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Abstract 

An innovative approach is presented for fracture analysis of composites subjected to 
impact loading. This approach is based on discontinuum concepts of the combined fi­
nite/discrete element algorithm for damage analysis of progressive fractured media. An 
anisotropic softening Hoffman failure criterion is implemented for determining the initiation 
and propagation of a crack. Integration of the flow rule is performed by the backward Eu­
ler method combined with a Newton-Raphson iteration scheme. The algorithm comprises 
various contact detection and contact interaction schemes to construct an efficient and reli­
able tool for the modelling of complex post failure phenomena. A set of numerical tests is 
provided to assess the performance of the algorithm. 

1 Introduction 

Gradually replacing conventional materials, composite laminates are now widely used in 
many applications involving dynamic loading such as machinery, pressure vessels, defense 
structures, vehicles, sport equipment and notably aerospace structures [1]. Industries such 
as the automotive, and recreational industries have also been placing increased reliance on 
for high performance composite materials. 

One of the major problems that affects the design and performance of composite mate­
rials for structural applications is their vulnerability to transverse impact which may cause 
substantial internal damage of the component due to matrix cracking, fibre failure and de­
lamination [2]. In general, according to the orthotropic laminated nature of composites, the 
failure modes may be classified into four different types: matrix failure, delamination, shear 
cracking, and erosion damage. There is, however, agreement that the most dominant causes 
of damage during impact are matrix cracking coupled strongly with complex mode delami­
nation mechanisms. These failure modes are accompanied by steep stress gradients and are 
usually encountered in regions such as free edges, ply termination, zone of delamination, 
and voids and holes. 

Recent developments of discrete element methods (DEM) have opened a new approach 
to modelling this behaviour based on discontinuum mechanics. In this study, a combined 
finite/discrete element algorithm is developed to predict initiation, propagation and inter­
action of fracture and delamination phenomena in composites. This algorithm could be 
used for the analysis of reinforced concrete and masonry structures, for which a progressive 
fragmentation process is predictable under the impact and explosive loadings. 

2 Discrete Element Modelling 

Consider a composite specimen subjected to an impact loading as depicted in Figure lao 
Early material cracks and interlaminar deb on dings are likely to appear near the position 
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of applied impact load. In a combined FE/DE method, the possibly fractured region is 
modelled using a discrete element mesh and the remainder of the specimen is modelled by a 
standard finite element mesh. It is also possible to model the whole structure with discrete 
elements; in which case the possibility of cracking is investigated throughout the struc­
ture. A combined mesh enables us to prevent unnecessary contact detection and interaction 
calculations which comprise a major part of the analysis time [3]. 

Figure 1: Discrete element modelling of a composite plate. 

Each ply or a group of similar plies is modelled by one discrete element (Figure 1b). Each 
discrete element will be discretized by a finite element mesh and may have nonlinear material 
properties or geometric nonlinearities (large deformations). The interlaminar behaviour of 
discrete elements is governed by bonding laws, including contact and friction interactions 
for the post delamination phase. Interactions between finite elements (not those which are 
used for DEM discretization) and discrete elements are modelled by transition interfaces. A 
transition interface is defined as a normal interface with very high bonding strengths which 
prevent debonding under all loading conditions. All interfaces, are firstly monitored against 
the delamination criterion. Once two layers are delaminated, the corresponding interface 
will still be capable of further contact and friction interaction. However, there will be no 
re-bonding after delamination. 

One important aspect of this type of modelling, which distinguishes it from other contact 
based delamination algorithms [4], is that it does not require any predefined interface 
element. Being free from the restrictions of interface elements provides major advantages: 
Firstly, there is no need for the nodes on different layers to match each other, which eases 
the way in which data is prepared. This is essential in defining the transition interfaces. 
Secondly, in progressive cracking, we may end up with new nodes, edges and boundaries that 
could destroy the compatibility required for these interface elements. Further discussions 
about this method are out of scope of this paper and the reader is referred to [5]. 

Anisotropic Strength Criteria 

Most available strength information is based on an uniaxial stress state, while practical ap­
plications invariably involve at least biaxial loading. Unlike isotropic materials, the strength 
of composites is typically directionally dependent. Furthermore, failure of some plies of a 
laminated structure need not necessarily constitute rupture of the total laminate since mul­
tiple layers may provide other sustaining load paths [6}. 

Several of the anisotropic strength or failure theories are extensions of isotropic yield 
criteria. Hill (1950) generalized von Mises' formulation to include anisotropy. A variation of 
maximum stress theory for unidirectional composites was proposed by Stowell and Liu [7] 
in which the failure stress of the fibres was taken as the limiting strength of the lamina in 
the fibre direction, while the limiting transverse and shear stresses are those of the matrix. 
Hoffman [8], in 1967, altered Hill's criterion to provide for unequal tensile and compressive 
strengths by introducing linear terms in the functional form. Attempts to develop a strength 
theory which is invariant with respect to the coordinate system were led to the development 
ofthe Tsai-Wu criterion in 1971 [9]. Lack of accurate multiaxial material parameters usually 
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leads to use of simplified version of this criterion, i.e. the Hoffman criterion. 

