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Abstract  
 
The problem of modeling crack in orthotropic media is considered. In this field, the extended finite element 
method has been adopted for modeling the crack and analyzing the domain numerically. In this method, 
first the finite element model without any discontinuities is created and then the two-dimensional 
asymptotic crack-tip displacement fields with a discontinuous function are added to enrich the finite 
element approximation it using the framework of partition of unity. The main advantage is the ability of the 
method in taking into consideration the crack without any explicit meshing of the crack surfaces, and the 
growth of a crack can readily be applied without any remeshing. Mixed-mode stress intensity factors (SIFs) 
are evaluated to determine the fracture properties of domain and compare the results of proposed method 
with other available numerical or (semi-) analytical methods. The SIFs are obtained by means of the form 
domain of interaction integral (M-integral). 
 
Keywords: orthotropic media; near-tip displacement; extended finite element method (XFEM); stress 
intensity factors; crack 
 
 

Introduction 
 
Orthotropic materials such as composites are widely used in different branches of 
engineering science. Since the ratio of strength to weight of such materials in many cases 
is higher than other materials, the applications of these orthotropic materials have been 
swiftly extended. One of the main applications of such materials is the coating of 
sensitive structures or making the frameworks of structures. Generally, this material is 
utilized in thin shell forms, which are very defect susceptible. A major type of defects 
that most likely to take place in these structures is cracking. Cracks can be initiated under 
different circumstances such as initial weakness in material strength, fatigue loading, 
yield loading and imperfection in production procedure. As a result, fracture properties 
and mechanics of these types of material are highly prominent; reviving the research 
efforts in this area by great interest. 
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Some analytical investigation have been reported on the fracture behaviour of such 
materials such as the pioneering one by Muskelishvili [1], Sih et al. [2],  Tupholme [3], 
Viola et al. [4] and more recently Lim et al. [5] and Nobile and Carloni [6]. 
The analytical solution is not applicable to all problems; in particular to complicated 
ones. In such cases the numerical solution is the best available tool for resolving the 
problem. There are many numerical method utilized for modeling cracks in mechanical 
problems such as the boundary element method (Cruse [7]), the finite element method 
(Swenson and Ingraffea [8]) and the mesh-less methods such as the element-free Galerkin 
method (Belytschlo et al. [9]). In many mesh-less methods, simulation of arbitrary 
geometries and boundaries is so cumbersome.  However, the finite element method is 
more convenient and applicable because of its ability for modeling every boundary 
conditions, loadings, materials and geometries. But in the finite element model the 
elements that associated with cracks must be adopted to crack faces. In order to 
investigate the crack propagation, remeshing techniques are required. To improve these 
drawbacks and in order to model discontinuities, Blytschko et al. [10] combined FEM 
with the partition of unity (proposed by Melenk and Babuška [11], Duarte and Oden [12]) 
soon to be known as the eXtended Finite Element Method (XFEM). In the XFEM, finite 
element approximation is enriched with appropriate functions extracted from the fracture 
analysis around the crack-tip. The main advantage of the XFEM is its capability in 
modeling of discontinuities independently and the mesh is prepared without any 
consideration about the discontinuities. In 2D isotropic media, Moёs et al. [13] and 
Dolbow et al. [14] proposed an improvement to the work by Blytschko et al. [10]. 
Sukumar et al. [15] extended the method to three-dimensional problems and Sukumar 
and prévost [16] proposed the computer implementation. 
In this study, a new method is proposed for the second branch of orthotropic materials, as 
opposed to the one proposed by Asadpoure et al. [18]. In the following sections, first the 
fundamental formulations of cracked plate are reviewed. Then the XFEM are briefly 
explained; introducing the enriching functions based on the previous section. In order to 
verify the formulaton and to investigate the robustness of the proposed method stress 
intensity factors (SIFs) for cracked media are obtained by the method reported by Kim 
and Paulino [21] and compared with other numerical or (semi-) analytical methods. 
 

