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Absiract

In this study, a varying/adapting cohesive approach is developed to model crack-healing procedure in reinforced shape
memory composiles. To this aim, the siress—strain behavior of SMA fiber in thermo-mechanical condition is converted into
a traction—separation response between crack faces, The extended finite element formulation is employed to model crack in
reinforced composites and to avoid remeshing while maintaining the required acceracy of results. Combination of XFEM to
maodel arbitrary crack and traction—separation formulation enables the model to simulate mixed-mode crack propagation and
crack-healing with different fiber orientations. Examining the resulls shows thal the proposed model maintains the precision of
direct modeling of SMA fibers while decreasing the computational costs and complexity of modeling significantly.
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1. Introduoction

Shape memory alloys (SMAs) are among the most popular smarl materials uvsed in different applicalions such as:
stents and sell-expanding micro structures in biomedical engineering, morphing structures in aerospace industries,
dampers in civil engineering applications and actuators in smart composile structures,

These malerials can undergo large deformation and dissipate large amounl of energy due to super elastic and
shape memory effect behaviors. The super elastic behavior occors when a loading—unloading stress cycle occurs
al a fixed temperature value, allowing the material (o return Lo ils original shape. The shape memory effect occurs
when SMA underpoes a loading—unloading stress cycle with some inelastic strain, while no reverse transformation
OCCurs,

Aclive composiles have recenlly been vsed in different areas, with many devoled researches (o examine their
behavior. Some micromechanical models, proposed to predict the thermo-mechanical response of unidirectional
SMA composites | 1-3], performed well, but with the cost of increased complexity of modeling.

Several numerical studies investigaled SMA reinforced composite behavior by the finite element method [4-17].
For insiance, Lagoudas ef al. [4], Marfia et al. [5] and Bodaghi et al. [6] studied the thermo-mechanical response
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of 5MA composites based on the laminale theory, and used the finite element method to simulate matrix and SMA
layers. Some studies simulated SMA composites based on the laminate theory [7], and the classical plate theory [8].
by the assumption that SMA wires were distributed wniformly in the matrix. Gomsheie et al. [9] introdeced a
nonlinear finite element method based on shear deformation theory to model SMA composites, with a perfect bond
between the matrix and wires.

The thermal buckling behavior of SMA composites was investizaled by Lee et al. [10] based on the linear
buckling formulation, using the two-node elements for SMA wires and four-node shell elements for the matrix. Park
el al. [11] studied the problem of composite plate with embedded SMA fibers using the first order shear deformation
theory for investigation of influence of SMA fibers on thermal posi-buckling deflection and frequency. Later, Marfia
and Sacco [12] proposed a non-linear homogenization method Lo examine the buckling behavior of laminated SMA
composiles. Furthermore, a 3D hierarchical multiscale method has been recently presented by Fatemi et al. [13] lo
investigale the macroscopic and microscopic behavior of SMA [iber reinforced composites.

One of the polential SMA composite applications is in smarl malerials for crack repair or healing. Several
experimental studies were dedicated Lo examine crack closure in SMA composiles [18 19] and self-healing ol metal
malrix onder lensile stress by SMA-wire reinforcement [20,21].

There are valuable studies Lo investigale the failure mechanism of fiber reinforced compesites [22]. namely the
intralaminar damage model of progressive failure of composites by Riccio and coauthors in [23.24] based on energy
balance and cohesive damage model. However, limited numerical studies on crack closure in SMA composiles are
available. Araki [25] used a micromechanical method (o investigale the crack healing based on the siress intensify
factor. The finite clement method was adopled to simulate self-healing, and to model embedded fibers and matrix
separalely, with the assumplion of either a poor or a perfect bond between reinforcement and matrix [26,27].

From numerical perspective, the extended finite element method (XFEM) method, usually adopted for simulating
crack propagation in differenl staic and dynamic problems [28-31], shear bands [32.33], mulli field problems
[34,35], dislocalion [36], and cohesive crack simulalions [37-39]. has been extensively developed. In contrast lo
modeling crack growth with the finile element method, which requires remeshing when the crack extends inlo
elements [40-47], the extended finite element method is capable of modeling arbitrary discontinuilies without any
remeshing [43], which facilitates Lhe crack propagation simulalions |38 39]. XFEM cohesive based models have
also been increasingly used for modeling crack propagation in fiber compesites; simulation of delamination in
unidirectional reinforced composites [44,45], mode [ fracture of unidirectional carbon/epoxy composites [46], and
zigrag delamination under mode 1 loading [47]. Accordingly, XFEM is used as a robust method to crack simulation
in this paper.

