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A B S T R A C T   

A new concurrent multiscale method based on the maximum entropy statistical method is proposed for the 
analysis of amorphous materials. In addition to reducing the number of degrees of freedom, any irregular 
structure of amorphous materials can be accurately analyzed. The amorphous structure is generated from a solid 
crystalline structure by a heating/cooling process without the need for any specific independent technique to 
create such a random structure. The method is expected to perform efficiently because of its entropic and 
irregular intrinsic. Regions with moderate conditions are discretized by the entropy-based finite element method 
while the severe parts are simulated by the present atomistic-based multiscale technique. The new proposed 
approach allows for accurate analysis of amorphous structures across multiple scales and does not suffer from 
conventional complications such as the standard Cauchy Born rule and consistency of the molecular structure 
with the standard finite element geometries. 

The conventional Cauchy-Born rule cannot be directly used due to the non–crystalline microstructure of the 
material. A remedy is proposed based on the meshfree techniques by constructing a continuous atomic defor-
mation field from the imposed macro deformation gradient. The resultant deformation gradient and the stress 
field remain consistent in micro scales. In addition, a genetic algorithm-based method, which has less sensitivity 
to the choice of initial point and number of parameters, is adopted for the maximization of the entropy function. 

The silicon amorphous structure is considered for MD simulations. It is obtained by quenching from a melted 
sample. The MD-obtained structure is further analyzed and the predicted displacements and stress contours, as 
well as the density and radial distribution functions are examined to assess the state of the material. Then, the 
proposed meshfree technique is applied to construct the continuous form of the deformation gradient on the MD 
model to improve the accuracy of the solution. The proposed concurrent multiscale method is verified and then 
employed to simulate an amorphous silicon specimen. Finally, the effects of sample size, strain rate and 
quenching speed on rupture stress and strain in different 3D tensile simulations are investigated by the proposed 
multiscale method.   

1. Introduction 

Experimental and numerical studies of the structure of materials 
have been frequently reported in recent years in order to determine their 
mechanical characteristics. Due to the large demand for the production 
of new materials with complex structures and their application under 
extreme loading conditions, more attention have been directed towards 
the development of novel and efficient computational methods to allow 
for accurate simulations of such complicated problems. 

Depending on their structure, metals have regular structural patterns 
that include crystal-like repetitive molecular configurations. In contrast, 

there are other materials with less or no repetitive structural patterns, 
such as polycrystallines, polymers and amorphous metals (see Fig. 1). In 
recent years, the use of these materials, especially amorphous materials, 
has grown significantly due to their distinct mechanical and chemical 
properties. For instance, they can be used as high-strength structural 
glasses (Rinaldi et al., 2011), hydrated cement in the processing of 
concrete (Hufnagel et al., 2016), coating materials (Joshi et al., 2015; 
Liu and Zhang, 2014; Wang et al., 2016; Wang et al., 2017), fillers (Kahn 
et al., 1995), and amorphous polymer elastomers in structural separa-
tors (Milani and Milani, 2014; Mouton, 2013; Mouton, 2013). Given the 
increasing use of these materials and their unique properties in high- 
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Fig. 1. Different atomic structures.  

Fig. 2. Schematic model of the micro Ωm and macro ΩM regions.  
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tech industries, the need for accurate modeling and analysis is crucial to 
determine their properties and to accurately predict their behavior 
under various loading conditions. 

Considering the complexity of the structure of these materials, a 
novel computational method is developed and implemented in order to 
take advantage of entropy-based concepts in a multiscale method to 
accurately simulate the response of amorphous materials. In the 
following, the existing methods of analysis of amorphous materials are 
briefly reviewed and the corresponding multi-scale methods are 
explained. More emphasis is placed on the concurrent multiscale 
methods. Moreover, the statistical formulation of the maximum entropy 
is reviewed and further details of the proposed multiscale method are 
presented. 

Accurate modeling of nano-scale materials has been frequently per-
formed with molecular dynamics to obtain their basic properties. For 
instance, Abdolhosseini Qomi et al. (2014) studied different proportions 
of the amorphous calcium silicate hydrate to optimize the properties of 
cement. They examined a set of mechanical properties such as modulus 
of elasticity and hardness in the indentation process. Bauchy (2017) 
simulated the atomic structure of cement and concrete with the help of 
springs and trusses and studied their hardness, toughness and creep. 
They used X-ray scan results to study the irregular structure of calcium 
hydrate silicate. In another study, Bauchy et al. (2015) obtained the 
brittle properties of calcium hydrate silicate structure by molecular 
dynamics to determine the increase of ductility with a decreasing ratio 
of calcium to silicate. 