3.1 Hoffman Anisotropic Yield Criterion 

According to the Hoffman criterion, a geometrical yield surface is constructed from three 
tensile yield strengths (jiiT, three compressive yield strengths (jiiC, and three shear yield 
strengths (jij, i f. j. It may be defined as : 

(1) 

where the projection matrix P, and the projection vector p are defined based on the nine 
material yield strengths and a normalised yield strength (j, 

)T0'=( 0'11 0'22 0'33 0'12 0'23 0'31 (2) 
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pT = [ au a22 a33 0 0 o ] (4) 

where 

(5) 

3.1.1 Integration of the Rate Equation 

The key issue of computational plasticity models is often the integration of the flow rule in 
a finite time step. For this purpose, the backward Euler method coupled with the Newton­
Raphson iterative scheme is used; which has been found to be generally stable and efficient 
[10]. For the lh load step, the additivity postulate is used for strain decomposition, 

A£.j = 80£.;1 + Af:!/ (6) 

Applying the linear elastic stress-strain relationship and the associated flow rule, 

oip
A£.j = C 800'j + A>'j 00" (7) 

J 

where A>'j is the plastic multiplier. The derivative of ip (1) with respect to O'j is the flow 
vector a, 
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Figure 2: Stress return algorithm based on the Euler backward method. 

{)~ 
a -;:;--=PaUj+Pa (8) 

uUj 

Rewriting equation (7) with the aid of CUj-l - €j~l = 0, will eventually result in 

(C + LlAjPa)(Ui-l + Lluj) (€i~l + Ll€j Ll,\jPa) = 0 (9) 

Then, the final stress at the end of the iteration is solved from this relation (Figure 2) 

(10) 

Uj = (C + Ll'\jPa)-l (€i~l + Ll€j Ll,\jPa) (11) 

which can be rewritten in terms of the D matrix 

Uj D(I + Ll'\jDPa)-l (€i~l + Ll€j Ll,\jPa) (12) 

Linearization of ~ with respect to Ll'\ gives, 

(13) 

Hence, the derivative of 4.i with respect to Ll'\j is now needed. For hardening or softening 
materials, 4.i is also a'function of the hardening/softening parameter, K. Therefore, 

(14) 

The first part of the first term is the flow vector a, and (12) is used for the second part 

::~, = -D(I + Ll'\jDPa)-l [D(I + LlAjDPa)-l P a (€i~l + Ll€j - LlAjPa) + Pa] 
} 

(15) 
To evaluate the second term, an isotropic strain hardening law is adopted [11] 

(16) 
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(17) 

and from equation (1) 

8~
-=-20' (18)
80' 

80' =H 
8", 

( 19) 

~ = 
86.Aj 

f!. [A 6.Aj P 8Uj]V"3 + A a o 86.Aj 
(20) 

Therefore, from (14), one gets 

(21 ) 

1 

where A = (aTa)"2 and H is the hardening/softening slope. Box 1 summarizes the stress 
return algorithm for the Hoffman yield surface with isotropic hardening/softening. 

3.1.2 Consistent Tangent Matrix 

To evaluate the consistent tangent matrix, the total strain at the end of load step j may be 
expressed as, 

(22) 

With the relations for incremental elastic and plastic strains, the stress-strain relationship 
can be written as 

(23) 

Taking the time derivative of (23) results in 

(24) 

or in terms of the D matrix, 

iT· = D€.· - ~'D 8~ - 6.A·D82~ iT· (25)
1 J 1 8u i J 8u; 1 

The last term in (25) vanishes for infinitesimal increments, which results in the classical 
elastoplastic tangent stiffness matrix. For finite loading increments, however, the contri­
bution of this term becomes significant. Re-arranging (25) with the aid of 881: = a and 

8 
2

40 Pl' 
] 

au2 = 0, resu ts m 
] 

(26) 

Q =D (1 + 6.AjDPo )-l (27) 

To evaluate ~, the consistency condition is considered 

ci>=aTiTj+BAj=O (28) 

where B is the second term in (14), 
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Box 1. Stress return algorithm for Hoffman yield surface, 

• 	 Compute trial stress (Elastic prediction phase) 

(Ttr = (Tj 1 + DA€ 

• 	 Compute yield function for (Ttr 

tr<p = (J'!JJ - 0'2 (1) 


tr
• IF <p :::; 0 (Elastic update) 
(Tj = (Ttr 

• 	 ELSE (Elastoplastic update) 

Iterative loop for Plastic correction phase 

Compute stress at point of return (c) 

(Te = [I + ADPar 1 
[(Ttr - A,XDPa ] (12) 

Compute current yield stress and softening modulus 
-C() - pI HH ,(J' 	 Ii = (J' + teJJ 

Compute current yield function 


<pC = (J'~JJ - (O' C )2 (1) 


IF l<P c 
/ (O' C )21 :::; TOLER 


(Tj = (TC 


ELSE 

a = ::c = Pa(Tc + Pa 


A = (aT a) ~ , t~~J =I: jiA'xA (16) 


::;... 	 from (15) 

FIRST =aT :f:.. 

