
1. INTRODUCTION 
The Discontinuous Deformation Analysis (DDA) 
method is a recently developed technique that is a 
member of the family of DEM methods. It is a 
pioneering method used to analyze the mechanical 
behavior of discrete blocks, In contrast, DDA as a 
complete block kinematics – a key component in dealing 
with interacting discrete blocks, guarantees the system 
equilibrium at any time, and is a real-time analysis. Both 
static and dynamic analyses can be conducted with the 
DDA method [1]. 

Original DDA formulation utilizes first order 
displacement functions to describe the block movement 
and deformation. Therefore, stress or strain is assumed 
constant through the block and the capability of block 
deformation is limited. This may yield unreasonable 
results when the block deformation is large and 
geometry of the block is irregular. In 2-D, to overcome 
these limitations, some approaches have been attempted. 
An approach to resolve this problem was to glue small 
blocks together to form a larger block using artificial 

joints [2] and sub-blocks [3]. Some researchers added 
finite element meshes in the blocks so that stress 
variations within the blocks can be accounted for [4-6]. 
An alternative approach is to include more polynomial 
terms in displacement function. Chern et al. [7] and Koo 
et al. [8] added the second-order to DDA. Ma et al. [9] 
and Koo and Chern [10] implemented the third-order 
displacement function in the 2-D DDA method. Hsiung 
[11] developed a more general formulation of the 2-D 
DDA. 

There are some published papers on deformable blocks 
in 3-D DDA. Beyabanaki et al. [12-14] implemented 
Trilinear and Serendipity hexahedron FEM Meshes into 
3-D DDA. Beyabanaki et al. [15-17] presented 3-D 
DDA with second- and third-order displacement 
functions. Recently, Beyabanaki et al. [18] presented 3-
D DDA with nth-order displacement functions, but they 
did not study its contact theory. In this paper, contact 
theory of nth-order 3-D DDA is presented. In this 
research, formulation of normal and shear contact forces 
are presented and applied to two examples. 
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2. APPROXIMATION OF GENERAL HIGH-
ORDER DISPLACEMENT FUNCTIONS IN 3-D 
DDA 
In 3-D DDA, the large displacements are an 
accumulation of the small displacements and 
deformations in a time step. Within each time step, the 

YX ,  and Z  displacements, ),,( wvu , at any point 
),,( zyx  in a block can be represented using the 

approximation of a polynomial displacement function. In 
the original 3-D DDA, the block displacements function 
is equivalent to the complete first-order displacement 
approximation; constant strains and constant stresses are 
assumed within each block. 
When displacement functions are taken as nth-order 
functions: 
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which  can be expressed as: 
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Then 
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and the displacement variable vector { }D  is: 
 

{ } { }T
ppp wvuwvuwvuD ...222111=                        (4) 

 

where p3  is the number of unknown coefficients: 
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The high-order function is necessary in most engineering 
analyses since it can represent stress concentrations 
within one block. 

3. CONTACT THEORY 
Contact analysis in DDA involves contact detection and 
contact mechanics. The former is mainly concerned with 
the geometric aspects of the method. The aim is to detect 
the overlap of discrete blocks and determine the contact 
normal and contact type. The latter is mainly concerned 
with the physical aspects of the method.  

In the contact theory, it is necessary to determine the 
type of contact between any two blocks. The type of 
contact is important because it determines the 
mechanical response of the contact. There are many 
more types of contacts for 3-D blocks than for 2-D ones. 
In two dimensions, the contact types include corner-to-
corner, corner-to-edge and edge-to-edge; whereas 3-D 
contact types include vertex-to-vertex, vertex-to-edge, 
vertex-to-face, edge-to-edge, edge-to-face and face-to-
face. Beyabanaki et al. [19] presented a new contact 
calculating algorithm for contacts between two 
polyhedra in 3-D DDA. In this algorithm, all six type 
contacts in 3-D (vertex-to-face, vertex-to-edge, vertex-
to-vertex, face-to-face, edge-to-edge, and edge-to-face) 
are simply transformed into the form of point-to-face 
contacts. 

When a point-to-face contact candidate is found in the 
computation, the effect of the contact can be represented 
by applying two stiff contact springs in the normal and 
shear directions. The procedure of adding and removing 
stiff springs depending on the changes in contact states 
is known as ‘‘open-close’’ iteration. The global equation 
has to be solved repeatedly while selecting the lock or 
constraining positions.  

When a high-order displacement function is employed, 
block faces may deform and not remain planar; therefore 
existing 3-D DDA contact detection schemes cannot be 
used directly. To deal with this difficulty, the authors 
propose a simple technique. In this method, a curved 
surface is divided into areas and may be approximated 
with flat polygons (Fig. 1). 
 
