt.ically rather than with iterative procedures. For these objects, normal coutact 
forces acting eccentrically on a partide can generate applied moments which potentially inhibit particle 
rotation. As a result, this shape is well suited physically and numerically to modelling granular soils, 
powder~ and grains. 

Contact Decomposition 

Figure 3.15 indicates the nomendature for two ellipses in contact. Points A and B, which can be used 
as a measure of the total normal overlap (penetration) between the two objects, are determined from 
the current ellipse-ellipse intersection algorithm. 

To assess the relative importance of rolling and sliding mechanisms of deformation within the 
granular assemblage, the contact deformation is separated into portions due to individual pa.rticle 
rotation and particle translation. 

For particle i, the vector from the centroid in the direction of the presumed point of contact is: 

Tci=Xc Xi (3.20) 

(Tei cos O;i)i + (Tci sin O;;)j 

The velocity of the contact on particle i due to rotation and translation of i is: 

(3.28) 
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tl = n2 
(:.~.34)

t2 = -nl 

where n is the unit outwards normal at the contact for ellipse i and t is the unit vector perpendicular 
to the normal, defined clockwise positive to particle i. 

At a given instant, the individual terms in (3.32, 3.33) may be separated into the incremental net 
contact deformation, net normal contact deformation, or net tangential contact deformation due to 
particle translation or particle rotation. 

The contribution of rotations of particle i and j to the net tangential contact deformatioll is: 

while the contribution to the net normal contact deformation is, 

[(-e,fCiSin + (eJfcJsin();J)]nl+ (3.36)
[(Bifei COS();i) - (-ejT'C] cos ();j)] n2 

The contribution of translation to the net tangential contact deformation is: 

(3.37) 

(3.38) 

Numerical tests have shown that the particle rotation accounts for twice as much contact motion 
for round particles as does particle translations [36J. 

3.3.3 Superquadric Objects 

Superquadrics (superquads) are a generalization of mathematical fUllctions known ilS quadric surfaces. 
The extension comes about by raising the exponents of the variable terms to values other than 2. 
They are a family of parametric funet.ions, introduced in mid 60's and later proposed for use in 
rnultibody dynamic analysis by \Villiams [37]. It is estimated that about 80 percent of all manufactured 
components can be represented by boolean combinations of the superquadric forms. 

From the family of possible superquadric functions, the best known is the super ellipsoid [32]: 

I(;r;, y, z) (3.39) 
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Figure 3.16: Superqundric element;; [32]. 

Figure 3.17: Superquadric elements [32]. 
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where (XO,YO,zo) is the ongm of the function, (al,a2,aS) are the dimensions of the Supcl'quadric 
semi-major axes extents, and a: and !3 are the roundness-squareness parameters of function in two 
perpendicular directions, respectively, 

Figures 3,16 and 3.17 illustrate various objects that can be represented by a superquadric function. 



Bibliography 

[1] 	 Petrinic, N., Aspects of Discrete Element lvfodelling Involving Facet-to-Facet Contact Detection 
and Interaction. Ph.D. thesis, Department of Civil Engineering, University of Wales Swansea, 
UK, 1996. 

[2] 	 Ortiz, M., Finite element analysis of impact damage and ballistic penetration. Fourth US Natwno.l 
Congress on Computational Mechanics, USNCCM IY, ed. M. Shephard, pp. 10-1:), 1997. Sm1 
F'rnJl(:isC'o, USA. 

[:1] 	 Munjiza, A., Owen, D. & Bicanic, N., A combined finite-discret,e element. method ill trallsient 
dynamics of fracturing solids. Engineering Computations, 12, pp. 145-174,1995. 

[4] 	 Bicnnie, N., Munjiza, A., Owen, D. & Pet.rinic, N., From continua to discontinua - a combined 
finite element / discrete element modelling in civil engineering. Developments in Coml!'1ttatiorwl 
Techniques for Stmctaral Engineering, ed. B. Topping, Civil-Comp Press, pp. 1-13, W95. 

[5] 	 Munjiza, A., Discrete Elements in Transient Dynamics of Fractured Media. Ph.D. thesis, Depart­
ment of Civil Engineering, University of 'Wales Swansea, 1993. 

[6] 	 L,k, I'd., Shear Band Slope Stability Analysis. Master's thesis, Department of Civil 
Ellgincpring, University of Tehran, 2002. 

Stead, D., Eberhardt, E., Coggan, J. & Benko, B., Advanced numerical techniques in rock slopp 
stability analysis - applications and limitations. Landslides - canses, impacts and co'Unte7'7neasuT'es, 
pp. 615-624, 2001. Davos, Switzerland. 

[8] 	 Cramer, E., Findeiss, n., Steinl, C. & Wunderlich, W., An approach to the adaptive fiuit.e 
element analysis in associated and non-associated plasticity considering localization phenolllena. 
Computer Methods in Applied AfechanicB and Engineering, 176, pp. 187~-202, I!)!)!). 

[9] 	 Petl'illic:, N., Owen, D., Munjiza, A. & Bicanic, N., Rolling resistance of disks in contact. Krtended 
Abs/Jncts for the 3Td ACME UK Conference, pp. 105-1l0, 1995. Oxford, UK. 

1101 	 Williams, J. & Rege. N., Coherent structures in deforming granular materials. Internat'ional 
JOlLTnat of Mechanics of Cohesive-Frictional Materials, 1996. 

[I1J 	 Price, D .• Discrete element modelling of masonry walls. Master's theBis, University of Wale~ 
SWaIJBea, 1997. 

