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bstract.

novel approach, based on the discontinuum concepts of the Discrete Element Mcthod,

presented for dynamic crack propugation analysis. The method is capable of analysing
progressive fracturing and fragmentation behaviour as well as potential post cracking
teractions causcd by the ncwly crcaled crack sides and segments. The method is ap-
pl:cabie for meshed polygon systems in which cach individual face may be considered as

ba polential contactor in the contact deteetion procedure. The imminence of a material
iy ”cmcl» is monilorced by an anisotropie Hoffman modcl. To avoid the mesh dependency of
:)the results, a bilincar local softening model is also adopted in this study to account for
R release of encryy and redistvibution of forces which caused the formation of a crack. A
%peciaf remeshing mcthod has been developed to geometrically model an individual crack
A by splitting the element, scparating the failed node, creating new nodes and dividing the

‘gze:ghbourm“; clements to preserve the compatibility conditions. It also plays an important
le in aveiding cxcess distortions of the finite clements in the vicinity of cracks. Scveral
g numerical simulations have been performed lo asscss the performance of the proposed al-

b gorithm which covers a varicty of benchmark finite clement tests, standard ezperimental
data and practical applications.
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Introduction

The phenomenon of failure by catastrophic crack propagation poses problems in all appli-
cations, particularly in the aerospace industry in which safety is of paramount iinportance,
but where over-design carries heavy penalties in terms of excess weight. Therefore, the
development of reliable models for determining the failure behaviour of growing advanced
materials are vitally nnportant.

Numerical simulation of arbitrary shaped components is Lradrtionally performed by the
finite element techniques, which is rooted in the concepts of continunm mechanics and
‘not suited to general fracture propagation and fragmentation problems. In contrast,
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Figure 1: A Combined FE/DE model
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the discrete element method (DEM) is specifically designed to solve problems that ex-
hibit strong discontinuities in material and geometric behaviour [1]. The discrete element
method idealizes the whole medium into an assemblage of individual bodies, which in
addition to their own deformable respouse, interact with each other (through a contact
type interaction) to capture the characteristics of the discontinuum and to perform the
same response as the medium itself.

In this paper, some of the main aspects of crack initiation/propagation procedures by
DEM are discussed. Testing some of the benchmark and practical problems will help in
verifying the performance of the proposed algorithm

2 Discontinuum Modelling

Figure 1 shows a typical combined IFI3/DE model for a plate subjected to an impact
loading. In a combined FE/DE method, the (predicted) fractired region is modelled using
a discrete element mesh and the rermainder of the specimen is modelled by a standard finite
element mesh. A combined mesh enables us to prevent unnecessary contact detection and
interaction calculations which comprise a major part of the analysis time [2].

Material fracture may result in the creation of new discrete bodies which are in contact and
friction interaction with neighbouring bodies. A special remeshing algorithm is adopted
to maintain compatibility conditions in newly fractured regions.

From the computational point of view, the discrete element procedure comprises three
steps: object representation, contact detection, and contact interaction. The first two
steps are closely associated to each other and are usually discussed within the framework
of the contact detection algorithins. In this papacr, however, we are only concerned with
the third step; contact interaction.

2.1 Contact Interaction

Once the possibility of contact between discrete bodies is detected, another method has
to be used to satisfy the impenetrability condition of the bodies. T'he penalty method is
probably the most appropriate scheme for adopting into an explicit contact analysis. In
this method, penetration of the contactor object is used to establish the contact forces
between contacting objects at any given time (See Figure 3).
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Figure 2: A general node to face contact algorithm.
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Figurc 3: Contact force based on impenetrability.

The spatial version of the weak form of the dynamic boundary value problem for any
admissible displacement variation éu may be defined as

/ be(u):o(u)dv+ [  bu-piido = ] bu- {4 f Gufdat /  Sg(u)-fnda

(1)
where o is the Cauchy stress tensor, € is the strain tensor, u is the displacement vector,
while g represents the contact gap vector corresponding to a penalty formulation of contact
interaction. Standard finite clement discretisation of the variational form (2) results in the
discrete set of algebraic time dependent equations which may be expressed in component
form as [3, 4]: ‘

)
SW© = [S gy = f¢ aﬁ’; but (@)

where k = n,{ and { = z,y, aud u} is the t-component of the displacement vector at node
s, & = (gn,8t) 1s the relative motion (gap) vector, and f° is the contact force vector over
the contact arca A€,

fC - Af 0( (3)
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where o is the penalty term matrix. The contact force has to be distributed to the target
and the contactor nodes.

