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A novel approach, based on the discontinuum concepts of the Discrete Element Method, 
is presented for fracture and delamination analysis of composites subjected to impact 
loading. A combined finite/discrete element algorithm is developed for damage analysis 
of the progressive fracturing and fragmentation behaviour which is observed in composite 
structures. The algorithm comprises various contact detection and contact interaction 
schemes to construct an efficient and reliable tool for the modelling of complex post failure 
phenomena. An anisotropic softening Hoffman failure criterion is adopted for specifying 
the initiation of a crack. A set of numerical tests is provided to assess the performance 
of the algorithm. 

INTRODUCTION 

Gradually replacing conventional materials, composite laminates are now widely used in 
many applications involving dynamic loading such as machinery, pressure vessels, defense 
structures, vehicles, sport equipment and notably aerospace structures [1]. Although 
today's aircraft structures are still predominantly constructed from lightweight aluminium 
alloys, comparison of the proportions of materials used in the design of aircraft structures 
during the last two decades would indicate an increasing trend towards usage of polymeric 
based composite materials. It is also widely accepted that there exists a significant future 
prospect for a substantial increase in the contribution of advanced composite materials to 
the design of new aircraft. Industries such as the automotive, and recreational industries 
have also been placing increased reliance on for high performance materials [2]. 

One of the major problems that affects the design and performance of composite ma­
terials for structural applications is their vulnerability to transverse impact which may 
cause substantial internal damage of the component due to matrix cracking, fibre fail­
ure and delamination. By examining the numerous contributions to this area of research 
[3, 4, 5, 6], it is evident that impact loading of composites represents a highly complex 
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[3, 4, 5, 6], it is evident that impact loading of composites represents a highly complex 
phenomenon involving of several interacting processes. 

Figure 1 represents the progressive fracturing, delamination and fragmentation phe­
nomena in a typical composite specimen subjected to impact loading. This schematic 
representation, is perhaps only relevant to the failure observed in high velocity impact. 
For low velocity impact, extensive fragmentation is unlikely and material fracture and 
delamination will be the dominant modes of failure. 

Fragmentation 
Material fracture 

----,---------------­

Delamination 

Figure 1: Progressive fracturing, delamination and fragmentation in a typical composite 
specimen subjected to impact loading. 

In general, according to the orthotropic laminated nature of composites, the failure 
modes may be classified into four different types : matrix failure, delamination, shear 
cracking, and erosion damage. There is, however, agreement that the most dominant 
causes of damage during impact are matrix cracking coupled strongly with complex mode 
delamination mechanisms [7]. These failure modes are accompanied by steep stress gra­
dients and are usually encountered in regions such as free edges, ply termination, zone of 
delamination, and voids and holes. 

The three flexural modes are not always activated in an impact loading of composites. 
If the projectile has sufficient energy, it may penetrate into the laminate and may cause 
a large front surface erosion without activating other behaviours [6]. 

Recent developments of discrete element methods have opened a new approach to mod­
elling this behaviour based on discontinuum mechanics. In contrast, most computational 
simulations to date have employed continuum based finite elements to evaluate the ini­
tiation and propagation of delamination. Similar to other material strength theories, 
delamination initiation could be basically treated within the theory of plasticity. It is, in 
fact, a material model for the thin adhesive layer, although it is usually referred to as an 
out-of-plane property of composite layers. 

In early simulations, a simple criterion based on the comparison of normal stress to 
a maximum cohesion value was used. Later, more complex models were developed for 
different types of laminates. In the early eighties, continuum elasticity was frequently 
used to formulate the governing equations for laminate composites [8, 9]. The main 
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disadvantage of these schemes was their restriction to linear geometry of laminates, and 
many of them were only formulated for dealing with free edge delaminations [10]. 