To the knowledge of the authors, this study presents the [irst simulation of crack-healing that does not need
direc! and separate modeling of embedded SMA fibers, matrix and their bonding. The proposed model decreases
the computational complexity of direct models, especially for simulating composites with large number of SMA
fibers. In addition, this method exceeds previous works in its ability lo simulate crack propagation in SMA reinforced
composiles with different fiber orientations and its polential o simulale mixed-mode crack propagation and healing
in various loading conditions.

In this work, a new approach is developed based on an adapling cohesive formulation to simulate general crack
healing behavior in SMA-fiber composites. In the proposed model, based on the cohesive idea. the stress strain
of SMA fibers is converled o a lraction—separation law and is lumped on the crack surfaces. During the loading,
traction increases on the crack faces, which depends on the existence of bridging fibers, the crack direction and the
crack opening. Due to the fact that fibers in different parts of crack experience different Tevels of slress and strain,
therefore, values of martensitic volume fraction of fibers do not match; leading to a varying cohesive response along
the crack path. In facl, the cohesive response adapis itself for different bridging fibers.

A schemalic self-healing process in a cracked specimen is depicted in Fig. |. Before the iniliation of mechanical
loading, fibers are stress and strain free (Fig. la). During the mechanical loading, the crack propagates, and the
fibers begin to strengthen the specimen by the brideing effect (Fig. 1b). By increasing the temperature, the strain
decreases due to the reverse phase transformation of fibers, leading Lo crack closure and healing (Fig. 1¢).

The present study consists of the (ollowing discussions. Section 2 briefly demonstrates the shape memory alloy
constitulive model, followed by presenling a direct model Lo simulate the healing process withoul crack propagation
in Section 3. Then, the proposed adapling cohesive crack model is presenled. which includes discussion on Lhe
extended finite element model, cohesive zone modeling and propagation algorithm. Section 4 verifies the model by
solving benchmark bending. tension and mixed mode fraclure problems, followed by necessary discussions. The
concluding remarks are then provided in the conclosion seclion.
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Fig. 1. Schemabc crack-healing process doe 0 thermomechamical foading (a) mitial state, (b} mechanical loading {(bndmng fbers), {c)
thermal Ioading (healing process).

2. SMA constitutive model

The constitutive model proposed by Boyd and Lagoudas [48] is used in this study. Accordingly, the lotal strain
consists of two parts of thermo-elastic #™ strain and inelastic ™ strain:

E:EM-!-E’m “:I

The inelastic strain generally includes two parts of the transformation strain £ and the plastic strain =F. The
plastic strain is assumed negligible, and =" = &' [49]. Accordingly, the Gibbs free enerpy. which is a function
of independent variables of stress o and temperature T, and the inlernal siale variables of the martensitic volume
fraction £ and sirain £ can be writlen as [49],

l |
Gio. T.E.e) = ——0o: 80— —o: [aT —ThH)+ =]
2p P @)

T 1
+e [{T — T —T!n{--—}] — 5T 4+ np+ = fiE)
Ty o

where ¢. sy, wg and Ty are the effective specific heal, the effective specific entropy, the effective specific internal
energy and the reference temperature, respectively. In addition, S and e are the effective compliance and the
thermal expansion Lensors, respectively. The effective malerial properiies are determined from the martensilic volume
fraction £ [49]:

S(E) = 8" +e(8 - 84 (3)
aE)=a’ + (@™ —at) (4)
c(€) = et 4+ E(cM —cM) (5)
(&) =58 + 205" — s (6)
wp(E) = uit + E(udl —uily (7)

where A and M represent the austenilic and mariensitic phases, respectively.
The transformation strain and martensitic volume fraction during the forward and reverse lransformations are
refated as [49]

&= AE (8)

where A is the transformation tensor,

E mui E=0
J’i = 2 E;E_Fr . {gi
EMF E = ()

with

7= \/E e (10)
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E‘-fz,la'%nef-rn-’- (11

™ is the maximum transformation sirain, o is the deviatoric siress tensor, and &'~ represents the transformation
strain at the reversal point (§ = | for the martensile reversal point, and £ = 0 for the ausienite reversal point).
Using the second law of thermpdynamics, Eq. () can be written in the following form [49]

{ﬂ':ﬂ—p%)f:n’ézﬂ (12
where  is determined from o, T and £ [49],

mieg, T.E)=a: A+ éa: AS: o+ AeiT —Th)

—pAc (T —Tp)—TIn| =} | + pA5T — pAug — —
Ta dE
f is the hardening function, defined by Eq. (14} based on the Boyd and Lagoudas [48] model
I a
—pbME 4 (e E =0
fe=113 (14)
pr"‘Ez g — ) E<0
where B4, 6™ 1y and pu; are the model paramelers
b = — Asy(T¥ —TY)
b = —Ag(T} — T
|
u1 = 5p AT +T§) — pdug (15)