SECOND =2jiO'H [A+ ~aPa::1JJ (21) 


A \k+l _ A \k 4>C (13)
u./lj 	 - u./lj - FIRST+SECOND 

Next iteration 


ENDIF 


• ENDIF 

(29) 

By premultiplying (26) by aT and then substituting into (29), ~ may then be solved for 

, aTQ,
,X, - € ' 	 (30)

J - B + aTQa J 

and when substituting back into (26) yields, 

&j = Dct€j (31) 

where the consistent tangent matrix, D et , is given by 

TQ
aa	 ] (32)Dct=Q [1- B+aTQa 
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For the material fracture, in concept, normal hardening plasticity procedures can be applied 
to softening materials by simply introducing a softening rather than a hardening equiv­
alent stress - equivalent plastic strain relationship. In practice, however, there are many 
difficulties; a number of which are still unresolved. The most important one is the mesh 
dependency of the finite element analysis, in which by continually refining the mesh, we can 
make the crack propagate at lower and lower loads[12]. 

One model that provides a simple approach to localization zone simulation is the Rankine 
softening plasticity model and in this work a bilinear local softening model is adopted [13]. 
The position of the stress point on the softening branch, or the value ofthe fracture indicator, 
could be used as a measure, being compared to a predefined maximum value, to quantify 
the level of material damage for different regions. 

In contrast to simple failure criteria, the interactive Tsai-Wu or Hoffman criteria do 
not provide any information regarding the crack direction. Therefore, a crack direction 
algorithm should be used to determine material crack directions once the failure criterion 
is satisfied. A simple, though sufficiently accurate, method is based on the assumption that 
the material cracks are only formed along or perpendicular to the fibre direction. 

Another method for determining the crack direction is the so called acoustic tensor 
method, which was initially established for wave propagation problem in solids. In this 
method, it is proved that the discontinuity plane satisfies the acoustic tensor equation, 

detA = det (n . D ct . n) =0 (33) 

where A is often referred to as the acoustic or characteristic tensor, D ct is the elastoplastic 
consistent tangent matrix defined by (32), and the orientation of the discontinuity plane is 
described by the normal n. The closed form solution may only be derived for two dimensional 
problems and a simple iterative approach is required to solve equation (33) for n. 

(a) Early fractures. (b) Threshold of collapse 

Figure 3: Fracture patterns of a 120-degree bend subjected to inward loading. 
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5 N umerieal Results 

5.1 Fracture Analysis of a Composite Bend 

A 120-degree [On, 90n, On] composite bend subjected to downward concentrated loading on 
its top end is considered. Each laminate is composed of Fiberite T300/1034-C graphite 
epoxy unidirectional tape (Table 1). Figure 3 represents the fracture patterns for two 
different stage of the loading. It is clearly observed that a progressive fragmentation process 
is localized within the weak mid layer around the supporting base of the bend. 

Table 1: Material properties for T300/1034-C graphite epoxy. 

Err = 146800MPa Gu = 6184M Pa 
Eyy = 11400MPa Gyz =4380M Pa 
Vry = Vyz = 0.3 p 1.55~ 
X t = 1730M Pa Xc 1380M Pa 
Yt = 66.5M Pa Yc 26.8MPa 

S = 133.7MPa 

5.2 Impact Loading of a Composite Plate 

A numerical simulation is undertaken to assess the performance of the method for dealing 
with progressive fracture and debonding phenomena in a laminated composite plate which 
is subjected to a high velocity impact at its centre. The impact loading is simulated by a 
triangular load applied from 0 to 5 J-lsec with a peak force of 1 kN. Because of symmetry, 
only one quarter of plate is modelled. Also, only the central region of this model is meshed 
by a DE mesh (See Figure 4a). Material properties and other necessary information are 
given in Figure 4b) [14]. 

Model size 0.0762 x 0.0508 x 0.00444m 

DE region = 0.050 x 0.035m 


Ply layout [90,0,90,0,90] 


FE Mesh 

=152.4e3M Pa Eyy = 10.7e3M Pa 
DE Me,h v 0.35 p = 1.55e3{f;f 

X t 2772M Pa Xc 3100.0MPa 
Yt = 79.3M Pa Yo = 231.0MPa 

S = 132.8MPa 

Figure 4: FE/DE mesh of the composite plate. 

Vertical displacement responses of individual layers are shown in Figure 5. The clear 
discontinuities of the contours in certain parts of the model near the loading region mark 
the material fracture patterns. Matrix cracking has caused the cracks to be formed along 
the fibre direction in each layer. 

CONCLUSIONS 

An anisotropic softening Hoffman failure criterion is adopted within a combined finite/ discrete 
element method, which has proved to be an efficient algorithm for dealing with multi-fracture 
and fragmentation processes. In addition to considering the potential pre-delamination con­
tacts, it is also essential to take into account the contact and friction interactions for post 
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Figure 5: Vertical displacement and fracture patterns of different layers. 
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debonding or fracture behaviour of composites. A major advantage of the method is that it 
does not require any predefined interface elements, which are considered inappropriate for 
efficient computational modelling of combined progressive multi-fracture and delamination 
analysis. 
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