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Abstract. In this paper, a finite point method (FPM) is developed and adopted for solving the 
chloride diffusion equation for prediction of service life of concrete structures and initiation 
time of corrosion of reinforcement. Diffusion of chloride ions is generally assumed to follow 
the Fick’s second law. FPM is a truly meshless method which uses a moving last square ap-
proximation within a collocation strong form for solving the governing differential equation. 
Several 1D and 2D problems are solved using FPM and the results are compared with the 
analytical solution, classical finite element and finite difference methods, and weak form 
meshless based Element Free Galerkin method. 
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1 INTRODUCTION 
Reinforced concrete structures exposed to sea environments suffer from corrosion of steel 

bars due to the chloride ingress. This corrosion may lead to serious damages to concrete struc-
tures and cost of repair, inspection and maintenance activities for these structures could reach 
a level comparable to the cost of construction of new structures. Therefore, the chloride pene-
tration is a major factor that affects the durability of concrete structures. The durable life (or 
service life) of a structure is conventionally determined based on the initiation time to corro-
sion of steel bars, which is caused by penetrated amount of chloride [1]. The initiation period 
is defined as the time required for sufficient chloride penetration into the concrete cover to 
initiate corrosion. Diffusion of chloride ions is generally assumed to follow the Fick’s second 
law [2]. 

 In this paper, a meshless finite point method (FPM) is adopted for solving the chloride dif-
fusion problem. Finite point method was first proposed by Onate et al. in 1996 for solving the 
flow problems [3] using a weighted least square (WLS) scheme for approximating the un-
known functions. Onate used FPM for the analysis of compressible and incompressible vis-
cous flows and convective transport [4,5] and elasticity problems [6]. FPM is a truly meshless 
procedure in which the approximation around a point can be obtained using moving least 
square (MLS) techniques, similar to the EFG method. The discrete system of equations is ob-
tained by sampling the governing differential equations at each point. 
The present paper is organized as follows. First in section 2 the basis of FPM is briefly de-
scribed. Section 3 deals with the chloride diffusion model while its analytical and FPM solu-
tions are described in section 4. Several numerical examples are then solved, discussed and 
analytical, FPM, EFG [7], FDM and FEM [8] results are compared in section 5, followed by 
the concluding remarks. 

2 FINITE POINT METHOD 
Finite point method is a meshless numerical procedure based on the combination of mov-

ing least square interpolations on a domain of irregularly distributed points with a point collo-
cation scheme to derive system equations.  

2.1 Discretization of Governing Equations  
Assume a problem governed by the following set of differential equations 

Ω= inuA j 0)(                                                            (1) 
with boundary conditions  
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The discretized system of equations in the FPM is found by collocating the differential equa-
tion at each point in the analysis domain. This gives  
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In the above, uN  and tN  are the number of points located on the boundaries uΓ  and tΓ , 
respectively, and rN  are the rest of the points in Ω  not belonging to uΓ  or tΓ . 
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Equation (3) leads to a system of algebraic equations of the form  
 

fKU =                                                                  (4) 
 where K is a non-symmetric coefficient matrix which its symmetry is not generally achieved 
and U is a vector collecting the nodal point parameters h

iu . 

3 CHLORIDE DIFFUSION MODEL  

Diffusion of chloride ions is generally assumed to follow the Fick’s second law [2]. The 
general diffusion equation can be written as : 

CtD
t
C 2)( ∇=
∂
∂                                                           (5) 

where C is the chloride content in concrete, D is the chloride diffusion coefficient, and t is the 
exposure time. The chloride diffusion coefficient is a function of both time and temperature 
[1]:  
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with : 
 

=),( TtD  diffusion coefficient at time t and temperature T. 
=refD  diffusion coefficient at some reference time ( reft ) and temperature ( refT ) 

=m  a constant depending on mix proportions such as water-cementatius material ratio and 
the type and proportion of cementations materials. 

=U activation energy of the diffusion process 
=R gas constant 
=T absolute temperature 

4 EXAMPLES  
In this section, several 1D and 2D equations for prediction of service life of concrete 

specimens are solved using FPM. First a special problem of constant diffusion coefficient (D) 
is assumed. Then some problems are solved assuming D as a function of time and temperature. 
Finally the results are compared with the analytical solution and EFG, FDM, FEM [9] solu-
tions on the same grid. 

For FPM, mp=3 and mp=6 are chosen for 1D and 2D problems, respectively. The radius of 
support domain is chosen separately for each node from rm=1.4 rmin where rmin is the mini-
mum value for the radius of support domain in order to contain at least 3 or 6 nodes for 1D or 
2D problems, respectively. An exponential weight function is also adopted: 
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Generally, an optimum value for constant α has to be chosen by a parametric study for each 
problem. Numerical studies, however, have shown that a value of α=1.4 can be efficiently 
used for all selected problems.   

The following parameters required by the chloride diffusion equation are assumed for all 
numerical examples. 

=U 35000 j/mol 
=R 8.3143 jouls per Kelvin per mole. 
=reft 28 days 

)20(293 CKTref
oo=  

4.1 1D problem  
In this example, the chloride content ingress in a concrete slab is investigated. The problem 

specifications are defined in Table 1; with Ct defined as the required chloride content to initi-
ate the corrosion of concrete. 
 

Thickness (mm) Cover (mm) D (m2/s) m Ct % 
1000 50 10-12 0 0.1 

Table 1: Specifications of the 1D cross section of concrete slab. 
 

For the first part of analysis, based on a constant diffusion coefficient, the annual tempera-
ture is assumed to be a constant 20 oC. 
To calculate the result at 20 years, half of the slab is modeled by 21 nodes. The curves of 
chloride content versus depth and time at cover 50 mm are depicted in figures 1 and 2. 
 