Fan et al. (2009) introduced a new concept of interatomic free space 
and studied the amorphous structure of glass metals using atomic sim-
ulations to investigate the formation of shear bands and their high 
strengths at different temperatures. This concept was different from the 
free space defined in hard atomic sphere models of crystals based on 
separate stable clusters with interconnecting zones. The effects of strain 
rate on compression tests and the cooling rate on strain localization were 
studied by Shi and Falk (2006). Moreover, they performed shear band 
modeling of frictionless indentation of an amorphous film under 
different boundary conditions by three-dimensional atomic modeling of 
amorphous glasses (Shi and Falk, 2007). 

Falk and Maloney studied elasticity, plasticity and fracture proper-
ties of amorphous materials by molecular simulation and Huffenel et al. 
reviewed the structural theories of glass metals (Hufnagel et al., 2016; 
Falk and Maloney, 2010). Also, Falk and Langer examined the fracture 
response of these materials by shear transition theories (Falk and 
Langer, 2011). Demetriou et al. (2009) modeled shear bands in the 
deformation of amorphous materials using a large-scale method and 

Fig. 3. An amorphous silicon structure within a typical irregular element α.  

Table 1 
Parameters of the employed genetic algorithm.  

Population (size) Real valued (100) 

Selection Stochastic uniform 
Elite count 2 
Cross over Heuristic 
Mutation Adaptive feasible 
Stopping criterion 10− 10  

Fig. 4. A typical contour of entropy-based shape function for an irregular 
3D element. 
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Park et al. (2014) adopted the same method to determine the adhesive 
area on the interface. 

Macroscale methods, such as the finite element method, have also 
been used for modeling amorphous materials. Park et al. (2007) adopted 
FEM to investigate the effect of volume percentage on the mechanical 
properties of amorphous copper with crystalline copper coatings, 
including fracture ductility. They concluded that the volume percentage 
would play an effective role in the strain–stress response of these ma-
terials, leading to a brittle failure in lower volume ratios. Linear and 
nonlinear modelings of amorphous materials were conducted by the 
commercial finite element software Abaqus by Rinaldi et al. (Rinaldi 
et al., 2011; Rinaldi et al., 2011). They used quasi-point defect theory to 
study softening, large deformation, and various mechanical responses of 
amorphous glassy polymers at different temperatures. They introduced 
disordered structural units in interaction with their close neighborhoods 
in the length order of the repeated unit cells, to capture irregularities by 
quasi-point defects. Moreover, they determined the viscoelastic modulus 
of composites with short glass fibers and investigated the effect of 
orientation of constituent fibers. The irregular structure of fibers was 
generated by the random Mont Carlo model (Gusev, 2017). 

Timel et al. employed shell elements for glass and interlayer rein-
forcement membranes to model impact-resistant glasses and compared 
the experimental results with finite element simulations (Timmel et al., 
2007). Holopanen et al. proposed a model based on the fatigue of 
polymer glasses under cyclic axial loads (Holopainen, 2014; Holopainen 
et al., 2017). They used lattice structures to evaluate the growth of voids 
in these materials under large deformations and studied their hardness, 
softening and plastic instability under non-uniform loadings (Hol-
opainen, 2013). Moreover, Foyouzat et al. studied the fracture behavior 
of amorphous shape memory polymers (SMPs) using a phase transition- 
based constitutive model within an XFEM methodology (Foyouzat et al., 

2020, 2021). They also examined the fracture parameters in two com-
mon thermomechanical loading cycles, namely, stress-free- strain re-
covery and fixed strain–stress recovery processes (Foyouzat et al., 2021). 

In view of the fact that macroscale modelings provide less accuracy 
compared with microscale simulations, especially in situations where 
the material is subjected to severe conditions, multiscale methods 
constitute powerful alternatives to combine the efficiency of macro- 
scale methods and the accuracy of atomistic-scale modelings (Alizadeh 
and Mohammadi, 2019; Fish, 2010; Fish and Yu, 2001; Tadmor and 
Miller, 2011; Wagner and Liu, 2003; Xiao and Belytschko, 2004). 
Nowadays, several multiscale simulations have been developed and 
applied to different engineering problems by both the concurrent 
schemes (Alizadeh et al., 2016; Kochmann and Amelang, 2016; Shenoy 
et al., 1999; Tadmor et al., 1996; Moslemzadeh et al., 2019) and the 
hierarchal methods (Bayesteh and Mohammadi, 2017; Forest, 2002; 
Hassani and Hinton, 1998; Hassani and Hinton, 1998; Dehaghani et al., 
2017). These approaches differ in the type and number of degrees of 
freedom, the level of accuracy, and the way by which the regions and 
scales are connected. Talebi et al. (2014) reviewed hierarchical, semi 
concurrent, and concurrent multiscale methods and presented a multi-
scale framework for simulating cracks in solids. Bansal et al. proposed a 
multi-split element for 3D modeling of materials with uniform and non- 
uniform distributions of heterogeneity (Bansal et al., 2019). Further-
more, Nguyen et al. employed an X-ray scan for multiscale modeling of 
the foamed concrete and showed that the interconnection between pores 
plays a key role in the failure of concrete (Nguyen et al., 2018). For 
predicting the effect of parameters on results, a deep high-order neural 
network approach was employed by Nguyen et al. to predict the me-
chanical properties of foamed concrete (Nguyen et al., 2019). Moreover, 
to deal with errors and uncertainties of experimental and numerical 
data, the probabilistic identification of mechanical properties of mate-
rials was performed by Rappel et al. using a Bayesian inference to 
improve the results (Rappel et al., 2019; Rappel et al., 1606). 