I

My = Eﬂrﬂfnfo +TH - Tﬂ — 'l";':l — pduy
|

E-pASD{T:-‘ +R =T —TH

£ is assumed positive during the forward martensilic transformation. As a resull, ¥ must have a positive value
in the forward martensite transformation, while it becomes negative during the reverse martensilic transformation.
When no phase transformation is taking place, £ = 0 and Eq. (12) remains satisfied. These processes are defined
by the following transformation function & [£9],

T—Y E£=0 (A=M)
—w—¥ E=0 (M= A)

In this study, a one-dimensional constitutive model based on the key variables of lemperature T and total sirain
& is employed for SMA fibers. Before initiating the loading process, fibers are in the fully austenilic phase, and the
martensitic volume [raction is zero, £ = 0. During the loading and heating, deformation and stress of the specimen
are updated in each siep. In addition. the martensitic volume fraction £ is updated in each step to caplure the forward
and reverse transformations.

For the forward phase transformation under the mechanical loading. Eq. (16) can be solved for £ as [49]

|
£ [inlem 4 E;-.SarE + pAspT — T,”}] (17)

= p_b'H
Alter initiation of thermal loading. fibers initially behave elastically. When the lemperature is between 7% and
TA (T} < T = T}) the reverse phase ransformation occurs, and Eq. (16) can be solved for & as [49]

I 1 =
E= oz [|a|£m -+ Eﬂ.Sl:r‘ + pAsg(T — Tfj] (18)
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Fig. 2. Typcal forward and roverse transformation paths.

Substiluting Eq. (16} into the one-dimensional form of tolal strain (Eq. (19}), the tolal strain for the forward and
reverse phase lransformations can be writlen as [49]

e= S8 +alE)T —Ty) + &' 19)

£ = 8(¢)e +aEXT — Ty) + ™ sgn(a )& (20)
Based on the phase lransformation funcon & (Eq. (16)), the forward phase transformation occurs when [49]:

d=0=r=Y¥ (21}

Subslitoiing £ = 0in Eg. (21), leads Lo a relation between o and T. which represent the beginning of forward
phase transformation in different temperatures. The following nonlinear relations describe the equation of colored
lines in Fig. 3.

(i) Imitiation of forward phase transformation: # =Y. £ =0

(ii) End of forward phase transformation: w = ¥, £ = 1

(iii) Initiaion of reverse phase transformation; = = —¥, £ = |
(iv) End of reverse phase transformation: = = —Y, £ =10

Al the end of loading part, each fiber has a martensitic volume fraction, which depends on their corresponding
loading condition. Therefore. cach fiber has a different stress—strain path, which depends on the geometry of fibers
and the undergoing sirain. As a resull, some fibers experience a complele cycle of forward and reverse phase
transformation, while the others may experience only a pariial phase transformation cycle. Fig. 2 represents the
lypical complete and partial cycles of forward and reverse phase transformation paths for a fiber. Fibers thal undergo
a lower level of stress and experience a partial cycle of forward phase (ransformation have lower T.*; their reverse
phase transformations initiale sooner (Heg. 3).

Fig. 3 shows a lypical loading/heating path for an SMA fiber in a composite. The loading starls with an initial
high lemperature (point 1) when the fiber is in the fully austenile phase and continues up lo point (2). Increasing
the load al the same lemperature leads to the forward phase transformation between o™ (point 2) and r:r}‘ (point
3). The healing parl initiates al point (4) with a Hitle decrease in stress due 1o the increase of lemperature under a
steady external loading. When the stress in fiber reaches o, the reverse transformation starts al poinl (5), causing
a decrease of strain in the fiber and a complete shape recovery by point (6) (as a resull of siress increase). Afler
completing the reverse phase transformation, healing causes an increase in the fiber strain, which leads to a decrease
in the stress level.

3. Cohesive model of healing process

The objective of this paper is lo present an effective method for simulation of healing process of SMA composites
based on adapting cohesive crack idea. To this aim. a specific length near the crack faces for each fiber is assumed
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Fig. 4. Typical rachon-separabion law oblmned from the SMA stress—stram response.

to represent the local debonding between fibers and mairix. A traction—separalion law is then derived from the
siress—sirain response of SMA fiber to determine the traction acting from fibers on the crack edees. Fig. 4 depicls
such a Lypical SMA-based traction—separation law, where the separation is compuled from the fiber deformation
along the Tocal debonding length. Fibers bridging different parls of the crack undergo differenl levels ol siress,
strain and marlensilic volume [raction. As a resull. an adapling traction—separation law will be obtained for each
liber.

In the loading process, deformation. crack opening and traction on the crack faces are updated in cach siep.
During the heating process, increase of lemperature causes the reverse ransformation in remaining fibers, which
penerates sufficient normal traction on the crack faces for crack closure.