2. Basic and fracture formulation for an orthotropic medium 
 
Consider an orthotropic medium with axes of elastic symmetry co-incident with the 
Cartesian co-ordinates x-, y- and z-axes. The displacement component along the z-axis 
and all its derivatives with respect to z are assumed to be zero. The stress-strain equations 
can be defined as 
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where Cij (i,j=1,2,6) are the relevant elements of the compliance matrix of the material in 
x- and y- directions. Now the set of equations for an in-plane elastostatic problem can be 
expressed as 
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Following the methodology proposed by Viola et al. [4], a transformation is applied in 
order to express the formulations in term of complex functions. Eqs. (2) can be represent 
as 
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The eigenvalues of the matrix A can be obtained by  
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where λ is the eigenvalue of matrix A. Regarding above equations, two types of 
orthotropic material can be found, 21 aa >  (type I) and 21 aa <  (type II). In this 
paper, only type II of the orthotropic materials is studied. The complex functions can be 
expressed by the following complex variables 
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Viola et al. [4] explained the procedure of obtaining the complex variables and functions. 
Now, consider an infinite orthotropic plate, consisting of a traction free line crack, is 
subjected to uniform biaxial (T and kT) and shear (S) loads at infinity. Fig. 1 shows the 
crack geometry, loading conditions and the Cartesian and polar co-ordinates utilized in 
this study. 
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Fig. 1. Crack geometry, loading condition and global and local co-ordinates. 

 
Neglecting the velocity of the velocity of the crack propagation for the present static case, 
basic solution proposed by Viola et al. [4] results in the following displacement fields in 
x ad y directions 
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It is noted that the displacement fields in Eqs. (11-12) are only valid for 1<
a
r ; near the 

crack-tip. 
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3. Extended Finite Element Method 
 
The eXtended Finite Element Method (XFEM) was originally proposed by Blytschko and 
Black [10]. They enriched the finite element approximation by adding some 
discontinuous functions to the approximation. The procedure of enriching the 
approximation was performed using the partition of unity method (Melenk and Babuška 
[11] and Duarate and Oden [12]). For modelling a curved crack, Belytschko and Black 
[10] separated the crack into a set of straight segments and mapped each one of them into 
the first segment alignment. For a long curved crack, this procedure becomes very 
complex. Moёs et al. [13] improved the method by introducing the generalized Heaviside 
function for modeling the crack surfaces. Therefore, the cumbersome mapping procedure 
is not required and the jump in the displacement (strong discontinuity) around the crack 
faces (not the crack-tip) would be readily modeled with the new introduced function. 
In the extended finite element method, the numerical model is prepared within two parts. 
In the first part, the mesh is generated without considering the cracks or any 
discontinuities. Then, with the help of partition of unity method and the discontinuous 
functions, the FEM mesh is locally enriched in order to capture the effect of cracks or 
other discontinuities within the mesh. Because of the range of validity of the analytical 

solution for displacement fields around the crack-tip (in Eqs. (11-12), 1<
a
r ), the size of 

elements containing a crack-tip must be restricted in respect to the crack length and the 
gradient of stresses around the crack-tip. 
 

3.1 Preliminary equations 
 
For a point x locating within a domain, the extended finite element approximation for the 
enriched displacement field can be defined by 
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where N is the set of all nodes in the domain, ni is the node I, Iφ is the shape function 
associated to node I, Iu  is the vector of regular degrees of nodal freedom in finite 
element method, Ja is the added set of degrees of freedom to the standard finite element 
model, Ng is the set of nodes that the discontinuity is in its influence (support) domain 
and )(xψ  is the discontinuous function. Fig. 2 shows the influence domain for node J in 
an arbitrary discretization of a domain. In Eq. (17), the first expression in the right-hand 
side is the classical finite element expression to approximate the displacement and second 
one is the enriched approximation to express the effects of discontinuities in the finite 
element method. 
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Fig. 2. Influence (support) domain for node J in an arbitrary finite element mesh. 

 

3.2. Modeling crack 
 
For modeling a crack in the extended finite element method, Eq. (17) can be re-written as 
(Moёs et al. [13])  
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where bJ is the vector of additional degrees of nodal freedom for modeling crack faces 
(not crack-tips), ck is the vector of additional degrees of nodal freedom for modeling the 
crack-tips, Ng is the set of nodes that have crack face (but not crack-tip) in their support 
domain, Fl

i(x), (i=1,2.), are crack-tip enrichment function and K1 and K2 are the sets of 
nodes associated with crack-tip 1 and 2 in their influence domain, respectively. In Eq. 
(14), H(x) is the generalized Heaviside function. This function was originally proposed 
by Moёs et al. [13] to model the discontinuity in the displacement in both sides of the 
crack faces and takes the value +1 if x is above the crack and –1, otherwise. If x* is the 
nearest point on the crack to x (see Fig. 3) and ne is the unit vector normal to the crack 
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Fig. 3. Unit tangential and normal vectors for Heaviside function. 