Beyond the conventional techniques, Hauseux et al. adopted coupled 
quantum physics and continuum mechanics to treat the Van Der Waals 
interactions in the chains of carbon and delamination of graphene from a 
silicon substrate (Hauseux et al., 2020; Hauseux et al., 2106). Besides, 
reduced order techniques based on low-dimensional subspaces were 
employed by Kerfriden et al. for multiscale modeling of crack initiation 
(Kerfriden et al., 2012; Kerfriden et al., 2011) and crack propagation 
(Kerfriden et al., 2013). 

Within the context of multiscale simulations of amorphous materials, 
Su et al. presented a concurrent three-dimensional multiscale method 
based on element deformation modes (Su et al., 2012). They employed a 
linear mapping of atom positions inside an element. By introducing a 
single cubic cell and using linear transformations, simulations were 
performed by assigning degrees of freedom to the nodes of each element 
(instead of all atoms in the medium). The displacement vector of the 
atoms in the introduced elements was calculated by means of a linear 
mapping of 24 displacement base vectors. The method was applied to 

Fig. 5. Division of a concave element into ncell smaller convex cells and the corresponding integration points.  

Fig. 6. Definition of neighbor elements β and a typical surface edge element.  
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the simulation of indentation in polyethylene by a silicone ball (Su et al., 
2012) based on the experimental coefficients for friction and slip (Su 
et al., 2014). 

Tan et al. (2008) developed an amorphous quasi-element to replace 
the complete atomic simulation. Moreover, Bian and Wang (2012) 
proposed a multiscale method to study the mechanical properties of 
amorphous polymers by employing the coarse-grained method for 
atomic regions and the finite element for the upper scale. They created a 
linear mapping between the two scales by defining an orientation 
function for atoms. Based on the Cauchy-Born rule (Ericksen, 2008), 
Urata and Lee proposed a multiscale method (Urata and Li, 2017) using 
the large-scale method introduced earlier by Parrinello and Rahman 
(1981). Zaccone et al. used the Helmholtz free energy and the modified 
Cauchy-Born rule, as introduced by Alexander based on the Taylor series 
expansion of the gradient field between particles up to the second order 
(Alexander, 1998), to calculate the shear coefficient of amorphous ma-
terials at zero Kelvin temperature (Zaccone, 2009; Zaccone and Scossa- 
Romano, 2011). Furthermore, hierarchal multiscale methods based on 
the decomposition of deformation gradient (Khoei and Jahanshahi, 
2017) or correction of the stress state (Khoei et al., 2017) were devel-
oped to overcome the limitations of the Cauchy-Born rule for simulation 
of the hyperelastic behavior in FCC materials (Jahanshahi et al., 2020; 
Jahanshahi et al., 2020). 

In this paper, a new concurrent multiscale method based on the 
maximum entropy statistical method is proposed. In addition to 
reducing the number of degrees of freedom and removing the frequently 
observed ghost forces, any irregular structure of amorphous materials 
can be accurately analyzed. Moreover, construction of the initial stage 
for generating the amorphous structure does not require any 

independent technique for creating a random structure. Regions with 
moderate conditions are discretized by the finite element method while 
the severe parts are simulated by the present atomistic-based multiscale 
technique. The corresponding finite element shape functions are 
computed by an entropy-based procedure. A remedy is proposed based 
on the mesh free techniques by constructing a continuous atomic 
deformation field from the imposed macro deformation gradient. The 
resultant deformation gradient and the stress field remain consistent in 
micro scales. In addition, a genetic algorithm-based method, which has 
less sensitivity to the choice of initial point and number of parameters, is 
adopted for the maximization of the entropy function. The silicon 
amorphous structure is considered for MD simulation in this study. It is 
obtained by quenching from a melted sample. The proposed concurrent 
multiscale method is verified and then employed to simulate an amor-
phous silicon specimen. Finally, the effects of sample size, strain rate, 
and quenching speed on rupture stress and strain in different 3D tensile 
simulations are investigated by the proposed multiscale method. 