3.4 XFEM displacement field

To betler capture the healing process of cohesive crack in SMA mmjpositm, the well-known XFEM formulalion
is adopted. The displacement field u consists of the classical u®*™ and the crack-slip u" displacements,
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respectively [28]:

u¥FEM ) — uP ¥ alin (22)
w M) — | 3 " Nylug | + | Y NjxHxae; (23)
i i

N is the standard finite element shape function, and M is the Heaviside function, representing the crack
disconlinuous displacement field

+1 (x—x*)m:=0

“¥
O (24)

Hix)= I
where x* is the projection of x on crack line and m, represents the normal vector of crack al point x*.
3.2, Cohesive formularion
In order io determine the traction on crack faces, an idea similar lo spring elements beiween the crack edges is

assumed, as depicted in Fig. 5.
Crack opening along the fiber direction can be delermined from [38],

EE = H: == HE_ (25)

H: - Z{Nﬂ[f + Nil(l — Hya;) epar (26)
i

o= Z{H,-uf + Ni(—1 — H;) epar (27)
i

where e, 15 the unil vector along the fiber direction. This approach allows for crack propagation in composites
with differeni fiber directions. Traction of crack surfaces r° can be determined from the typical cohesive law of
Fig. 4.
The equilibrium equation can be wrilten as
Jexo — Sine— feon =0 (28)

where f,... fim- and [, are the external, intemnal and cohesive force vectors, respectively.
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The force veclors can be writien in lerms of the standard and enrichment parts:

Jou="Fim + f%m’ (29)
fEI:‘ JF;IJ:: + EIJ {301
where

= (o aar
f (8) 02

;‘;:[ N,‘T.rfrr-l-f Nibd1?
Iy i

(31)

(32)
::?:f Nf‘,ff;TdFr-l-f Nivbd 12
Iy ¥
{1 is the domain which consists of lhe cohesive inlerface and 'y is the tracion boundary. b and T are body
force and external Lraction vectors, respectively. Here, N is the standard finite element shape function and + is the

enrichmenl function.
The cohesive force vector can similarly be defined

Feiii=Fok YTk (33)

The cohesive formulalion requires equivalent tractions on the opposite face of crack (r*" and =" represent the
traction of upper and lower crack faces, respectively),

=gt =g (34)

that leads to f7; =0 as

i =[ N dIit 4 = N.—r"df:' =10 (35)
l'f.lﬁ —_— f N]{I _H]Jﬂ! r+ﬂrlr|r+ f N]{_I Hjiﬂg I'r_df1r_
" (36)
zf Nigp.o°d s = | MItrodre
Is s

where M f * is the global shape funclion of equivalent spring element in the global coordinate, which can be defined
in terms of the fiber direction € and the shape function N; al the corresponding Gauss point

M= [2Niesiv.ex 2Niegisey] i

et and 1"~ denote the upper and lower crack faces, respectively, ™" is the crack path, and ex and ey represent
the global directions.
For each cracked element ¢, the stiffness mairix can be computed from

K,, K
K = By mil 33'
‘ [-Eﬂu Ky + Kl'ﬂl'l] (

where the subscripts u and o represent the standard and enriched degree of freedoms, respectively, and K. is
associated with the Heaviside enrichment degrees of freedom [S0].

sisy ¥ £ibY i
Km.,=j;c (/") & (w]")are (39)
where &; is the stiffness of equivalent spring element. based on Eq. (40).
E; A

E; is the modulus of equivalent spring element, and A; and L are the equivalent cross section area of fibers in
the split element and the debonding length, respectively.
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Table 1
The developed adapting cobesive Algonthme

1y Given the initial material propertics aod initial logding valees F = F + AF. T =T + AT | Compuie the initial

eyt

stiffness K |, and the extemnal force f)
(1) Compute Mg, wsing ™ =K | An,and update g, withar, = g+
() Gaven mr; o compule f,-ml based on Fg. {31

(4) Girven g, . compute f,-‘ld* based on Table (2)
i3y Compute K, based an Eq. (39), update K|

coft

(6} Compute the reaidual force £, =fr-”r —flim —fl
{7} Check the convergence urjtcril:m".l"l- E <ted.
IF Wb
Solver, = K Aw, for Am,  gotostep (3
ELSE
Check crack propagation criterion
FG =6,
update the crack geometry
o 1o step (3)
ELSE (G <G
update the external load & = F + AL | ond the temperature T =T + AT

oot step (20
EMDIF

EMDIF

For solving the equilibrivm equation (28), the ileralive Newton-Raphson method is adopled. Tables | and 2
illustrate the alporithm of adapting cohesive method.