                           
    Figure 1: Chloride content-depth                               Figure 2: Chloride content-time 
        at time =20 years(21 nodes)                                  at cover depth=50mm(21 nodes) 

 
Table 2 compares L2 errors of FPM, EFG, FDM and FEM methods, defined as: 
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  Number of nodes FPM EFG FEM FDM 

2L  error% 21 0.1897 0.1678 0.4984 0.1879 
Table 2: Chloride content error at time=20 years 
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Table 3 compares the initiation periods to start corrosion predicted by different methods.  

The results also show that for this simple 1D problem, FPM provides very similar results to 
FDM, both less accurate than EFG. 
 

 Number of nodes FPM Exact EFG FEM FDM 
initiation period 

(year) 21 12.98 14.7 13.4 12.5 13 
Table 3: The initiation period of corrosion for constant diffusion coefficient  

For the case of non-constant diffusion coefficient, no analytical solution is available. In or-
der to simulate problems with non-constant diffusion coefficient, the annual average tempera-
ture history of Bandar Abbas, Iran, shown in Figure 3, is considered as a practical simulation, 
and m is set to 0.2. 
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Figure 3: Annual temperature history of Bandar Abbas, Iran[9] 
 

 
Figures 4 illustrate the chloride content with respect time at the depth of 50 mm for a 

model of 21 nodes. Similarly, the results obtained from a model of 101 nodes are depicted in 
figure 5. 

The initiation periods obtained with different methods are compared in Table 4. The results 
show that FPM and FDM provide very close predictions, and both are more accurate than 
FEM. The EFG outcome is the most accurate between these methods, nevertheless it should 
be noted that the FPM procedure is more straightforward in comparison to EFG and it doesn’t 
need any integration procedures, making it a simple approach to implement as well as being 
computationally inexpensive. 
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Figure 4: Chloride content-time 
at cover depth=50mm(21 nodes) 
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Figure 5: Chloride content-time 
at cover depth=50mm(101 nodes) 
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  Number of nodes FPM EFG FEM FDM 
21 23 23.8 21.8 22.9 initiation period (year) 

  101 26.5 26.5 26.5 26.5 
Table 4: The initiation period for non-constant diffusion coefficient 

4.2 2D problems 
In this section, chloride ingresses in square and circular columns shown in Figure 6 are in-

vestigated. The problem specifications are defined in Table 5: 
 

Cover (mm) D (m2/s) m Ct % 
50 10-12 0 0.1 

Table 5: Problem specifications for the square and circular column sections. 

 

4.2.1   Square column 
The results at 20 years are calculated assuming constant diffusion coefficient (m=0,T=20). 

In order to compare the present algorithm with the available FEM and EFG results [9], which 
were based on 185 nodes for EFG and 328 triangular elements for FEM, similar grid of 185 
nodes are used, as  depicted in Figure 7. A structured grid is also used for the finite difference 
approximation. The exact solution is obtained from the analytical solution. Except for the fi-
nite element solution, other methods remain close to the exact solution at the final stages of 
the analysis.     

          
                                         a) FPM method                                                   b) exact method 

Figure 8: Chloride content contours for a constant diffusion condition at time=20 years for different methods, 
m=0. 

Figure 6: Cross sections of square and circular 
columns 
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for a quarter of the square column. 
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In order to further investigate the effect of number of nodal points, and compare them with 
refined finite element and element free Galerkin methods, the same problem is simulated by 
697 nodes. The equivalent finite elements were 1312, while a 25*25 structured grid was used 
for the finite difference approximation. 
Again, except for the FE solution, all numerical methods converge to the analytical solution 
as shown in Figure 9.   

 
                                 a) 185 nodes                                                                b) 697 nodes   

Figure 9: Chloride content-time at cover=50 mm for constant diffusion coefficient.  
                         
L2 error of the proposed FPM method, are compared to FDM, FEM and EFG as given in Ta-
ble 6. 
 

  Number of nodes FPM EFG FEM FDM 
185 0.46 0.73 1.42 0.73 2L  error% 

  697 0.11 0.27 0.46 0.086 
Table 6: L2 error at time=20 years for constant D in a square column 

 
Figure 9 and Table 6 illustrate that the FPM error is less than the other methods when 185 

nodes are used for solving the problem. By increasing the number of nodes, all methods con-
verge to the exact solution. 

 
4.2.2 Circular column  

A circular column, depicted in Figure 6, is studied in this section. Specifications of the 
problem are the same as the square column. The distribution of nodes is shown in Figure 10. 
The chloride diffusion problem is solved by FPM for constant diffusion coefficients. The re-
sults of FPM and the exact solution for constant diffusion coefficient are compared in Table 7.  

 
 L2 error% initiation period (year) 

FPM (585 nodes) 0.0039 12.15 
exact --------- 14.2 

Table 7: The initiation period and L2 error for the circular column with constant D 
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Figure 10: Distribution of nodes for the circular column(585 nodes) 

5 CONCLUSIONS  
A truly meshless finite point approach has been presented for solving the chloride diffusion 

equation and prediction of service life of concrete structures. FPM is a strong form solution 
for the diffusion problem using the moving least square approximation for the chloride con-
tent field variable. A variety of 1D and 2D simulations were carried out to compare the new 
approach with analytical and other numerical EFG, FEM, FDM methods.1D tests demon-
strated that FPM and FDM provide very close predictions whereas for 2D problems, if regular 
distribution of nodes are used, the FPM and FDM remain close, while FPM can also be effi-
ciently used for accurate simulation using irregular distribution of nodes. 
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