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Abstract. In this research, the extended finite element method (XFEM) is improved for 
modeling interfacial cracks between two orthotropic media by new set of orthotropic 
enrichment functions. New set of bimaterial orthotropic enrichment functions are developed 
and utilized in XFEM analysis of linear elastic fracture mechanics of layered composites. 
Interlaminar crack-tip enrichment functions are derived from analytical asymptotic 
displacement fields around a traction free interfacial crack. In this procedure, elements 
containing a crack tip or strong/weak discontinuities are not required to conform to those 
geometries. The domain interaction integral approach is also adopted in order to numerically 
evaluate the mixed-mode stress intensity factors. A number of benchmark tests are simulated to 
assess the performance of the proposed approach and the results are compared to available 
reference results. 

1. Introduction 
According to the huge application of composite materials in many industrial and engineering 
applications due to their excellent stiffness to weight and strength to weight ratios, the needs of 
analyzing and modeling of such materials have been of great interest in recent decades. Delamination 
is one of the most commonly encountered failure modes in composite laminates and can cause severe 
performance and safety problems, such as stiffness and load bearing capacity reduction and even 
structural disintegrity.  

There are many numerical methods for analysing orthotropic composites, including the boundary 
element method (BEM), the finite element method (FEM), the finite difference method (FDM), and 
meshless methods. Although the finite element method is capable of modeling general boundary 
conditions and complex geometries, the elements associated with cracks must conform to crack faces 
and remeshing techniques are then required to simulate the crack propagation. This method has 
fundamental difficulties to reproduce the singular stress field around a crack tip as predicted by the 
concepts of fracture mechanics.  

In contrast, the extended finite element method (XFEM) is specifically designed to enhance the 
conventional FEM in order to solve problems that exhibit strong and weak discontinuities in material 
and geometric behavior, while preserving the finite element original advantages. The basis of this 
method was originally proposed by Belytschko and Black [1], combining the finite element method 
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with the concept of partition of unity to improve the FEM deficiencies in modeling discontinuities. In 
XFEM, elements around a crack are enriched with a discontinuous function and the near-tip 
asymptotic displacement fields. The major advantage of this method is that the mesh is prepared 
independent of the existence of any discontinuities.  

Asadpoure et al. [2-4] and Mohammadi [5] have extended the method to orthotropic media by 
deriving new set of orthotropic enrichment functions.  

In this research, XFEM is adopted and further improved for modeling interfacial cracks between 
two orthotropic media by new set of bimaterial orthotropic enrichment functions, completing the 
earlier research proposed by Esna Ashari and Mohammadi [6]. The new interlaminar crack-tip 
enrichment functions are derived from analytical asymptotic displacement fields around a traction free 
interfacial crack. Combined mode I and mode II loading conditions are studied and mixed-mode stress 
intensity factors (SIFs) are numerically evaluated to determine fracture properties of a problem using 
the domain form of the contour interaction integral. In order to examine the performance of the 
proposed approach, two numerical examples are simulated and the results are compared with reference 
solutions. 

2. Extended finite element method 
The eXtended Finite Element Method (XFEM) is a way to facilitate modeling strong and weak 
discontinuities within finite elements by enriching the classical finite element displacement 
approximation using the framework of partition of unity.  This allowed the method to model the 
discontinuity independent of the finite elements, without explicitly meshing the crack surfaces. 
In order to model crack surfaces and crack tips in the extended finite element method, the approximate 
displacement function hu  can be expressed as 
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where HN  is the set of nodes that have crack face (but not crack-tip) in their support domain, Ja  is 
the vector of additional degrees of nodal freedom and is applied in modeling crack faces (not crack-
tips), ( )xH  is the heaviside function used to express the discontinuity of displacement across a  crack, 

FN  is the set of nodes associated with the crack-tip in its influence domain, l
kb  is the vector of 

additional degrees of nodal freedom for modeling crack-tips, ( )xlF  are crack-tip enrichment 

functions, χN  is the set of nodes that have weak discontinuity, rc  is the vector of additional degrees 

of nodal freedom for modeling weak discontinuity interfaces and ( )xrχ  is the enrichment function 
used for modeling weak discontinuities. 