The next step to a more rational model was achieved by development of contact in­
teraction algorithms. Liu et al [7] used a contact analysis for modelling the interface be­
haviour of laminate composites containing multiple delaminations. In a similar scheme, 
Stavroulakis et al [11] employed a contact algorithm and a Coulomb friction law to study 
the material inclusion problem in composites. In most of these studies, the Chang-Springer 
delamination failure criterion was used. This model was proposed by Chang and Springer 
[12J in their work on wooden bends and then was successfully employed in composite 
applications. Fracture mechanics concepts have been widely adopted in the development 
of crack propagation algorithms to model the extension of delamination. Several criteria 
have been proposed to include the effects of individual or mixed modes of fracture [5J. 

It should be noted that in a real situation, delamination failure is always accompanied by 
inplane failures, including matrix and fibre fractures. Therefore a comprehensive study 
of the behaviour of composites subjected to low or high velocity impacts, requires a 
comprehensive scheme which should be capable of modelling progressive in and out of 
plane fracturing. The traditional elasticity and fracture mechanics methods are applicable 
in situations dealing with a low-fractured area. However in a highly fractured region, 
dis continuum based mechanics has been found to be more appropriate. The treatment 
of these classes of problems is naturally related to discrete element concepts, in which 
distinctly separate material regions are considered which may be interacting with other 
discrete elements through a contact type interaction [13J. 

In this study, a combined finite/discrete element algorithm is developed to predict initi­
ation, propagation and interaction of fracture and delamination phenomena in composites. 
In the following, after a general review of the discrete element method, contact interac­
tion formulations will be discussed in detail. Then the crack (material and interlaminar) 
initiation criteria will be described and certain numerical issues will be addressed. A brief 
review of crack propagation phenomena will be introduced which includes a discussion 
on softening behaviour and energy release rate. The ability of the model to correctly 
simulate this behaviour will be assessed by solving a set of test cases. 

DISCRETE ELEMENT MODELLING OF 
COMPOSITE LAMINATES 

It has been shown that delamination and material fracture in composites subjected to low 
or high velocity impact loadings are progressive phenomena which may rapidly propagate 
throughout the component. This might result in the creation of new totally separated 
zones, which interact with their surrounding regions. Consequently, a comprehensive 
scheme is required to monitor the fracturing process and to effectively model both indi­
vidual and interaction behaviour. Recent developments of discrete element methods have 
prepared the ground for a new approach to modelling this behaviour based on discontin­
uum mechanics. 

The traditional approach to the simulation of stress distributions in arbitrary shaped 
components under possible nonlinear geometric and material conditions is by finite ele­
ment techniques. However, the traditional finite element method (FEM) is rooted in the 



concepts of continuum mechanics and is not suited to general fracture propagation prob­
lems since it necessitates that discontinuities be propagated along the predefined element 
boundaries. The corresponding elasticity and fracture mechanics concepts are applicable 
only in situations dealing with a single crack or a low-fractured area without any fragmen­
tation. In contrast, the discrete element method (DEM) is specifically designed to solve 
problems that exhibit strong discontinuities in material and geometric behaviour [14J. 
The discrete element method idealizes the whole medium into an assemblage of individ­
ual bodies, which in addition to their own deformable response, interact with each other 
(through a contact type interaction) to perform the same response as the medium. [13]. 
A far more natural and general approach is offered by a combination of discrete element 
and finite element methods. 

Consider a composite specimen subjected to an impact loading as depicted in Figure 2. 
Early material cracks and interlaminar debondings are likely to appear near the position 
of applied impact load. As the analysis advances, two separate regions could be distin­
guished. The first one is a highly fractured and delaminated region, and the second is the 
remainder of the body which presumably contains no delamination or fracture patterns. 
The fractured region is usually formed in the vicinity of the impact loading and may 
comprise further separate responses. 

A computationally efficient elastoplastic analysis can be performed by simple shell or 
solid elements to determine the individual regions according to some effective stress or 
strain criteria. The predicted fractured/delaminated regions will then be examined in 
the later stages of the analysis through the developed combined finite/discrete element 
algorithm. The interface boundaries will be further extended if either the material fracture 
or the interlaminar debonding has reached the boundaries of the DEM region. 

o Possible fractured region 

Impact loading 

Figure 2: Composite specimen subjected to impact loading. 