2. Analysis procedure 

Heating a solid metal to a melting point turns it into a liquid. If the 
liquid is cooled down with a high temperature rate to reach a freezing 
point, the resultant structure of the solid material becomes glassy and 
amorphous. A glassy structure at a solid state has characteristics such as 
viscosity and irregular molecular patterns, which are similar to a liquid 
state. In other words, while a glassy state behaves as a solid at room 
temperature due to its infinite viscosity, it can still be assumed as a 
liquid because of its disordered, liquid–like structure of atoms and 
molecules. Unlike most metals, whose atoms are arranged in an ordered 

Fig. 7. Initial and deformed positions of atoms in element α.  
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crystalline pattern, amorphous alloys are non-crystalline. Conversion 
from liquid to solid and formation of glass occurs at a glassy tempera-
ture, where the melt cools by rapid freezing, and the viscosity steadily 
increases as the temperature decreases. While in crystallization, a sharp 
drop in volume is experienced during the cooling, no sudden change in 
volume is observed in the amorphous evolution and the volume and 

thermodynamic variables, such as entropy and enthalpy, change 
continuously (Elliott et al., 1983, 1983.). 

One of the main mechanical properties of an amorphous metal is its 
limited ductility. Amorphous metals withstand only about 1 % of plastic 
strain, which is far less than steels and titanium alloys (Elliott et al., 
1983, 1983.). In tension, amorphous metals break shortly after the 

Fig. 8. A brief presentation of the solution process.  

H. Moslemzadeh and S. Mohammadi                                                                                                                                                                                                       



International Journal of Solids and Structures 256 (2022) 111983

7

generation of the failure mechanism without showing any major plastic 
deformation (Telford, 2004). Generally, the response of an amorphous 
material under extreme conditions is substantially influenced by atom-
istic and micro-scale behaviors. As a result, multiscale methods can be 
efficiently used to investigate the response of such complicated 
structures. 

2.1. Multiscale model 

In the present concurrent multiscale method, both macro and micro 
scales are considered and solved simultaneously, as schematically 
shown in Fig. 2. The region with severe conditions (Ωm) is modeled by 
the micro/atomistic scale of the multiscale solution and the rest of the 
domain is simulated by the finite element method (ΩM). One of the main 
ideas of the present approach is to use the maximum entropy concept in 
formulating the irregular structure of macro elements. 

2.2. Entropy based macroscale model for irregular discretization 

The amorphous domain is divided into a sufficiently fine mesh of 
irregular elements (see Fig. 3). Clearly, the correct choice of the di-
mensions of elements largely affects the simulation results. As a simple 
rule, it can be selected as the smallest forming and repeating chain for an 
amorphous polymer (Su et al., 2014; Tan et al., 2008; Bian and Wang, 
2012; Urata and Li, 2017; Araújo et al., 2014; Li and Tong, 2015; Li and 
Urata, 2016). 

The solution process for solving the model is presented by mini-
mizing the governing energy functional Π of the system: 

Π = ΠM +Πm (1)  

where ΠM and Πm define the macro and micro parts of the total energy. 

ΠM =

∫

ΩM

W(F(u) )dV −

∫

ΩM

ρ0b.u dV −

∫

ΩM

t0.u ds (2) 

and Πm represents the energy of the macroscale region Ωm, as defined 
in section 2.4. W is the strain energy density function, ρ0b is the body 
force per volume and t0is the traction force imposed on the boundary 
and F is the deformation gradient. Nodal displacements u are approxi-
mated by the maximum entropy shape functions Ni, due to the irregular 
structure of elements (see Fig. 2), 

u =
∑nn

i=1
Niui (3) 

The tensors of first Piola-Kirchhoff stress PM and material stiffness CM 

are calculated from the derivatives of W, 

PM =
∂W
∂F

,CM =
∂2W
∂F2 (4) 

These tensors are used to calculate the residual in the energy mini-
mization process. 

To discretize the governing equation (1), the maximum entropy 
shape functions Ni are used (Sukumar, 2004; Shannon, 2001). 

Fig. 9. Initial crystalline solid structure equilibrated at 300 K, as predicted by 
the MD simulation. 

Fig. 10. Amorphous liquid structure after heating from 300 K to 3000 K, as 
predicted by the MD simulation. 

Fig. 11. Amorphous solid structure after rapid cooling from 3000 K to 300 K, as 
predicted by the MD simulation. 
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Application of the maximum entropy in macroscale problems has been 
extended to irregular and non-convex elements. For example, Beltzer 
(1996) studied the complexity of finite element using the maximum 
entropy method and Sukumar (2004) presented the Shannon entropy- 
based shape functions. Later, Arroyo and Ortiz solved a number of dif-
ferential equations with the meshfree maximum entropy technique 
(Arroyo and Ortiz, 2006; Amiri et al., 2014; Millán et al., 2014). 
Moreover, Milan et al. obtained the shape functions on irregular meshes 
and introduced a smooth solution for differential equations using the 
Galerkin method (Millán et al., 2015). More recently, Norouzi et al. 
applied this method to solve coupled equations of porous media (Nor-
ouzi et al., 2019). 