In equation (1), the first term is the classical finite element approximation, the second term is the 
enriched approximation related to crack surfaces, the third term is the enriched approximation for 
modeling crack tips, while the last part is the enriched approximation used for modeling weak 
discontinuities. These three types of enriched nodes in a finite element modeling of an interface crack 
are depicted in figure 1. Other nodes and their associated classical finite element degrees of freedom 
are not affected by the presence of the crack. 
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Figure 1. Node selection for enrichment; nodes enriched with crack-tip, heaviside and weak 

discontinuity functions are marked by triangles, circles and squares, respectively [7]. 

3. Orthotropic interface enrichments 
In order to enhance the accuracy of approximation around an orthotropic bimaterial interface crack tip, 
the following asymptotic crack-tip functions are extracted from the general crack tip displacement 
fields  
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where lθ , sθ , lr , sr  are defined in terms of the roots of the governing characteristic equations.  

These enrichment functions span the analytical asymptotic displacement fields for a traction free 
interfacial crack. 

4. Evaluation of stress intensity factors 
The stress intensity factor (SIF) is one of the basic concepts of fracture mechanics to measure the 
intensity of crack-tip fields and to assess the stability of an existing crack. In this study, the domain 
integral method, is utilized to evaluate mixed-mode stress intensity factors for an interfacial crack 
between two orthotropic materials.  

The well-known path-independent J integral for a cracked body is defined  
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where Γ  is an arbitrary contour surrounding the crack-tip (figure 2), W is the strain energy density, 
defined by ( ) ijijW εσ2/1=  for linear-elastic materials, and  jn  is the jth component of the outward 

unit normal to Γ . This contour integral can be reformulated into the equivalent domain integral. 
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Figure 2. The contour  and its interior area, A. 

 
In the interaction integral method, auxiliary fields are introduced and superimposed onto the actual 

fields to satisfy the boundary value problem (equilibrium equation and traction-free boundary 
condition on crack surfaces) in order to extract the mixed-mode stress intensity factors. One of the 
choices for the auxiliary state is the displacement and stress fields in the vicinity of the interfacial 
crack tip. 

The SJ  integral for the sum of the two states can be defined as: 

 MJJJ auxS ++=     (4) 

where J and auxJ  are associated with the actual and auxiliary states, respectively, and M  is the 
interaction integral, defined as 
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For linear elastic condition, )2,1(W  is defined as 
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where superscript aux stands for the auxiliary state. The M  integral shares the same path-independent 
property of J  integral and can be utilized to determine the stress intensity factors of the present 
orthotropic bimaterial problem from the M  integral. As a result, it can be calculated away from the 
crack tip where the finite element solution is more accurate. 

5. Numerical examples 

5.1. Central crack in an infinite bimaterial orthotropic plate 
In this example, the stability of a crack in the interface of two orthotropic materials, as depicted in 
figure 3, is studied; The infinite plate is subjected to a remote unit tensile loading 0

22σ , with  the plane 
strain condition. The material properties of the T300-5208 graphite epoxy are defined as:  

GPaEE ZT 8.10== , GPaEL 137=        
GPaGG TLZL 65.5== , GPaGZT 36.3=  

238.0== TLZL νν , 36.3=TZν  
where L, T, Z are longitudinal, transverse and through the thickness directions, respectively. The 
present example is for a [90º/0º] bimaterial block. The fiber direction in the 90º lamina is along the x1 
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axis while for the 0º lamina, the fiber direction lies along the x3 axis (out of plane direction). The 
dimensions of the plate are: 

mhW 1a,
aa

==  

 
Figure 3. An interfacial crack between two orthotropic materials. 

 
Only one half of the problem is modeled due to symmetry along the x2 axis. A finite element model 

with 250 elements  and 268 nodes, is employed (figure 4) and the crack tip is modeled with new 
orthotropic enrichment functions.  

 
Figure 4. Unstructured FEM model.  