3 Material Model

The imminence of material failure is monitored by the orthotropic Hoffman criterion,
where a geometric yield surface is constructed from three tensile strengths or, three
compressive strengths o¢, and three shear strengths os. It may be defined as:

1 ;
o= EoTPa' +o7p — &%) : (5)
where the projection matrix P, and the projection vector p are defined based on the nine
material yield strengths and a normalised yicld strength & (sce Schellekens ¢t al. [5]), and
& is a softening/hardening parameter.

4 Crack Propagation

Forming a crack is lollowed by releasing energy and redistributing the forces whichi caused
the initiation of the crack. If this procedure happens immediately after occurrence of a
crack, it will lead to inaccurate solutions, and more importantly, to results that strongly
depend on the size of the finite elements used in the analysis.

Having recognised the serious limitation of stress-based softening failure criteria, we could
move to methods directly involving fracture mechanics. An alternative procedure, pio-
neered by Hilleborg et al., is to introduce a softening stress-strain relationship which is
related to the fracture energy. In this way, fracture mechanics is indirectly introduced [6].
In the following, both methods for considering the load transfer in cracked regions will be
examined

4.1 Fracture Mechanics

In this method, a complex mixed mode fracture, including modes I, 11, and even /]
may be simultaneously activated. A simple criterion that governs crack growth could be
presented by a linear interpolation of the cnergy release rates of all three modes [7].

However, since this imethod requires a re-analysis of the whole model in cach step, it is
not suitable for an explicit dynamic analysis of multiple crack problems adopted in this
study. It is certainly not applicable in highly progressive fracturing and fragmentation
processes [8].
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4.2 Strain Softening Model

The main concept is the assumption that the fracture energy release Gy, is a material
property (fracture toughness) rather than a local stress-strain curve. The implementation
of the (i; = Const. concept, leads to the important conclusion that the local strain-
softening law depends on a fracturing zone with characterization length, I, depending on

the finite clement mesh,

One model that provides a simple approach to localization zone simulation is the bilinear
Rankine softening plasticity model [1] (See Figure 4).
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Figurce 4: Fracture cnergy softening model.

The [racture encrgy release is delined as the integral of the area under the softening branch
of the stress-strain curve '

Gy = [t -] (6

where f; is the tensile strength and ¢, and ¢ are the tensile fracture and ultimate strains
respectively, and [, is the characteristic length. The introduction of the characteristic
length, ,, is a result of expressing the fracture energy of a smeared crack model by a

discrete crack model (Figure 5). The fracture energy Gy for a discrete crack of width w
can be expressed as

1titre
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Figure 5: Discrete and smeared crack models.

Gy = /andw (7)

while for a smeared crack model, w 1s smeared across the width {,

gy = / Tndc (8)
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where ¢ is the equivalent crack strain smeared over /.

or

i
g

(9)

Therefore, (8), (7) with the help of (9) gives,

Gy=1.-g4 (10)

which is equivalent to (6) for the adopted strain softening model. n general, [ is contained
within one element, however the stress state that causes the crack in the discrete crack
model is inclined to the local axis of the finite element, and therefore, the characteristic
length will not be the finite element width. Ilence, as a close approximation, it may be
defined based on the area A, or the volume of the fractured element, V, [9]

.= A3 for 2D

‘ (an)
l.=V3 for 3D
The softening modulus is then defined as
E? = e (12)
2G,

The position of the stress point on the softening branch, or the value of the fracture indi-
cator (Figure 4), could be used as a measure, being compared to a predefined maximum
value, to quantify the level of material damage for different regions.

4.2.1 Higher Modes of Fracture

There have been enormous contribution to the literature reporting on the effects of dif-
ferent fracture modes on the crack growth due to various loading conditions [10, 11].

- 3 ) . ' . - 3
The simplest mixed mode of fracture is a linear combination of the separate modes,

G ) Gu
—_— + (—-——' ) — l 13
(Gcf Genr (13)
where G is the energy release rate, and G, is the fracture toughness of the material. The
general form of the mixed model, may then be expressed as '

oy ()
- + ; =1 14
(C'cl Gerr (14)

The linear model is achieved by a = 2, and a = 4 leads to the quadratic mixed model.