Figure 3 shows a typical section of the above composite specimen (here, a quarter of a 
plate). In a combined FE/DE method, the possibly fractured region is modelled using a 
discrete element mesh and the remainder of the specimen is modelled by a standard finite 
element mesh. It is also possible to model the whole structure with discrete elements; 
in which case the possibility of delamination is investigated throughout the structure. 
A combined mesh enables us to prevent unnecessary contact detection and interaction 
calculations which comprise a major part of the analysis time. It is worth noting that 
even by modelling the whole structure with discrete elements, we are still using a com­
bined finite/discrete element approach, owing to the fact that finite elements are used for 
modelling the deformable behaviour of individual discrete elements. 



Figure 3: Discrete element modelling of a composite plate. 

Each ply or a group of similar plies is modelled by one discrete element. Each discrete 
element will be discretized by a finite element mesh and may have nonlinear material 
properties or geometric nonlinearities (large deformations). The interlaminar behaviour of 
discrete elements is governed by bonding laws, including contact and friction interactions 
for the post delamination phase. 

Interactions between finite elements (not those which are used for DEM discretization) 
and discrete elements are modelled by transition interfaces. A transition interface is 
defined as a normal interface with very high bonding strengths which prevent debonding 
under all loading conditions. 

All interfaces, are firstly monitored against the delamination criterion. Once two layers 
are delaminated, the corresponding interface will still be capable of further contact and 
friction interaction. However, there will be no re-bonding after delamination. 

One important aspect of this type of modelling, which distinguishes it from other contact 
based delamination algorithms [15,16], is that it does not require any predefined interface 
element. Being free from the restrictions of interface elements provides major advantages: 
Firstly, there is no need for the nodes on different layers to match each other, which eases 
the way in which data is prepared. This is essential in defining the transition interfaces. 
Secondly, in progressive cracking, particularly material fracturing, we may end up with 
new nodes, edges and boundaries that could destroy the compatibility required for these 
interface elements. 

Material fracture may result in the creation of new discrete bodies which are in con­
tact and friction interaction with neighbouring bodies. A special remeshing algorithm is 
adopted to maintain compatibility conditions in newly fractured regions. Figure 4 rep­
resents the two dimensional remeshing algorithm which comprises four steps: splitting 
the element, separating the failed nodes, creating new remeshing nodes and dividing un­
cracked elements to enforce compatibility at new nodes. Adopting this local remeshing 
algorithm will provide a relatively finer mesh in the fractured region which improves the 
finite element approximation of the analysis. To perform this remeshing technique in 
three dimensional analysis~ further consideration is required. Employing a stabilized pen­
tahedral element, a similar scheme can be adopted for remeshing along the triangular 
faces of the element, and a simple vertical crack across the thickness of the pentahedral 
element can effectively model the creation of a new three dimensional crack face. 
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Figure 4: Discrete element fracturing algorithm. 

3 EXPLICIT DYNAMIC ANALYSIS 

3.1 Governing equations 

The standard variational (weak) form of the dynamic initial/boundary value problem 
is taken as the point of departure. Let n represent the body of interest and r denote 
its boundary. In a standard fashion the boundary is assumed to consist of a part with 
prescribed displacement lli, rUi' and a part with prescribed traction force fiurf 

, r0-,' In 
addition it is assumed that a part rc may be in contact with another body. By denoting 

V: = {hu: hUi = 0 on I\'i} (1) 

as the space of admissible variations, the variational form of the dynamic initial/boundary 
value problem can be expressed as 

(2) 

where 

(3) 

M(hu,u) = Jn hu· pudv (4) 

Wext(hu) = J hu· jbodYdv +J hu· rurfda (5) 
n r <r 

(6) 


denote, respectively, the virtual work of internal forces, the inertial forces contribution, 
the virtual work of external forces and the virtual work of contact forces. Here u is 



the Cauchy stress tensor, E is the strain tensor, U is the displacement vector, while g 
represents the contact gap vector. Observe that in the present formulation the contact 
terms correspond to a penalty formulation of contact interaction. 