 
Fig. 4 illustrates a part of a domain containing a crack with an arbitrary geometry. In this 
figure, the circled nodes are enriched with Heaviside function and the nodes marked by 
triangles are enriched with crack-tip function. 
 

 
Fig. 4. Node selection for enrichment; the nodes marked by triangles are enriched by crack-tip 

functions and the circled ones are enriched by the Heaviside function. 

 
The crack-tip enrichment functions are obtained from analytical solution for displacement 
in the vicinity of the crack-tip. These functions must span the possible displacement 
space that may be occurred in the analytical solution. Therefore, from Eqs. (11-12), it 
would be concluded that the functions having preceding properties are as 
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In Eq. (20), the third and forth functions in the right-hand side of the equation are 
discontinuous across the crack faces while the others remain continuous. Although, Eq. 
(20) contains similar terms as to the crack-tip enrichment functions proposed by 
Asadpoure et. al [18] , fundamentally different definitions are used for the definition of 
θ1, θ1, g1(θ) and g1(θ) functions. 
The discrete system of linear equations in the XFEM in global form can be written as 
(Sukumar and prévost [16]) 
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where K is the stiffness matrix, d is the vector of degrees of nodal freedom (for both 
classical and enriched ones) and f is the vector of external force. The global matrix and 
vectors are calculated by assembling matrices and vectors of each element. K and f for 
each element are defined as 
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where Ωe is an element, Ωh is an element such that the crack lies along the edges of that 
element,  ∂Ω denote the boundary of the domain Ω, t  is the traction and b is the body 
force. In Eqs. (19), B is the matrix of shape function derivatives,  
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(a)     (b) 

Fig. 5. Two methods for partitioning the cracked element, (a) the cracked element is subdivided 
into subtriangles, (b) the cracked element is subdivided into subsubquads. 

 
Because the ordinary Gaussian rules do not accurately calculate the integration of 
enrichment functions in elements cut by a crack, dolbow [14] proposed two methods to 
overcome this numerical difficalty. The first method is to subdivide the element at both 
sides of the crack into subtriangles whose edges are adopted to crack faces and the 
second one is to subdivide the element to subquads. Both methods are illustrated in Fig. 
5. In the first method, if the value of A-/(A++A-) and A+/(A++A-), where A+ and A- are the 
area of the influence domain of a node above and below the crack, respectively (see Fig. 
6), are smaller than the tolerance value, that nodes must not be enriched. The tolerance 
value proposed by Dolbow [14] is 0.01%. In the second method, a node is enriched if 
there are Gaussian points at both side of the crack in the influence domain of the crack. 
Fig. 7 shows a mesh that contains a crack while the second method was applied. 
Although the crack cuts the element in Fig. 7(a), node J must not be enriched because 
there is no Gaussian point above the crack. In contrary, node J in Fig. 7(b) has to be 
enriched. In this paper, the second method is utilized. 
 
 

J J 

Element Subquad Subtriangle Crack 
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Fig. 6. A+ and A- for node J in its influence domain. 

 

 
(a)     (b) 

Fig. 7. (a) Node J must not be enriched because in the Gaussian points in its support domain are 
not present at both side of the crack, (b) node J must be enriched since there are Gaussian points 

at both sides of the crack. 

 

4. Numerical Examples 
 
In this section some examples are presented. For comparing the results, Stress Intensity 
Factors (SIFs) and J-integral are calculated and compared. These parameters are among 
the best parameters for determination of the path of crack propagation. In this section, 
SIFs and J-integral are obtained by the method proposed by Kim and Paulino [17]. In the 
subsequent plane stress examples, the following parameters, being the function of 
independent engineering constants (Eij, νij, Gij, i,j=1,2.), would be used 
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where E is the efficient Young’s modulus, ν is the effective Poisson’s ratio, δ4 is the 
stiffness ratio and κ0 is the shear parameter.  
In the examples, elements containing crack are partitioned into ten subquads and a 2×2 
Gaussian rule is utilized for integrations in each ones; however, a 2×2 Gaussian rule is 
applied in calculating regular finite element parameter.  