 
To determine the accuracy of the approach, comparisons are made with the exact solution of an 

infinite aniotropic bimaterial block provided by Qu and Bassani [8], and another investigation by 
Chow and Atluri [9], based on standard eight noded quarter-points elements and using both the mutual 
integral method and the extrapolation technique. 

Table 1 depicts the results of stress intensity factors obtained by different methods and the extent of 
error with respect to the analytical solution. Clearly, very accurate results are obtained by new XFEM 
formulation.  

 
Table 1. Stress intensity factors obtained by different methods compared to the analytical solution by 
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Qu and Bassani [8]. 

Method Number of 
elements 

Number 
of nodes 

Error ( IK ) Error ( IIK ) 

Mutual Integral 216 679 0.6 0.1 

Mutual Integral 72 237 0.7 13.6 

Extrapolation 72 237 9.5 6.9 
Chow and Atluri 
[9] 

Extrapolation 216 679 13.1 2.3 

Present method XFEM 250 268 0.051 0.824 
 

5.2. Orthotropic double cantilever beam 
In this example, XFEM is employed to determine the strain energy release rates for interface cracks in 
a double cantilever beam (DCB) test with orthotropic materials. A bilayer specimen composed of two 
homogeneous elastic layers, both of thickness H, with a crack length a is considered, as shown in 
figure 5. The results of the present simulation are compared with the results reported by Ang et al. 
[10].  

 
Figure 5. A bilayer orthotropic DCB specimen. 

 
In the lower layer, the fiber directions are along the horizontal direction and perpendicular to the 

applied load P, with 1E  and 2E as the Young’s moduli in the first and second principal material axes; 
12G  as the in-plane shear modulus and 12ν  is the Poisson’s ratio. The fiber direction is along the out of 

plane direction in the top layer and it is treated as isotropic in plane with 2E  and 12ν  as the Young’s 
modulus and the Poisson’s ratio, respectively. The mechanical properties of the bottom layer are 
defined in terms of two parameters 1η  and 2η , which are related to the purely imaginary roots of the 
characteristic equation of the orthotropic material as: [10] 
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In numerical models, the relative crack sizes are 6,4,2a =
H

 and 2,8.0 21 == ηη .
 The strain energy release rates are computed for each numerical model. The reference results for 

strain energy release rates were normalized using 0G : 

 3
1

22

0 H
12

E
aPG =  (8) 
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Adaptive structured finite element models, depicted in figure 6, with 663 elements and 720 nodes, 
are employed for different crack lengths.  

Table 2 compare the results of normalized strain energy release rates obtained by the present 
XFEM models using bimaterial orthotropic enrichments and the values reported by Ang et al. [10], 
which was based on the boundary element method. Similar results, obtained by Ang et al. [10], are 
illustrated in figure 7, where the results of present XFEM simulations are marked by circles. Very 
close agreements are observed between the XFEM and reference results. 

 
Figure 6. FEM discretization of orthotropic DCB problem. 

 
Table 2. Comparison of the values of normalized strain energy release rates for different crack 
lengths, obtained from XFEM and the boundary element method (case 1: 8.01 =η  and 22 =η ). 

H
a  

a
dr  

0G
G

 Boundary element 
method. [10] 

2 0.33 3.2996 3.35 

4 0.17 2.4768 2.5 

6 0.125 2.2313 2.2 
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Figure 7. Variations of 

0G
G

 
with 

H
a

for the DCB specimen ( 8.01 =η , 22 =η ) using boundary 

element method [10], compared with XFEM results (circles). 

6. Conclusions 
The problem of cracks that lie at the interface of two elastically homogeneous orthotropic materials 
was studied. The extended finite element method (XFEM) was adopted for modeling the interface 
crack and analyzing the domain numerically. New bimaterial orthotropic crack tip enrichment 
functions are extracted from the analytical solution in the vicinity of interfacial crack tips. Mixed-
mode stress intensity factors and energy release rates for bimaterial interfacial cracks were 
numerically evaluated using the domain form of the interaction integral. The results obtained by the 
present method were compared with reference solutions and exhibited close agreement. The combined 
set of inplane and interlaminar enrichments are expected to allow for a full fracture analysis of layered 
orthotropic composites by XFEM in future studies. 
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