In the statistical mechanics, the entropy of a continuous distribution 
of the probabilistic function p(x) in a system is defined as: 

H = − kb

∫ +∞

− ∞
p(x)logp(x)dx (5)  

where the probability function p(x) of a phenomenon in a given statis-

tical ensemble is defined by the Boltzmann coefficient, kb. H can be 
regarded as a suitable criterion for evaluating the degree of certainty in 
the probability distribution of the ensemble. Similarly, H in a discrete set 
of ne events can be rewritten as: 

H = − kb

∑ne

i=1
pilogpi (6)  

where pi represents the probability function of the event i. It is known 
that in any probabilistic distribution, the sum of the probabilistic dis-
tribution functions pi is equal to one: 

∑ne

i=1
pi = 1 (7) 

This specific characteristic can be considered as an additional 
constraint into the problem of entropy maximization to create function t 
of probabilities that best represents the system. 

The probabilistic values pi may be accompanied by nonlinear con-
straints χi, which represent the nodal coordinates xi or yi: 

t = χ −
∑n

i=1
piχi = 0 (8) 

It should be noted that more complex constraints could be consid-
ered in the process of multidimensional problems. In general, for nc 

constraints included in the maximization of function L with unknown 
Lagrangian coefficients λi, L can be written as (Sukumar, 2004; Shannon, 
2001); 

L = H(pi)+
∑nc

i=1
λiti (9) 

Now, the concept of maximum entropy can be adopted to compute 
the shape functions of macro elements in Ωm by attributing the proba-
bility function of events pi to the shape functions Ni. 

The shape functions Ni for the elements are obtained by maximizing 
the function LM with respect to Ni (similar to maximizing entropy of NVT 
or NPT ensembles in microscale), 

LM = HM(Ni)+ λM 1tM 1 + λM 2tM 2 (10) 

The entropy function and the constraints for obtaining the macro- 
scale shape functions with the partition of unity property are formed 
as (Sukumar, 2004): 

Fig. 12. Energy variations during the heating and cooling processes.  

Fig. 13. Volume variations during the heating and cooling processes.  
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HM(Ni) = − kb

∑nn

i=1
NilogNi (11)  

tM 1 = 1 −
∑nn

i=1
Ni (12)  

tM 2 = χ −
∑nn

i=1
Niχi(χ = x, y, z) (13)  

where nn is the number of nodes in an element. The Newton-Raphson 
method, which depends on the initial starting point, can be adopted to 
maximize LM as employed by Sukumar (Sukumar, 2004). Here, how-
ever, a genetic based evolutionary algorithm is employed for solving 
equation (10) to overcome the difficulties in conventional initial point 
dependent methods. It can readily be extended to three dimensional 
multiscale problems. Each chromosome is defined by four Lagrange 
multipliers in the binary digits and other other necessary parameters to 
solve this problem by the genetic algorithm are presented in Table 1. 

A typical shape function contour on an irregular 2D element is 
illustrated in Fig. 4. More details of the approach for solving macroscale 
problems can be found in the reference work (Norouzi et al., 2019). 

Due to the geometric requirements of irregular microstructures, 
concave finite elements may be required in the process of multiscale 
analysis. A conventional finite element procedure (mapping, interpola-
tion and the standard Gauss quadrature) would clearly lead to the 
generation of negative determinant of Jacobian in some points within 
the element. To avoid numerical singularity and divergence, the 
entropy-based shape functions of irregular elements are computed in 
global coordinates to avoid the necessity of mapping to a parametric 
space and generation of non-positive Jacobian. Moreover, the well- 

developed sub-triangulation/subcell technique is adopted, as 
frequently used in XFEM, XIGA and meshless methods for integration of 
cracked elements/domains with concave geometries (Chin et al., 2015; 
Ghorashi et al., 2012; Mohammadi, 2008; Mousavi et al., 2010; Suku-
mar, 2013; Tabarraei and Sukumar, 2008). In this method, the inte-
gration on a concave domain is performed by the sum of integrations on 
a number of subcells of the domain, as schematically presented in Fig. 5. 
The point inside the element does not hold any degrees of freedom and 
only helps in dividing the element into the subcells. Moreover, it is 
important to note that the shape functions of all nodes of the element 
contribute to the computations of each integration point. The results 
presented in Section 4 show that the method performs well and predicts 
accurate results; avoiding negative Jacobian and divergence. 

Integration of the function g(x) on the concave domain Ωc can be 
written as the sum of integrations on ncell subdomains/cells (with mG 
integration points each): 
∫

Ωc

g(x)dΩc =
∑ncell

i=1

∫

Ωi

g(x)dΩi =
∑ncell

i=1

∑mG

k=1
wki g(xk) (14)  

where wki is the global weighting coefficient, which corresponds to the 
integration point xk in the subdomain Ωi (Kronrod, 1965; Golub and 
Welsch, 1969). Moreover, new techniques such as SFEM (smoothed 
finite element method) (Bordas and Natarajan, 2010; Francis et al., 
2017) and VEM (virtual element method) (Beirão Da Veiga et al., 2013) 
approaches can be applied for elements with arbitrary geometry to avoid 
sub-triangulation and overcome the difficulties of computing shape 
functions (Chakraborty et al., 2018; Natarajan et al., 2015). 