4.1 Plate with a crack parallel to material axes of orthotropy 
 
In this example, a crack with the same alignment to axes of orthotropy in the center of a 
plate was studied. At the edges that parallel to the crack, a fixed-grip loading or constant 
traction is applied. The constant stress is obtained by utilizing a uniform stress (σ=1) and 
the fixed-grip loading is obtained by applying a load results in the uniform strain (ε0=1) 
in the corresponding uncracked plate. The geometry and boundary condition for the 
problem is illustrated in Fig. 8. 
 

 
Fig. 8. The geometry and boundary condition for a plate with a crack parallel to material axes of 

orthotropy 

 
In the FEM discretization, 2116 nodes with 2025 four-noded quadrilateral elements are 
used (Fig 9). Crack-tip element size is one-sixteenth of the crack length, i.e. 81=ahe . 
Stress intensity factors are calculated and compared with those reported by Kim and 
Paulino [17] as shown in table 1. 
Table 2 shows the rate of convergence for various integration domain sizes (rd) for 
enrichment with and without crack-tip enrichment functions. Numerical results show that 
when 5.0=ard , the values of SIFs are independent from domain size. 
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(a)                                                                     (b) 

Fig. 9. The discretizated model for a plate with a crack parallel to material axes of orthotropy, (a) 
whole view of FEM discretization model, (b) the details of descretization around the crack-tip. 

 
Method IK  IIK  

Kim and Paulino [17] 0.997 0 
Proposed method 1.018 0 

Table 1. The values of normalized SIFs for a plate with a crack parallel to material axes of 
orthotropy, aKK II πσ=  and aKK IIII πσ=  for the applied uniform stress and aEKK II πεδ 0

2=  
and aEKK IIII πεδ 0

2=   for fixed-grip loading. 

 
Without crack-tip function Without crack-tip function Relative domain 

size (rd/a) IK  IIK  IK  IIK  
0.25 0.966 0 1.018 0 
0.5 1.014 0 1.017 0 
1 1.015 0 1.017 0 
2 1.016 0 1.018 0 

Table 2. The rate of convergence of normalized SIFs with and without crack-tip functions for a 
plate with a crack parallel to material axes of orthotropy; in the table, aKK II πσ=  and 

aKK IIII πσ=  for the applied uniform stress and aEKK II πεδ 0
2=  and aEKK IIII πεδ 0

2=   for 
fixed-grip loading. 

 

4.2. Slanted crack 
 
In this example the proposed method is applied to a slanted crack of length 2a located in 
a finite two-dimensional orthotropic plate under constant applied tension (Fig. 10) 
where 222 =a . The angle of the crack with respect to x1-axis is 45 degrees. 

Crack 
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2501 nodes and 40×60 elements are utilized in the FEM discretization (Fig. 11). In the 
vicinity of the crack, element sizes are smaller than other part of the discretized model 
and the crack-tip size is one-sixteenth of the crack length. 
Stress intensity factors are compared with results reported by Sih et al. [2], Alturi et al. 
[19], Wang et al. [20] and Kim and Paulino [21]. According to Table 3, the results are 
different 2.6% for KI and 3.6% for KII in comparison to Sih et al. [2]. 
 

 
Fig. 10. Geometry of a plate with a slanted crack under remote tension. 

 

    
Fig. 11. FEM discretization of a plate with a slanted crack under remote tension, (a) whole view 

of FEM discretization model, (b) the details of descretization around the crack-tip.  

 
Method KI KII 

Sih et al. [2]  1.0539 1.0539 
Atluri et al.[19]  1.0195 1.0795 
Wang et al.[20]  1.023 1.049 

MCC 1.067 1.044 
Kim and Paulino [21] 

DCT 1.077 1.035 
Proposed method  1.081 1.092 

Table 3. SIFs in an orthotropic plate with a slanted crack under uniform remote tension loading 

 
Fig. 12 shows the normalized SIFs corresponding to different crack angle, θ, with respect 
to x1-axis. By increasing the crack angle, mode I stress intensity factor reduces; however, 
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mode II stress intensity factor up to 45θ = increases, it reaches the maximium value 
at 45θ = , and then decreases. It is worth noting that for all crack alignment the same 
discretized model is applied and it shows the capability of XFEM in modeling various 
crack geometries in the same FEM model. 
 