 

 
 

 

Fig. 1. Division of a curved face into flat polygons (sub-faces) 



 

It is clear that the accuracy of current technique depends 
on the number of polygons. In fact, a curved face can be 
defined by some flat polygons named sub-faces here. 
Each sub-face can be considered as a plane in the 
original first-order 3-D DDA and its contact may be 
detected conventionally to calculate the contact sub-
matrices when the time step is small. 

As a result, because each block with curve faces are 
composed of some simplexes with flat faces, it is 
possible to do the volume integration by Shi’s simplex 
integration method. Formulation of normal and shear 
contact submatrices are presented as follows. 
 
3.1. Normal Contact Submatrices 
As shown in Fig. 2, suppose 1P  is the vertex of a sub-
face of face i  before the displacement increment and *

1P  
be the vertex after the displacement , 543 PPP  is the 
contact sub-face of face j , ),,( lll zyx  and ),,( lll wvu  
are the coordinates and small displacements of point 

)5,...,0( =lPl , respectively and n  be the normal vector 
of the sub-face.  

 
 

Fig. 2. Three-Dimensional contact (block i and a sub-face of 
block j) 

 

If ),,( 3333 zyxP , ),,( 4444 zyxP  and ),,( 5555 zyxP  are 
the vertices of the sub-face, then: 

4353 PPPPn ×=                                                              (6) 

The normal distance nd  from *
1P  to the sub-face is: 
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The displacement of points 1P   and 0P  in Equation (7) 
can be substituted with the following forms: 
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Hence, Equation (7) can be written as: 
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Therefore  
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l
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Using the penalty method, a mathematical spring with 
stiffness nK  is placed between point 1P  and the 
reference sub-face in the direction normal to the contact 
face. The potential energy of the normal spring is given 
by: 
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By minimizing the potential energy ncΠ , the following 
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to submatrices ],[],[],[ jiijii KKK and ][ jjK  in the global 
stiffness matrix: 
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calculated and then added to the global force vector: 

T
ni H

l
MKF ][][ −=                                                        (17) 

T
ni Q

l
MKF ][][ −=                                                        (18) 

 

3.2. Submatrix of Shear Contact 
As shown in Fig. 2, let 2P  be the projection of 1P  on the 
sub-face after the small displacement increment. Shear 
contact spring is applied to diminish the relative 
displacement of the two blocks when the shear force is 
smaller than the shear resistance of a discontinuity: 
 

CtgFF ns +< )(ϕ                                                           (19) 
 

Where sF  is the shear contact force; ϕ  is the friction 
angle of the discontinuity; and nF  is the normal contact 

force. Hence, the shear displacement along the 2
*

0 PP  is: 
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The potential energy of the shear spring is given by: 
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From Eq. (8) we have: 
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By expanding and minimizing the potential energy scΠ , 
the following matrices can then be added to the 
submatrices ],[],[],[ jiijii KKK and ][ jjK  in the global 
stiffness matrix: 
 

][][][][][ HHKCCKK T
si

T
isii −=                                  (23) 

][][][][][ QHKCCKK T
sj

T
isij −−=                               (24) 

][][][][][ HQKCCKK T
si

T
jsji −−=                               (25) 

][][][][][ QQKCCKK T
sj

T
jsjj −=                                 (26) 

And the 1
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ll  vectors ][ iF  and ][ jF  are 

calculated as follows and then added to the global force 
vector: 
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4. ILLUSTRATIVE EXAMPLE 
The formulation described in the previous sections has 
been programmed in VC++. To investigate it, an 
illustrative example is presented. 

As shown in Fig. 3a, this case involves a block falling. 
In this example, left side of block B is fixed, and block A 
falls down due to the gravity force. Blocks A and B are 

mmm 5.15.15.1 ××  and mmm 318 ×× , respectively. The 
values for the Poisson’s ratio and mass density for each 
block are 0.2, and 3600 kg/m3, respectively. Block A 
falls freely initially and after impacting, Block B bends. 
The deformation of the block system is shown in Fig 3a-
c. It indicates that using the sub-face technique, contact 
modeling is easily possible when block faces are not 
planar.  



 
(a) 

 

 
(b) 

 
 

 
(c) 

 
Fig. 3. a) Initial configuration of the block system, b) the 
deformation of the blocks after 950 steps, c) the deformation 
of blocks after 1350 steps. 

5. CONCLUSIONS 
Recently, 3-D DDA with high-order displacement 
functions is presented, but its contact theory is not 
studied. In this paper, contact theory for deformable 
blocks in high-order 3-D DDA and formulation of 
normal and shear contact forces are presented. When 3-
D DDA with high-order displacement functions are 
employed, block faces may deform and not remain 
planar. To solve this problem, sub-face technique is 
proposed; in this method, a curved surface is divided 

into some flat areas. The presented example shows that 
the derived formulations of stiffness and force matrices 
in High-order 3-D DDA due to normal and shear contact 
forces and the provided code work very well. 
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