3.3, Crack propagation criterion

In this study, the energy release rale ¢ is calculated in each step and compared with the critical energy release
rate of material (G ) lo determine the state of crack propagation. This is achieved by the eguivalent domain J
integral [38].

e f [EF;'_;R.‘J - l.r.1151_f] g, jdA +f [wﬁu - r:F.-ju“]qn_,-d.r
I A petype- (41)
W= =il

2
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Table 2
Alponthm for the developed adapting troction—scparation law for crack-healing.

(1) Given &3 and T, compute £
1) Updare r:;r;.u i u:rl:” A .andﬁl}lh-asm on B, {161
(3) Updare T T T4 and T based on Fq. (16)

(41 Compute 7)1, hased on the trelion-sepatation diagam Fig, 4
(5) Compute £, . based on Eq. {171 ond Eq. (18)
IF mechanicul leading

rf iz 5g, =1

M

o, oET; -c-::r,. —>.;",-— e .-‘_‘L'.i'{r ]‘—,ﬂ.'ls =T, :Ii|

rica 5 =0

ELSE (heating}

by s ¢ =1

A oA -:lrf-erx“_!__ rhd e d
e i ) I|-rl.s FSAS (] 4 p A, T T, :]
T T =& =0

Compute Ag; =a (& )T -Ty)+&"™ sgnlel K (Bq. (200

Compute &, =E':-:' —As,

Update T:.— hased on & =r|'.' xSr

EMDIF

(6) Compute f°" based an Eq, (36)

where A is the area inside the J contour. The crack propagation direction is calculated by the maximum hoop stress
criterion. Accordingly, the angle of crack propagalion # is oblained by [51],

K—m Cos 3 3 Kig mﬁ{ )sinfey = | (42)
where Ky and Ky are the mode 1 and mode 11 stress intensify factors, respectively. which are calculated by solving
the following equations, based on the auxiliary fields of the inleraction integral approach [28],

M= f !Erijuﬁ" + gﬁuuu = urHEUl q.j +f [u,lﬁu — :F.‘_F'HET' - D’S’uit“] gn jds
[T (43

“JH [D’usﬂur 4 ['_Fu_ El}]
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Tahle 3
Materul propertics of shape memony alloy [49].
Progerty Value
Mariensite clastic modolus, EM {MPa) 35000
Astenite elastic modalus, B (MPa) 4600
Thermal expansion coeflicient, aMA (k) Ml
Maximum trmnsformation” stram, ™ 0056
Maximum stram 008
Paisson's ratio, oM 133
Siress influence cocfficient, ¥ (MPafk) T4
Martensite start iemperatere. Te¥ (K 245
Mariensie hmish temperatore, 'rr'“ (Kl 230
Astenite starl emperature. T, (K) 70
Astenite finish lemperature, Te (KD 280
f' -
J"J
z
3 _"-"'r 1=
3 54 |2
g - 2
£ -
f".’ . —
Sizazoagh) e trcchastical Boind |
i thezmmnl lead
i 1] LK (] 2

Tz Skep

Fig. 6. Typical mechanicalithermal |losding vanations.

where the auxiliary fields «™*. o™ and % are oblained from reference [51]. K; and Ky can be computed from
M according o

5

M= W (KiK' + KnKji®) {44)
Formode I- K7™ =1, Kf7" =0 (45)
Formode I1: K% =0, K& = |

4. Numerical simulations

In this section, first the developed cohesive exiended finile element method is validated by a direcl model thal
exphcitly includes all SMA wires. The composile model consisis of a britile matrix and shape memory alloy wires.
with properties defined in Table 3. A unpiform heal change in fibers is considered during the healing process and
the heal transfer between Lhe matrix and fibers is neglected.

Fiz. & depicts the mechanical/thermal loading process used for the analysis. A pseudo-lime step is considered Lo
define the mechanical/thermal loading process. Al the first 100 lime steps, the mechanical loading is increased and
the lemperature remains steady. Then, during the second part of analysis, the mechanical loading is kept steady and
the temperature is increased. SMA fibers are assumed stress and strain free before applying the mechanical loads.

4.1, Divect modeling of the healing process

A model containing SMA fibers is adopted to verify the accuracy of the cohesive model. The matrix elements are
modeled by standard 4-node elements. and SMA fibers are stimulated by embedded truss elements, whose sliffness
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Fig. 8. Four-pont bending beam, (a) and (b} represent the location interval of fibers for wsotropic and orthotropic poblems, respectively.

is added directly to the sliffness of matrix elements. In this model, fibers are tied to the matrix along the length
ol the fiber, except for a specific length (Lg) near the crack edges, where no connection is assumed (Fig. 7). This
length is assumed to represent the local debonding zone for each fiber.