Fig. 14. Silicon atomic structures from regular to irregular states. a) Crystal b) Heated crystal at 2753 K c) Liquid.  
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2.3. Continuous deformation gradient 

One of the key steps in linking the two scales in multiscale methods is 
the Cauchy-Born rule (Tadmor et al., 1996). Unlike crystalline materials, 
amorphous and polymeric materials do not follow a specific structure 
and therefore, the Cauchy-Born rule cannot be used directly. 

Owing to the continuous nature of the finite element field, and the 
fact that the Cauchy-Born rule cannot be used for discrete amorphous 
structures directly, a continuous deformation gradient Fα on the element 
α is generated with the help of meshfree concepts. 

Moreover, in cases where an element is positioned along a free sur-
face (element γ in Fig. 6), its energy is not calculated correctly (due to 
surface effects) and unbalanced forces may be generated (Eidel and 
Stukowski, 2009). 

Theories governing the coarse-grained methods are used to obtain a 
continuous deformation gradient over a single element which includes a 
number of discrete atoms, as depicted in Fig. 3 (similar to elements of 
region Ωm in Fig. 2). The micro model is assumed to undergo a macro 
deformation FM

α (Parrinello and Rahman, 1981). To avoid discontinuity 
in the micro deformation gradient and generation of unbalanced ghost 
forces, the element is first mapped to an intermediate reference 

Fig. 15. Radial distribution functions associated with the 3 structures 
of Fig. 14. 

Fig. 16. MD prediction of final configuration in 0.2 strain of the amorphous 
specimen subjected to the unidirectional tensile stress. 

Fig. 17. Stress–strain response of the amorphous silicon in the tensile test.  
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configuration by FM
α to determine the energy of the element correctly, as 

originally proposed by Parrinello for problems under extreme loading 
conditions (Parrinello and Rahman, 1981). In defining a continuous 
deformation gradient on a discrete atomic model, the micromorphic 
multiplicative decomposition technique (Li and Urata, 2016) is adopted 
to redefine the relative positions of atoms (see Fig. 7). 

First, the mass center of the atoms inside the element is calculated: 

rα(t) =
1

∑nα
i=1mi

∑nα

i=1
miri(t) (15)  

where nα is the number of atoms inside the element α and ri is the po-
sition of the atom i, as obtained from the MD solver. ri can be related to 
the relative position rαi of the atom i with respect to the position rα of the 
center of mass: 

ri = rα + rαi (16) 

If Rα = rα(0) is considered to be the initial position of the mass center 
of element α, the relative position of this element with respect to the 
mass center of a neighbour element β can be defined as (Fig. 6): 

Rαβ = Rβ − Rα (17) 

and for any time t, 

rαβ(t) = rβ(t) − rα(t) (18) 

According to Fig. 7, Fα is decomposed by the micromorphic multi-
plicative decomposition technique (Li and Urata, 2016). Fα contains 

both micro and macro deformation tensors FM
α and Fm

α , respectively. 

Fα = FM
α Fm

α (19) 

The second-order tensor Fm
α is the same macro-deformation tensor for 

the element which transfers the coordinates of the element to the in-
termediate deformation state. Fm

α is a key concept of decomposition, 
which defines the large-scale deformation gradient on the center of mass 
of each element. 

Moreover, the position rαi after deformation (solved by molecular 
dynamics), can be obtained by multiplying the deformation gradient Fα 
of the element α by the current position of the atoms Sαi, 

rαi = FαSαi (20) 

Therefore, the Cauchy-Born rule for any element can now be written 
as: 

ri = Fm
α Ri (21) 

The idea of the moving least square meshfree method is now effi-
ciently used to derive a sufficiently accurate approximation of the 
continuous deformation gradient field Fm

α on a discrete atomic medium. 
Approximating a continuous field Ψ(r) can be performed by the vector of 
basis functions A(r) and the vector of unknown coefficients c (Liu, 2009): 

Ψ(r) = A(r).c (22) 

MLS minimization of the functional of the least square differences of 
the approximated field at na particles/atoms positioned at xi leads to: 

Fig. 18. Side view results of the tensile specimen.  

[
∑na

i=1
W(r − ri)A(ri)AT(ri)

]

.c(r) − [W(r − r1)A(r1),⋯,W(r − rn)A(rna ) ].[Ψ1,Ψ2,⋯,Ψna ]
T
= 0 (23)   
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Fig. 19. Side view results of the shear specimen.  

Fig. 20. Three-dimensional results of the tensile specimen.  
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Fig. 21. Three-dimensional results of the shear specimen.  