3.2 FE discretisation and time integration 

The standard finite element discretisation of the variational form (2) results in a discrete 
set of algebraic time dependent equations which may be expressed, in matrix form, as 

(7) 

where t is the time, lnt(u, t) the internal force vector, rxt(t) the external force vector, 
ron(t) the contact force vector and M denotes the mass matrix. 

The velocity v = it and acceleration ii = v are approximated by using the central 
difference method with variable time steps. Letting a variable with subscript n denote 
the numerical solution at time station t = tn, we have 

(8) 

Un - Un-l 
V n -l/2 = --.-- (9)

6.tn - 1 

(10) 

(11 ) 

(12) 

Furthermore, the mass matrix is assumed to be diagonal, so as to avoid solving a set 
of simultaneous equations at each timestep. Making use of the above approximations, we 
obtain for the i-th degree of freedom, 

(13) 

where mi is the i-th diagonal term of M. Time incrementation is then readily performed 
by evaluating displacement, velocity and acceleration using eqns (8), (10) and (11), re­
spectively. 



4 CONTACT INTERACTION 

Once the possibility of contact between discrete elements is detected (by a contact detec­
tion algorithm), contact forces have to be evaluated to define the subsequent motion of 
the discrete elements from the dynamic equilibrium equation. In a penalty method, pen­
etration of the contactor object is used to establish the contact forces between contacting 
objects at any given time. 

Attention is now focused on a single boundary node in contact to formulate the residual 
contribution of contact constraint, rC. The component form of the virtual work of the 
contact forces associated to the contact node is then given by: 

bwcon 
( bu) = II. bgk = II. ~~~ bui (14) 

t 

where k = n, t and i x, y, and ui is the i-component of the displacement vector at node 
S, g = (gn, gt) is the relative motion (gap) vector, and r is the contact force vector over 
the contact area A C , 

(15) 

where a is the penalty term matrix, which can vary for normal and tangential gaps and 
even between single contact nodes. The corresponding recovered residual force is then 
evaluated as: 

(16) 

The partial derivative part of equation (16) define the direction and distribution of normal 
and tangential bonding forces. 

The possible normal and tangential gaps for each contacting couple are evaluated by 
monitoring the coordinates of contacting couple nodes in each time step. Then by pro­
jecting the coordinates in the current and previous timesteps to a reference configuration, 
the possible gaps are calculated (Figure 5). 

Target segment 

a) Before contact b) Possible normal and tangential gaps 

Figure 5: Normal and tangential gaps. 



Special precautions should be taken to satisfy momentum conditions and to consider 
different geometry shapes of contact and target bodies (concave and convex DE bound­
aries). The calculated contact force has to be distributed to the target and the contactor 
nodes. 

5 DELAMINATION INITIATION 

Several criteria exist that can be used in prediction of the initiation of delamination in 
composite structures [7, 17]. Reasonable results can be achieved by employing maxi­
mum normal stress or strain criteria, but for obtaining more rational results, some other 
more sophisticated interactive criterion should be adopted. It is widely accepted that 
the Chang-Springer criterion can be properly used for predicting the initiation of delam­
ination. Three dimensional representation of this criterion in local axes is defined by 
[12]: 

('Z2) + (O'x/ + O'YZ 2) = d2 { d < 1 no failure (17)
N2 T2 d ;:::: 1 failure 

where Nand T are the unidirectional normal and tangential strengths of the bonding 
material, respectively. 

Once the initial failure is predicted, a further criterion should be introduced to simulate 
the growth of the local damage as the loading continues. 