4.2, Four-point bending problem

In the first example. a four-point bending problem with SMA fibers, which are perpendicular Lo the initial crack,
is considered. The configuration is depicled in Fig. 8 and the matrix properties are described in Table 4. The same
Q4 mesh confipuration of Fig 7 is used without any (russ elements (since the proposed method does not need
any direct modeling of SMA fibers). No crack propasation analysis is performed in this example. The analysis is
repeated for several Tocal debonding lengths (L = 2.5, 7.5 and 17.5 mm) and onder the same mechanical and
thermal condition.
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Table 4
Matenal properties of matnx
Properny Value
Elastic modulus, E (MPa) 1300
Poisson's ratia, 021
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Fig. 9. Vamations of crack opening in time for vanous fiber lengths L4,

The analysis is performed in the plane strain state, with a force control condition. Each of the SMA fibers has
a cross section of 2 mm?, which represents a wire with 1.6 mm diameter (Volume fraction = 2%). A structured
mesh of 2430 elements is used (o model the beam.

4.2.1. Isotropic matrix

In this pari, the matrix is considered isolropic with 9 fibers positioned across the length (a) of Fig. 8. The
bond belween matrix and fibers is neglected excepl at the end point of fibers [26]. For this purpose, in the direcl
model, the local debonding length is assumed equal to the total length of fibers (L = Ly). The four-point bending
beam is analyzed under the point loading of 7000 N, with the initial lemperature of 320 K. and the temperature
increases (o 470 K al the end of heating part. Variations of the maximum crack opening in time step during the
mechanical/thermal loading processes, predicled by the direct and present cohesive models, are compared in Fig. 9.
The first part of the diagram (first 100 time steps) shows the resalts of loading process for 3 different Jocal debonding
lengths of fibers before initiation, during and afier completing the phase transformation.

The second part of diagram (second 100 time steps) shows the heating process that starts with a flat line from the
end of loading part o the beginning of the reverse phase transformation. It shows Hille increase in crack opening
due to the healing, but when the reverse phase transformation initiates, the fiber length decrease due to reverse
phase (ransformation causes approximately 70 percent of crack closure.

Fig. 10 displays variations of the traction—crack opening, at the middle of the lowest cracked element, for both
the direct and proposed cohesive models. Fibers in different posilions show different siress-sirain responses. The
mechanical loading (first 100 time steps) causes increases in both traction and opening in each fiber. Initiation of
the heating part (second 100 lime steps} leads to little increase of traction and opening due o the increase in fibers
temperature. The results show a gradual decreasing trend in the opening level by initiation of the reverse phase
(ransformation of the fibers near the crack tip (Fig. 11). Mear the crack tip fibers undergo lower level of stress and
straim, Ltherefore, have lower avsienite start lemperature. As a resall, the reverse phase transformation iniliates sooner
near the crack tip. Due to the initialion of reverse phase transformation of each fiber near the crack lip. the strain
level and the crack opening decrease. Consequently, the stress Tevel increases near the crack tp while a decreasing
trend is observed for the stress and strain in fibers far from the crack tip. This decreasing trend is clearly depicted
between points A and B in Fig. 10. Then. by increasing the temperature gradually. the reverse phase transformalion
initiales in fibers far from the crack lip and the crack opening of the beam decreases significantly.
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Error of crack opening for different local
debonding lengths at the final step

Local debonding length Errar
17.5 mm 4 8%
15 mm 25%
15 mm 005%

Figs. 9 and 10 show a good agreement between the proposed cohesive model and the direct approach for different
fiber lengths. As depicted in these figures, clearly, (he proposed method shows lower levels of error for shorler
debonding lengths. This is due 1o the adopied assumption that most of deformation of SMA fibers is lTumped in the
cracked region. This assumption is more accurate for shorier debonding length, as clearly seen in Table 5 for the
error of crack opening between the direct and adapting cohesive models for different local debonding lengths at the
final step.

4.2.2. Ohrthotropic matrix

In this pari. the matrix is assumed orthotropic with |4 fibers positioned across the length (b) of Fiz. 8. In a
direct model, this is achieved by tvimg each fiber o its commesponding matrix nodes along the fiber except for the
debonding length. Equivalent properties of the cohesive model are obtained from the orthotropic properties by the
rule of mixiures. The local debonding length for fibers (L) is considered 2.5 mm (L. /Ly = 0.12}. The orthotropic
[our-point bending beam is analyzed for the point loading of 6000 N, with the initial tlemperature of 320 K. and
the lemperalure increases o 470 K during the healing parl.
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Fig. 12 depicis the variation of crack opening for the specimen with long fibers tied to the matrix in their length.
During the first 100 steps. by increasing the loading, the crack opening increases linearly to reach point (1), and
the stress reaches o™ . As a resull, the forward phase transformation starts and the opening increases significantly.
Al point (2), the forward phase transformation is completed. The heating parl initiates al point (3), and the opening
increases gradually (7 < TA). During the heating part. the reverse phase transformation of the fibers located near
the crack lip starls sooner at point (4). As a resull, the opening decreases gradually to reach point (5) in fibers far
from the crack tip. Then, the reverse phase transformation initiates for fibers far from the crack tip. Il accelerates the
crack closure rate, leading (o complete reverse phase transformation al point (6). Clearly, the perfect bond analysis
shows a good agreement with the direct solution.