Fig. 22. Difference in atom positions resulting from the original atomic simulation and modified by the MLS method.  
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The unknown coefficients c are then obtained as: 

where M =
( [∑na

i=1W(r − ri)A(ri)AT(ri)
] )

is the so-called momentum 
matrix. In the same way for a second order tensor, with the help of Ωβ 

(volume of element β in the same configuration state of element α) and 
the MLS weight function W

( ⃒
⃒Rαβ

⃒
⃒
)
, it is possible to employ the meshfree 

technique on the tensor Fm
α of equation (21) by defining the following 

momentum: 

Mα =
∑nh

β=1
W
( ⃒
⃒Rαβ

⃒
⃒
)
Rαβ⨂RαβΩβ (25) 

where nh is the number of elements surrounding the element α (H α) 
(see Fig. 6). Equation (25) can also be written with the help of the MLS 
concept, and finally: 

Fm
α

(
∑nh

β=1
W
( ⃒
⃒Rαβ

⃒
⃒
)
rαβ⨂RαβΩβ

)

−
∑nh

β=1
W
( ⃒
⃒Rαβ

⃒
⃒
)
Rαβ⨂RαβΩβ = 0 (26)  

Fm
α =

(
∑nh

β=1
W
( ⃒
⃒Rαβ

⃒
⃒
)
rαβ⨂RαβΩβ

)

M− 1
α (27) 

The deformation gradient associated with the initial position (Rα =

rα(0) ) of an element, Fm
α (0), is equal to the second order unit tensor I(Li 

and Urata, 2016): 

Fm
α (0) =

(
∑nh

β=1
W
( ⃒
⃒Rαβ

⃒
⃒
)
rαβ⨂RαβΩβ

)

M− 1
α

=

(
∑nh

β=1
W
( ⃒
⃒Rαβ

⃒
⃒
)
Rαβ⨂RαβΩβ

)

M− 1
α = I (28) 

It should be noted that Fm
α correlates the continuous and atomic scale 

configurations. In fact, without applying Fm
α in the atomic modeling, the 

deformation gradient cannot be applied correctly, which leads to 
decreased accuracy as reported in some multiscale studies (Tadmor 
et al., 1996) and will be discussed further in the multiscale results in 
Section 4. 

Finally, the microscale Cauchy-Born rule can be written as, 

rh
α = Fm

α .Rα (29)  

where the updated positions of atoms rh
α are computed based on the 

adopted meshfree technique. The effects of a number of meshless tech-
niques such as WLS and RKHPU1 (Li and Liu, 1999) with different 
weight and basis functions are examined in the numerical simulations of 
Section 3. 

2.4. Governing equations of the micro model 

Existing forces in-between the atoms can then be obtained by 
calculating the energy of the micro-scale model (Li and Tong, 2015). 
Having known the deformation gradient Fm

α and the interatomic poten-
tial function Φ, the first Piola–Kirchhoff stress tensor Pm for element α on 
a gauss point can be derived from, 

Pm =
∂Πm

∂Fα
=

1
2Ω
∑nt

i=1

(
∂Φ
∂Fα

)

=
1

2Ω
∑nt

i=1

(
∂Φ
∂Fm

α

)

FM
α

− 1 (30) 

Πm is the energy function of the MD system. 

Πm =
1

2Ω
∑nt

i=1
Φ2(ri)+

1
2Ω
∑nt

i=1

∑nt

j∕=i

Φ3
(
ri, rj, θij

)
(31)  

where Ω is the volume of macro element and nt is the total number of 
atoms. 

Φ is the potential function of the atomistic model, assumed to be the 
Stillinger-Weber (Stillinger and Weber, 1985) atomic potential in glassy 
metals (Hufnagel et al., 2016); 

Φ =
∑np

i=1
Φ2(ri)+

∑np

i=1

∑np

j∕=i

Φ3
(
ri, rj, θij

)
(32)  

Φ2(ri) = A
[

B
(

1
ri

)p

−

(
1
ri

)q ]

e

(

1
r− a

)

Φ3
(
ri, rj, θij

)
= λe

(
γ

ri − a+
γ

rj − a

)

cos(θij +
1
3
)

2  

where np is the number of atoms within the MD influence domain of 
potential Φ. 

2.5. Governing equations of the whole model 

The whole energy functional of the model can be rewritten from 
equations (1), (2) and (31): 

Fig. 23. Comparison of accumulative error of atoms position using different 
meshfree methods. 

c(r) =

([
∑na

i=1
W(r − ri)A(ri)AT(ri)

])− 1

.[W(r − r1)A(r1),⋯,W(r − rn)A(rna ) ].[Ψ1,Ψ2,⋯,Ψna ]
T (24)   

1 Reproducing Kernel Hierarchical Partition of Unity. 
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Π =

∫

ΩM

W(F(u) )dV −

∫

ΩM

ρ0b.u dV −

∫

ΩM

t.u ds+Πm (33) 

The micro scale first Piola–Kirchhoff stress tensor Pm is assumed to be 
equivalent to the macro stress (PM = Pm). 