6 MATERIAL MODEL 

The imminence of material failure is monitored by the orthotropic Hoffman criterion [9]. 
According to the Hoffman criterion, a geometric yield surface is constructed from three 
tensile yield strengths O'T, three compressive yield strengths O'c, and three shear yield 
strengths O's. It may be defined as : 

(18) 


where the projection matrix P, and the projection vector p are defined based on the nine 
material yield strengths and a normalised yield strength jj (see Schellekens et al. [18]), 
and /'\, is a softening/hardening parameter. 

The additivity postulate of computational plasticity is used to formulate the rate form 
of the stress return algorithm. The integration of the flow rule in a finite step is then 
performed by the backward Euler method coupled with the Newton-Raphson iterative 
scheme (1]. 

CRACK PROPAGATION 

There is no immediate need for a crack propagation algorithm between discrete elements in 
a discontinuum mechanics scheme. Having employed a standard central difference explicit 
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scheme in the dynamic analysis of composites, in each time step a possible configuration 
is predicted from the dynamic equilibrium equations, which are formed by considering the 
internal forces calculated from contact/delamination interactions in the previous timestep. 
Therefore the current configuration offers a possible crack propagation distribution which 
has to be modified by the new interactions in the current timestep. 

Once the delamination initiation criterion is satisfied, an interlaminar crack is formed. 
Forming a crack is followed by releasing energy and redistributing the forces which caused 
the initiation of the crack. If this procedure happens immediately after occurrence of a 
crack, it will lead to inappropriate energy release, and more importantly, to results that 
strongly depend on the size of the elements used in the analysis. 

7.1 Strain softening 

The main concept, borrowed from fracture mechanics, is the assumption that the fracture 
energy release G j, is a material property rather than a local stress-strain curve. The 
implementation of the G j = Consi. concept, leads to the important conclusion that 
the local strain-softening law depends on a fracturing zone with characteristic length, Ie, 
depending on the finite element mesh. 

A bilinear local softening model (the Rankine softening plasticity model) is adopted 
in this study to account for release of energy and redistribution of forces which caused 
the formation of a crack. It may properly avoid the mesh dependency of the results by 
introducing a length scale into the softening material model [19}. 

o Fracture Indicator 

G f : FrdCLUre Energy 

e £ 
u 

Figure 6: Fracture energy softening model. 

The fracture energy release is defined as the integral of the area under the softening branch 
of the stress-strain curve 

(19) 

where it is the tensile strength and tu and tt are the tensile fracture and ultimate strains 
respectively, and Ie is the localisation bandwidth. In general, Ie is contained within one 
element and in 2-D is defined based on the area of the fractured element, A, IPfll 

(20) 




The softening modulus is then defined as 

(21) 


8 NUMERICAL RESlJLTS 

8.1 Dynamic buckling analysis of a composite beam 

An implicit approach combined with a fracture mechanics crack propagation algorithm 
2.0 

was used by Grady et al [211, to perform a dynamic delamination buckling analysis in 
a composite laminate with an initial interlayer crack subjected to impact loading. The 
specimen geometry and impact loading are defined in Figure 7. The material properties 
of this clamped be;:anlike unidirectional [On] graphite epoxy laminate are given in Table 
8.1. Grady et al [J1'1, predicted that a first mode of delamination buckling is likely to 
occur approximately 190 flS after the impact event begins. 

Force 

800N 

local delamination 
Time 

200 Ils 

.254cm 

50.8 em 

Figure 7: Specimen geometry and impact loading. 

A finite element mesh with plane stress triangles (3700 nodes and 3800 elements) was 
used to model this problem. Four layers of discrete elements are used through the thick­
ness. The lowest layer is predicted to experience a local delamination buckling. The 
critical timestep which ensures the stability of the scheme is restricted to O.Olflsec. and 
as a result, 50,000 timesteps are required for a full dynamic analysis. 

The results of a linear uncracked analysis without considering delamination, and a full 
delamination analysis for the midpoint vertical displacements, are compared in Figure 8. 
It is readily concluded that the global behaviours of the beam in both cases are similar, 



Table 1: Material properties for T300j1034-C graphite epoxy. 

