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Abstract: At the outset the basis of the finite point method is described and then this 
method is adopted for solving some partial differential equations. Eventually, the 
impact of adopted weight functions in MLS approximation on the accuracy is 
considered and a relation between the number of nodes in support domain and 
parameter c  in exponential weight function is emerged. 
 
 
 
1 Introduction  
 
Designing advanced engineering systems requires the use of computer aided design 
tools. In such tools computational simulation techniques are often used to model and 
investigate physical phenomena in an engineering system. The simulation requires 
solving the complex differential or partial differential equations that govern these 
phenomena.Traditionally, such complex partial differential equations are solved using 
numerical methods such as the finite element method (FEM)[1]. In this method the 
spatial domain, is often discretized into meshes. But mesh generation, especially 3D 
mesh generation, remains one of the challenges.  
Mesh free techniques have become quite popular in computational mechanics. A family 
of mesh free methods is based on smooth particle hydrodynamic procedures[2]. A 
second class of mesh free methods is derived from generalized finite difference (GFD) 
techniques. Among a third class of mesh free techniques we find the so called diffuse 
element (DE) method, the element free Galerking (EFG) method[3], the reproducing 
kernel particle (RKP) method, the meshless local Petrov-Galerkin (MLPG) method[4] 
and the method of finite spheres.  
The finite point method (FPM)[5,6] is a truly meshless procedure. The approximation 
around each point is obtained by using standard moving least square techniques 
similarly as in DE and EFG methods. The discrete system of equations is obtained by 
sampling the governing equations at each point as in GFD methods. 
The advantages of FPM compared with standard FEM is to avoid the necessity of mesh 
generation and compared with classical FDM is the facility to handle the boundary 
conditions and nonstructural distribution of points. 
 
2   Finit Point Method 
 
2.1   Interpolation in Finite Point Method         
Moving least square method (MLS)[7] is used for interpolation in FPM. Let )(xu  be the 
function of the field variable defined in domain Ω . The approximation of  )(xu  at point 
x  is denoted )(xu h . MLS approximation first writes the field function in the form: 
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Where m  is the number of terms of monomials (polynomial basis) , and )(xa  is a 
vector of coefficients and )(xp  is a vector of basis function that consist most often of 
monomials of the lowest orders to ensure minimum completeness. In 1D space, a 
complete polynomial basis of order m is given by  
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And in 2D space, 
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A function of weighted residual is constructed using the approximated values of the 
field function and the nodal parameters, )( II xuu =  
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Where )( IxxW −  is a weight function, and Iu  is the nodal parameter of the field 
variable at node I .The weight function plays two important roles. The first is to 
provide weightings for the residuals at different nodes in support domain. The second 
roles is to ensure that nodes leave or enter the support domain in a gradual (smooth) 
manner when x  moves. it make sure that the MLS satisfy the compatibility condition. 

)(xa  is chosen to minimize the weighted residual. The minimization condition requires  
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Which results in the following linear equation system :  
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And sU  is the vector that collects the nodal parameters of the field variables for all the 
nodes in the support domain. Substituting the equation (6) into equation (1) leads to  

sUBAp 1)()( −= xxu Th                      (9) 
To determine the spatial derivatives of the function of the field variable, which are 
required for deriving the discretized  system equations, it is necessary to obtain the 
derivatives of the MLS shape function.The partial derivative of MLS would be  
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But most often the first term of derivative provides us with adequate accuracy.  
 
2.2 discretization of governing equations 
 
Let us assume a problem governed by the following set of differential equations 
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The discretized system of equation in the FPM is found by substituting the 
approximation (12) into equation (15) and collocating the differential equation at each 
point in the analysis domain. This gives  
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In the above uN  and tN  are the number of points located on the boundaries uΓ  and tΓ , 
and rN  is the rest of the point in Ω  not belonging to any of the boundaries uΓ  and tΓ . 
Equation (16) lead to a system of algebraic equations of the form  

fKUS =               (13) 
 

3 Examples 
 
In this section the efficiency of FPM method is analyzed using this method for solving 
1D and 2D partial differential equations. m=2 is chosen for the basis function and the 
exponential function is used as the weight function: 
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These problems are solved considering different values of c  parameter and radius of 
support domain and finally the error values are computed. As a consequence, the 
optimum value of c  with respect to mr  would be gained.  
 