     
(a)                                                                     (b) 

Fig. 12. The normalized SIFs corresponding to different crack angle of a plate with a slanted 
crack under remote tension, (a) Normalized SIF for Mode I, (b) Normalized SIF for Mode II. 

( aKK II πσ=  and aKK IIII πσ= ) 

 
In Fig. 13, the values of SIFs corresponding to different integration domain size are 
illustrated. In this example, independence domain is obtained when the domain size with 
respect to crack length is about 0.6.  
 

     
 (a)                                                                     (b) 

Fig. 13. The rate of convergence of SIFs with °= 75θ  with respect to relative domain size in a 
plate with a slanted crack under remote tension, (a) Normalized SIF for Mode I, (b) Normalized 

SIF for Mode II. ( aKK II πσ=  and aKK IIII πσ= ) 

4.3. An inclined center crack in a disk subjected to pointed load 
The geometry and boundary condition of a disk subjected to pointed load with an inclined 
crack is shown in Fig. 14. The whole view of FEM discretization is illustrated in Fig. 15 
(a), whereas the detail of discretization of around the crack-tips is shown in Fig. 15 (b). 
825 four-noded elements with 877 nodes are used in the model. The material axes of 
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orthotropy were assumed to be parallel to x1- and x2-axes and the following material 
properties were used in the finite element analysis 
 
E11=0.1, E22=1.0, G12=0.5, v12=0.03 
 
Stress intensity factors computed in finite element analysis are compared with those 
reported by Kim and Paulino [21] for homogeneous orthotropic media. The values of 
stress intensity factors for both modes in comparison with those ones reported by Kim 
and Paulino [21] with two methods are shown in Table 4. For mode I, the difference 
between stress intensity factor of proposed method and Kim and Paulino [21] using M-
integral is about 1.7 % and for mode II, slightly increases and reaches to about 2.4 %. 
Fig. 16 shows stress intensity factors for another crack inclination between 0° and 45°. 
The stress intensity factors are decreasing by increasing the crack inclination for mode I, 
and increasing for mode II. As mentioned in the example 2, only one finite element 
model is utilized for calculating all crack inclinations. 
 
 

 
Fig. 14. Geometry and boundary condition for an inclined center crack in a disk subjected to 

pointed load. 

 
 

Method IK  IIK  

MCC 16.73 11.33 
Kim and Paulino [21] 

M-integral 16.75 11.38 

Proposed method 17.03 11.65 

Table 4. The values of stress intensity factors for an inclined center crack in a disk subjected to 
pointed load 
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(a)                                                                     (b) 

Fig. 15. FEM discretization for an inclined center crack in a disk subjected to pointed load, (a) 
whole view of FEM discretization model, (b) the details of descretization around the crack-tip.  

 
 

     
(a)                                                                     (b) 

Fig. 16. The normalized SIFs corresponding to different crack angle of an inclined center crack in 
a disk subjected to pointed load, (a) SIF for Mode I, (b) SIF for Mode II. 

 

5. Conclusion 
 
The problem of modeling crack in orthotropic media was studied. In this field, the 
extended finite element method had been adopted for modeling the crack and analyzing 
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the domain numerically. In the extended finite element method, first the finite element 
model without any discontinuities is created and then the two-dimensional asymptotic 
crack-tip displacement fields with a discontinuous function are added to enrich the finite 
element approximation it using the framework of partition of unity. The main advantage 
is the ability of the method in taking into consideration the crack without any explicit 
meshing of the crack surfaces, and the growth of a crack can readily be applied without 
any remeshing. The analytical solution for displacement is applied to obtain the two-
dimensional asymptotic crack-tip functions. The proposed method is considered one 
group of orthotropic materials. Mixed-mode stress intensity factors (SIFs) were evaluated 
to determine the fracture properties of domain. The results of proposed method were in 
good agreement with other available numerical or (semi-) analytical methods. 
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