Exx = 146800MPa Gxx = 6184MPa 
Eyy = 11400MPa Gyz = 4380MPa 
Vxy Vyz = 0.3 p = 1.55~ 
X t = 1730MPa Xc = 1380MPa 
Yt = 66.5MPa Yc = 26.8MPa 

S = 133.7MPa 

and that the local delamination buckling does not greatly affect the global response of 
the beam. 

Figure 9 shows the time history results of vertical displacement and velocity of two 
adjacent nodes at the middle and at the tip of the initial crack. According to Figure 
9a, delamination at the middle of the crack starts at about t 150ps and increases 
rapidly after t = 175ps, therefore the possible local buckling is predicted to occur between 
t = 175ps to t = 200ps. The small difference between the two curves in this figure 
indicates that the crack is extended only by a small amount at the end of loading. The 
same conclusion may be deduced from the comparison of velocities in Figure 9. 
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Figure 9: Time history responses of two nodes on opposite sides of the initial crack, 
a) Vertical displacements, b )Vertical velocities. 



8.2 Impact loading of a composite plate 

A numerical simulation is undertaken to assess the performance of the method for dealing 
with progressive fracture and debonding phenomena in a laminated composite plate which 
is subjected to a high velocity impact at its centre. The impact loading is simulated by a 
triangular load applied from 0 to 5 Jisec with a peak force of 1 kN. Because of symmetry, 
only one quarter of plate is modelled. Also, only the central region of this model is meshed 
by a DE mesh. Therefore, the possibility of fracture and delamination is only investigated 
in this region (See Figure 10). Material properties and other necessary information are 
given in Table 2 [21]. 

FE Mesh 

Figure 10: FElDE mesh of the composite plate. 

Table 2: Material properties for T800/P2302-19 graphite resin. 

Model size 0.0762 x 0.0508 x 0.00444m 

DE region 0.050 x O.035m 


Ply layout [90,0,90,0,90] 

Exx 152.4e3MPa Eyy = 1O.7e3MPa 

K v = 0.35 p = 1.55e3;J 
X t 2772MPa Xc = 3100.0MPa 
Yt = 79.3MPa Yc = 231.0MPa 

S = 132.8MPa 

Vertical displacement responses of individual layers are shown in Figure 11. The clear 
discontinuities of the contours in certain parts of the model near the loading region mark 
the material fracture patterns. Matrix cracking has caused the cracks to be formed along 
the fibre direction in each layer. 

Figure 12 illustrates the debonding patterns at different interfaces. It is found that 
the delamination patterns are mainly formed close to the material cracks. These figures 
depict only the DE part of the whole mesh. 



Figure 11: Vertical displacement and fracture patterns of different layers. 



Figure 12: Delamination patterns at different interfaces of layers. 



9 CONCLUSIONS 

The combined finite/discrete element has proved to be an efficient algorithm for deal­
ing with multi-fracture and fragmentation processes, which frequently arise from impact 
loadings on composite structures. It is also shown that the delamination behaviour in 
composite specimens can be effectively modelled by this method. The algorithm com­
prises various contact detection and contact interaction schemes to construct an efficient 
and reliable tool for the modelling of complex post failure phenomena. In addition to 
considering the potential pre-delamination contacts, it is also essential to take into ac­
count the contact and friction interactions for post debonding or fracture behaviour of 
composites. A major advantage of the method is that it does not require any prede­
fined interface elements, which are considered inappropriate for efficient computational 
modelling of combined progressive multi-fracture and delamination analysis. 

An anisotropic softening Hoffman failure criterion is adopted for specifying the initiation 
of a crack. A local remeshing scheme is introduced for geometric modelling of the cracks, 
which plays an important role in avoiding the excess distortions of the finite elements in 
the vicinity of cracks. The algorithm allows for both nodal separation and splitting a 
cracked element. The imminence of a bonding crack is predicted by the Chang-Springer 
criterion. A bilinear softening model is adopted for both matrix and interlaminar cracking 
description to prevent the mesh dependency of the results. 
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