3.1 Solving 1D equations using FPM  
 
The 1D partial differential equations considered here, are as follows: 
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At first, 9 nodes are used for the domain (0<x<1) and the equation (1) is solved with 
different values for radius of support domain )( mr  and c . As the next step, the error 
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values would be computed as shown in Table 1, and it would be found that the 
greater mr  , the smaller c  should be used to achieve better result. The same result would 
be gained when 11 nodes for domain (0<x<1) are used as shown in table 2. Using 
smaller c  would lead to more accurate result for n=11 compared with n=9 and while the 
values mr  are the same.  
It shows that if the number of nodes in support domain increases, using smaller c  
would guarantee more accuracy. Enough attention should be paid not to have ill 
condition or singularity in our solution when we use small c . 
Quartic spline weight function is used for MLS approximation instead of exponential 
weight function and it is found that the former would show more inaccurate results than 
the latter as shown in Table 3. The obtained results for 5.0,25.,9 === crn m  have been 
depicted in Fig.1. 
The same results would be achieved for equation (2), as shown in Table 4 and Fig 2. 
As an instance of concentration problems like concentrated force, the equation (3) has 
been chosen which, could simulate these phenomena. FPM again exhibits satisfactory 
results for solving this equation and the numerical results have been shown in Fig.3. 
 
3.2 Solving 2D equation using FPM   
 
For solving 2D equation, the regular distribution of nodes has been chosen as shown in 
Fig.4. The 2D equation is: 
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The results are shown in Table 5, Fig.5 and Fig.6. It could be seen that the outcomes are 
the same as what were gained in 1D.  It means that the more number of nodes in support 
domain, the smaller c  is required to achieve better performance. 
 

c rm=.25 rm=.375 rm=.5 
0.2 2.02 1.91 1.71 
0.3 1.91 1.56 1.24 
0.4 1.68 1.25 2.48 
0.5 1.28 2.55 7.24 
0.6 1.96 4.72 10.43 
0.7 4.48 14.48 8.15 

Table 1: The error percentage of Eq.1 
approximation )9( =n  

 
c rm=.25 rm=.375 rm=.5 

0.2 0.82 0.82 0.91 
0.3 0.82 0.98 1.74 
0.4 0.92 1.64 4.07 
0.5 1.05 2.71 6.83 
0.6 1.40 1.52 3.40 
0.7 1.21 2.45 1.92 

Table 2: The error percentage of Eq.1 
approximation )11( =n  

 
rm=.26 rm=.375 rm=.5 
1.7607 3.9 7.2 

Table 3: The error percentage of Eq.1 
app. with Quartic Spline weight 

function 
 
 

 
Table 4: The error percentage of Eq.2 

approximation 

c rm=.2 rm=.3 rm=.4 
0.2 0.31 0.10 0.07 
0.3 0.10 0.03 0.18 
0.4 0.09 0.19 0.52 
0.5 0.07 0.95 0.59 
0.6 0.08 6.32 0.63 
0.7 0.17 2.42 1.67 
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                Table 5: The error percentage of 2D Eq. approximation 
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Figure 1: App. of Eq.1 )5.0,25.,9( === crn m  
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Figure 2: App. of Eq.2 )3.0,3.,9( === crn m   
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Figure 3: App. of Eq.3  

c rm=.8 rm=1.2 
0.2 1.74 1.45 
0.3 1.49 1.19 
0.4 1.08 3.13 
0.5 1.82 5.55 
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Figure 5: Distribution of nodes in 2D problem 

 
 

Figure 6: Exact surface of 2D equation       Figure 6: FPM app. surface of 2D equation 
 

4 Conclusions 
 
A Finite Point Method has been presented for the simulation of partial differential 
equations. A Moving Least Square interpolation scheme has been used to derive shape 
function. Exponential and Quartic spline weight functions are used in MLS. The effect 
of changing the radius of support domain and weight function on accuracy was 
considered and a relation between the number of nodes in support domain and 
parameter c  in exponential weight function was emerged.  
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