[12] 	 Yu, .1., A contact 'intemction framework for nu.merical simulation of multi-body pm/Jlems and 
IJ.speds of da'mage and fracture for brittle materials. Ph.D. thesis, University of \\Tales SWa.llSea, 
1D!J!J. 

47 



48 Discrete Element MetllOd S. Molmmmadi 

[13] 	 Klerck, P., Finite element modelling of discrete fract1!re in quasi-brittle materials. Ph.D. the;;is. 
University of 'Vales Swansea, 2000. 

Marefat, M., Ghahremani-Gargari, K & Naderi, R., Full scale test of a GO-yem old mass-concrete 
arch bridge. World Congress on Railway Research, pp. 114--118,2001. KolrL Germany 

[15] 	 OlStadholSsein, H., Combined Finite/Discrete Element A10dellinq of Masonr·.1J Structures. Master's 
thesis, Department of Civil Engineering, University of Tehran, 200L 

[Hi] 	 Limited, R.S., Elfen helps save our historic structures. Newsletter 4, 2001. 

[17] 	 Hallquist, .I., Goudrean, G. & Benson, D., Sliding interfaces with contact-impact in large-scale 
lagrangian computations. Computer Methods in Applied Mechanics and Engineering, 51, 1985. 

Cundall, P. & Hart, R., Numerical modelling of discontinua. 1st US Conj(cf'ence on DiscI'etc 
Element A1ethods, eds. G. Mustoe, M, Henriksen & H. Huttelmaier, CSM Press, ID89. 

[19] 	 Peric. D. & Owen, D., Computational model for 3-d contact problems with friction based on the 
penalty method. International Journal For Numerical A1ethods in Engineering. 35, pp. 1289~ 
1309, l!)92. 

[20] 	 Crook, A., Combined finite/discrete element method. Lecture Notes, Department of CiviJ Engi­
neering. University of Wales Swansea, 1996. 

Schonauer, M., Rodic, T. & Owen, D., Numerical modelling of thermomechanical processes 
related to bulk forming operations. Journal De Physique IV, 3, pp. 1199-1209,1903. 

[22] 	 Munjiza, Bicanic, N" Owen, D. & Ren, Z., The central difference time integration scheme ill 
contact-impact 	problems. 4th International Conference on Nonlinear Engineering ComJl'utations 

NEC-9l, eds. N. Bicanic, P. Marovic, D. Owen, V . .Iovic & A. Mihanovic. pp. 569--575, 1DD1. 

[23] 	 Zienkiewicz, O. & Taylor, R, The Finite Element iV1ethod. McGraw Hill, 4th edition, 1994, 

[24J 	 Hashimoto, K., Neto, E.S., Peric, D. &. Owen, D., A study on dynamic frictional behaviour of 
coated steel sheets: experiments, formulation and finite element simulations, Technical report, 
University College of Swansea, 1993. 

125] 	 Mohammadi, S., Owen, D. & Peric, D., Delamination analysis of composites by discrete element 
method. Computational Plasticity, COll1PLAS V, eds. D. Owen, E. Onate & E. Hinton, pp, 
120G~1213, 1997. Barcelona, Spain. 

[26] 	 Mohammadi, S., Owen, D. & Peric, D., Discontinuum approach for damage analysis of compos­
ites. Computational Mechanics in UK 5th ACME Conference, ed. M. Crisfield, pp. 40-44, 1997. 
London, UK. 

[27] 	 Goodman, R., Taylor, R &. Brekke, T., A model for mechanics of jointed rock. Journal of Solid 
Mechanics and Foundation, ASCE, SM3, p. 94, 1968, 

[28] 	 Cundall, p" A computer model for simulating progressive, large scale movements in blocky rock 
system. Proceedings of lntcrnat'ional Symposium on Rock Structures, 1971. Nancy, France. 

[29] 	 Ghaboussi, .T., Fully deformable discrete element analysis using a finite element approach. Com.­
p1J.ters and Geotechmcs, 5, pp. 175~195, 1988, 

http:Masonr�.1J


49 References 

[~ml 	 Foster, N. &, Metaxas, D., Visualization of dynamic fluid simulations: waves, splashing, vorticity, 
boundaries, buoyancy. Engineering Computations, 12, pp. 109-124, 1995. 

[31] 	 Hustrulid, A. &, Hall, B., Parallel implementation of the discrete element method. Technical 
report, Colorado School of Mines, 1996. 

[32] 	 O'Connor, R, A Distr-ibuted Discr-ete Element Modelling Envimnment AlgoTithms, Implcmenta­
tion and Applications. Ph.D. thesis, Department of Civil and Environmental Engineering, MIT., 
Hl9G. 

[331 	 Vaz-Jr., M., Computational approaches to simulation of 'metal cutting pr-occss. Ph.D. thesis, Dep­
tartment of Civil Engineering, University of Wales Swansea, 1998. 

[34] 	 MohammadL S., Combined Finite/Discrete Element Analysis of Impact Loading of Composite 
Shells. Ph.D. thesis, Deptartment of Civil Engineering, University of Wales Swansea, 1998. 

Wensel, 0., Sear-ch algor·ithm for detecting geometric over-lapping in a discr-cte elemenl. context. 
Master's thesis, University of Wales Swansea, 1992. 

[361 	 Ting, .I., MeachulIl, L. &, Rowell, .1., Effect of particle shape OIl the strength aJl(I ddonJmtioll 
mechanisms of ellipse-shaped granular assemblages. Engineering Computations, 12, pp. 99-108, 
1995. 

[37] 	 Williams, J., Contact analysis of large numbers of interacting bodies using discrete modal methods 
for simulating material failure on the microscopic scale. Engineering Computations, 5(3), pp. 
150-161, 1988. 