The results of the direct model show that the phase lransformation of fibers occurs near the crack where the
highest crack opening occurs. No phase lransformation occurs in other parts.

Fig. 13 illusirates the variations of predicted applied force versus crack opening under the same loading condition
for both the isotropic and orthotropic matrices, and for the direct and proposed cohesive models. During the
mechanical loading, the crack opening increases by the increase of loading. In the initial linear elaslic slage, a small
difference exisls between the isotropic and ortholropic cases, which is negligible in comparison with the nonlinear
phase. Due to different modulos of elasticity, the forward phase transformation in the isotropic case iniliales sooner
than the orthotropic one and, accordingly, the two cases depart each other after the phase transformation. Later.
the results show lower crack opening al the same loading value for the orthotropic case afler the forward phase
(ransformalion.

The heating of SMA fibers rosults in the decrease of crack opening up to 70 percent by the increase of
lemperature, as depicted with the horizontal part in Fig. 13, showing a significant crack closure for both cases.

4.3, Effect of varying fiber volume fraction

To further investigate the sel-healing properly of SMA composiles, various fiber volurne fractions are considered
for the same four-point bending composite beam and with the same loading condition.

The crack opening is compared for three different volume fractions during the loading and heating processes.
Results demonstrale thal the composite with lower volume fraction has a greater crack opening at the end of loading
part. Moreover, il is observed thal the crack opening for each [liber volume [raction remains positive al the end of
heating process, which shows thal the crack in all simulations is not fully closed due to the presence of external
load during the healing process.

Table 6 presents Lthe prediction of crack closure and martensitic volume fraction al the end of loading part for
each liber volume fraction. Both cases of 1% and 1.25% volume fractions show approximalely 704 crack closure,
while greater volume fracions show lower crack closures.
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Table &
Result of different fber volume fractions.

Fiber volume Crack closure  Martensitic volume Crack opeming at the  Crack opening o the
fraction (%) preseat (%) fraction ot the end of end of loading part cod of heating par

Ioading part {mm) {mm}
1 67.76 1 ) F 01987
125 033 1 05359 0. 1667
1.5 6115 (593 0.3425 01440

Analysis for each fiber volume fraction is performed with the same loading and heating condilion. Both cases of
1% and 1.25% volume fractions show complele forward and reverse phase transformations. However, for the 1.5%
volume fraction, the forward and reverse phase transformations are not completed, as illustrated in Fg. 14,

Based on the fact that the composite beam with lower fiber volume fraction is more flexible than the same
composite beam with higher fiber volume fraction under a specific load, the maximum crack opening of the beam
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Fig. 16. Maximum traction—crack opening responses for various volume fiber fractions.

with lower fiber volume fraction is greater and the forward phase transformation of fibers iniliales sooner, as depicted
in Fig. 15.

Fig. 16 demonsirales the lraction-crack opening responses for each fiber volume fraction. They show a linear
decrease of siress level for 19 and 1.25% fiber volume fractions, as depicted in Fig. 16. This decreasing trend occurs
due to the difference in initiation of the reverse transformation in fibers. However, for 1.5% fiber volume fraction,
the forward phase transformation is not completed for any of the fibers. Therefore, by increasing the lemperature,
all fibers inmitiate the reverse transformation at the same Hme.

4.4, Tension probiem

The same geometry and fiber volume fraction as the four-point bending composite beam is assumed, but the
lensile loading condition is considered (Fig. 17). The simulation is repeated for two different local debonding lengths
of fibers: 2.5 and 7.5 mm (L = Lg). The tensile pre-cracked beam is subjected to a wniform siress loading, which
increases o 7000 MPa under the conslant lemperature of 320 K, while during the healing part, the lemperature
increases 10470 K.
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Table 7

Matenial properties of matrix.
Property Value
Elasbc modulus. E {MPa) 5800
Povizson's ratio oM
Fiber volume fracbon % 1

The resulls, depicted in Fig. 18, exhibit a more linear forward and reverse phase transformation bebavior than
the bending beam due io simplicity of the loading condition.

Results of simulations under different loading conditions have shown that the adapting cohesive method agrees
well with the direct model. In addition, this model overcomes some of the complexities of direct models because
it does not require separale modeling of the libers or direct computation of the sliffness of fibers.

4.5. Crack propagarion problem

One of the difficultics in analyzing fiber-reinforced composite problems is the crack propagation. Hence, the
developed algorithm is now adopled to investigate a complex mixed-mode fraciure propagation problem. The
specimen geometry and boundary conditions are illustrated in Fig. 19,

Fibers are distributed in two directions (—45/+445), so the matrix can be assumed isotropic with properties listed
in Table 7. The initial crack length is 2 mm, and the local debonding length is considered 5 mm for fibers.