A damage mechanics model [6] is required to establish the evolution of the stress strain
relationship. For the purpose of implementation in a finite element code, a dainage model
proposed by Mi et al. [12] is adopted, which can be written as
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& = [I - D) Eot = [I—» F] Eoe © (15)

where o and € denote stress and strain (or traction and relative displacement) along the
interface with opening mode I and shearing mode 717, respectively,

. e
g = { ol } (16)
¢ = { z,’; } (17)

and Ejy is a diagonal stillness matrix of the interface layer

Ey = Diag {J—Q} (18)

(t

and the matrix F' takes the form of
F = Diag [-(" ] (19)
, G — €

where fi, ¢, and ¢, are illustrated in Figure 4. Fhe scalar £ in equation (15) is defined as
K= \/(—‘5) o (li) T (20)

3 Gy €l
4 Damaging is assumed to occur for £ > 0, and the material is considered not to take any

load when the D;; teris exceed unit.

It has been analytically shown that the linear mixed mode formulation is satisfied if

G = Qg
(21)
tr=pa
which implics a proportional straining. It has been proposed that o be left as a user
parameter, which can take non-integer values between 2 and 4 to obtain an interaction
- relationship lying between a lincar and a quadratic mixed mode [12].

4.3 Crack Direction

For material fracture, the genral anisotropic Tsai-Wu or Hoffman criteria do not provide
any information regarding the crack direction. A simple popular method is according to
the maximum principal stress (or strain) direction which can be similarly adopted in 3D
applications

} A far more sophisticated method for determining the crack direction is the so called
acoustic tensor method, which was initially established for wave propagation problem in
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Figure 6: Weighted averaging of the failure indicator and the crack direction for a failed
point.

solids. In this method, it is proved that the discontinuity plane satisfies the acoustic
tensor equation,

detQ = det{in-D, -n)=0 (22)

where Q is often referred Lo as the acoustic or characteristic tensor, I, is the clastoplastic
consistent tangent matrix, and the orientation of the discontinuity plane is described by
the normal n. The closed form solution may only be derived for two dimensional problems
and a simple iterative approach is required to solve equation (22) for n [13].

4.4 Remeshing Technique

Material fracture may result in the creation of new discrete hodies which are in contact by
friction interaction with neighbouring bodies. A special reinesliing algorithin is adopted
to maintain compatibility conditions in newly fractured regions.

The failure indicator and the crack direction for each individual elenmient are evaluated
from the material softening model. A weighted averaging scheme is then used to evaluate
both the failure indicator and the average crack direction of each node. Figure 6 illustrates
this scheme for a two dimensional problem.

The next step is Lo geometrically represent the crack and perform the necessary split, sep-
aration and the remeshing processes. Figure 7 represents the two dimensional remeshing
algorithm which comprises four steps: splitting the element, separating the failed nodes,
creating new remeshing nodes, and dividing uncracked elements to enforce compatibility
at new nodes. Adopting this local remeshing algorithm will provide a relatively finer
mesh in the fractured region and prevents the distortion of the elements in this region,
improving the finite element approximation of the analysis.
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Figure 7: Remeshing scheme for modelling of fracture at a failed point.

5 Numerical Simulations

The author and his colleagues have previously published a number of papers verifying
the method and providing several numerical simulations [2, 3, 14]. In this section the
results of two other interesting dynamic fracturing problems are provided. Due to the
& limitiations on the lengtli of the paper, for other details see references {14, 2].

5.1 Penetration of a missile into a ceramic plate

In this test, a missile is fired against a ceramic.plate and penetrates through the plate.
Figure 8 illustrates the crack patterns within the plate in different timesteps. This simu-
lation is usually used in testing bullet proof devices.
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5.2 Demolition of a chimney tower due to a base explosion

Detonating a small mass of explosive material has cuased progressive fragmentation in a
classic chimney tower as illustrated in Figure 9. Here, a gas-solid interaction algorithm
is also used to allow for accurate modelling of variable gas pressure during the explosion
and large deformation of the structure. The details of the method is out of scope of this
paper and will be provided separately.
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Figure 9: Demolition of a chimuey tower subjected to explosive loading,.

6 Conclusions

The combined finite/discrete element has proved to be an efficient algorithm for dealing
with multi-fracture and fragmentation processes, which frequently arise from impact load-
ings on structures. An alternating digital tree method is adopted to reduce the extensive
numerical costs of the contact detection phase. A local remeshing scheme is introduced
for geometric modelling of the cracks, which plays an important role in avoiding the ex-
cess distortions of the finite elements in the vicinity of cracks. Numerical simulations of

practical problems have been used to assess the perforinance of the method.
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