The specimen is simulated under the point load of 1090 N with Lhe inilial lemperature of 320 K. During the
heating part. the temperature further increases to 160 K.
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Fig. 20, Crack propagation path.

Since the fibers are distributed in two directions. the developed method determines the crack opening in each
direction, and then computes the traclion on crack edges. Fig. 20 illustrates the predicted crack propagation path.
In the loading pari, the crack opening is increased, and when the fraciure energy reaches the fracture toughness, the
crack starls o propagate. As a resull, more fibers bridge the crack. Fibers at different parls of crack graduvally begin
the lorward phase transformation. More fiber brideing leads Lo the increase of loading capacity until the syslem
reaches a balance al the end of loading part, and the crack propagation stops.

Crack opening resulis during the loading and healing processes for three points A, B and C, localed al x = —7,
x = —1 and x = 6, respectively, are presented in Fig. 21. Point A represents the maximum crack opening which
is aboul 0.5 mm. Other points undergo lower openings with maximum values of 0.3 and 0.18 for point B and C,
respectively. Crack opening decreases during the healing process due 1o shape recovery of fibers.
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As illustraled in Fig. 22, point A experiences a complele phase transformation, whereas, in other points on the
crack, which undergo lower openings, only a partial phase lransformalion occurs. For instance. in points B and
C, the martensilic volume fractions at the end ol loading part are approximalely 0.7 and 0.4, respectively. Fig. 22
shows thal the reverse phase transformation in poinl A has not complefed due to the presence of external load.

Table 8 compares the crack opening displacements afler the loading and heating parts for different points. It
demonsirales thal poinis B and C have a greater rate of crack closure than point A. As a resull, greater crack
closures occur near the crack tip, although it does nol exceed 62% in any point of the crack.

Deformed confipurations al the end of loading and healing parts are displayed in Fig. 23. 1L clearly shows how
the crack closure occurs afler the healing process.

The stress conlours al the end of heating and loading parts, depicted in Figs. 24 and 25, demonstrate that the
highest stress concentralion occurs near the crack tip after the loading part. During the heating process, the reverse
fiber transformation (o the austenile phase reduces the crack opening. As a resull, the stress concentration level
decreases near the crack edges and crack tip.
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Tahble 8
Result of crack propagation analysis st different points.

Poim Crack closure (%) Martensitic volume Crack opening 1 the  Crack opening @ the
fraction al the end of end of loading parl end of heating part
londing parl {mm]) {rmm)

A 53 I 03 0.235

B &l 0706 0305 0119

C 6l 0392 0177 0067

Detormed conhiguration (a) Detormed configuration (b}

Fig. 23. Predicted deformed configurations near the ceack (with magnification fector of 410 (a) Afler the loading part (b) After the hesting
part.

To examine the mesh independency of crack propagation analysis, this problem is now examined with three
different meshes, depicled in Fig. 26. Fig. 27 clearly illusirales thal the crack propazation path is nol sensilive Lo
the adopled finite element mesh. Moreover, these results clearly show thal the proposed approach can efficiently
model mixed mode crack propagation and healing problems,

5. Conclusion

In this study, a new method has been presented for SMA fiber composile simulation and its self-healing property.
A cohesive formulation has been developed to examine the crack behavior and crack healing in SMA composiles.
Traction on the crack surfaces due Lo the presence of fibers is simulated with an adapling lraction—separation law,
with an emphasis on the assumption that the fibers forward phase transformation occurs just near crack edges, with
no phase transformation in other areas due to lower sirain levels in fibers. A specific length is considered for fibers
near the crack edges, to represent the local debonding between fibers and matrix.

Moreover. a direct model has been wsed for wnidirectional fiber composites 1o validate the main proposed
approach. Results of the two models show a good agreement and illustrate thal the mew proposed cohesive
formulation performs well for composiles with shorler local debonding lengths.

Furthermore, adapting an extended finite elemenl formulation based on the critical energy criterion has allowed
for modeling arbitrary mixed-mode crack propagation and healing in SMA composite problems. The developed
cohesive formulation readily allows for analysis of different fiber orientations. The results show (hat the traction,
which exists on the crack surfaces due to the fiber reverse transformation during the heating process, provides
sufficient force on the crack faces for crack closure or healing. The amount of crack closure depends on the fiber
volume fraction, loading and heating.
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Fig. M. Stress contours (a) afier the loading part, (h} afier the heating pari.
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Fig. 25, Stress contours (a) afier the loading part. (b after the heating part
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Fig. 27. Crack propagation peth for three different meshes.
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