The force vector can then be computed from the derivative of Π, 

f =
∂Π
∂u

=

∫

ΩM

(Pm.∇N)dV +

∫

ΩM

(PM .∇N)dV −

∫

ΩM

ρ0b.N dV −

∫

ΩM

t.N ds

(34) 

The equilibrium state, in which the energy function should be at its 
minimum value, can be obtained by the Newton-Raphson iterative so-
lution, as presented in the flowchart of Fig. 8. In this process, the two 
scales are related by the first Piola–Kirchhoff stress Pm from the micro-
scale according to equation (34), in which the equilibrium state is 
obtained. 

3. MD simulations 

Principles, formulations, algorithms and the necessary concepts were 
discussed in previous sections. In this section, the results of performed 
simulations are presented and discussed. The predicted characteristics 

Fig. 26. Configuration of rupture in the M.D. simulation.  

Fig. 24. Initial mesh for the multiscale modeling.  

Fig. 25. Comparison of the stress–strain responses resulting from full atomic 
and multiscale modelings. 
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and behavior of amorphous material are compared with references to 
validate the proposed multiscale procedure. Simulations are performed 
by employing the open-source LAMMPS software for MD simulations 
and the home-developed multiscale solutions. 

3.1. Generating the irregular microstructure with MD 

In the following, the amorphous silicon is selected for simulation 
because of its atomic composition and simplicity. First, by heating this 
material to the melting point, it becomes a liquid. Then, it turns into an 
amorphous structure by cooling. While a regular crystalline structure is 
considered for silicon before melting, an irregular structure is obtained. 
Also, the interatomic potential of Stillinger-Weber which consists of 
two-body Φ2 and three-body Φ3 interaction terms is used (Stillinger and 
Weber, 1985). The parameters of this potential are defined as: 

A = 7.049556, B = 0.6022245584
λ = 21.0, γ = 1.2, p = 6, q = 0, a = 1.8 (35) 

For the motion equations, the Verlet velocity algorithm is adopted 
for updating the positions of particles and the Nose-Hoover thermostat is 
employed for controlling the temperature. Further details will be 
explained in each step. 

First, the crystalline silicon (with the size of 54× 54× 54A3) is 
modeled by 8000 atoms, as shown in Fig. 9. The model is equilibrated at 
an initial temperature of 300 K, with a time step of 0.5 fs using an NPT 
ensemble at an atmospheric pressure. The equilibrium time of the sys-
tem should be selected in a way that ensures the system is fully balanced 
and its energy remains at the lowest level, as depicted in Figs. 9 and 10. 

After the system reaches equilibrium, the temperature is increased to 
3000 K to reach the melting point (with NPT ensemble). For each 

Fig. 27. Stress distribution on atoms in different loading steps (6.44%,12.38%, 16.21% and 19.98% strains), predicted by the proposed multiscale approach.  
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temperature step (1 K), the system is relaxed at 2 ps so that the transition 
of the system from solid to liquid takes place (as shown in Fig. 10). 

The liquid obtained from the melting of crystalline solid is then 
cooled by a rapid cooling rate (1 K / ps in an NPT ensemble is used in this 
simulation). Fig. 11 clearly shows that the solid obtained at 300 K has an 
amorphous structure. Fig. 12 illustrates the energy variation during this 
process with clear jumps of energy associated with the changes of ma-
terial state from solid to liquid and vice versa. It is observed that turning 
from crystalline to an amorphous structure is characterized by a sharper 
jump. 

The sample volume increases due to melting and its structure is 
converted to an amorph, as depicted in Fig. 13. It is observed that the 
volume of the sample shows a dramatic increase during the heating, 
leading to a 10 % decrease in density, as reported in (Glazov and 
Shchelikov, 2000). 

After further heating, the volume decreases but does not reach the 
initial value. As a result, the density of amorphous material remains 
lower than its regular structure at the same temperature, which is in 
complete agreement with the data obtained from computational simu-
lations and experimental tests in the literature (Elliott et al., 1983; 
Sasaki et al., 1994; Glazov and Shchelikov, 2000; Logan and Bond, 
1959). 

3.2. Micro-scale properties 

Micro-scale properties, such as the radial distribution function, 
which indicates how the density is distributed in the body, are important 
in numerical simulations (Ojovan and Louzguine-Luzgin, 2020). The 
radial distribution function of a set of particles, denoted by g(r), 

indicates the probability of finding a pair of particles with a distance r 
from each other. This function somehow illustrates the local structure 
and adjacency of the atoms to each other. For a homogenous set of nt 
particles in volume V (density ρ), the radial distribution function is 
defined by: 

g(r) =
2

ρn
<
∑nt

i

∑nt

j∕=i

δ
(
r − rij

)
dr > (36)  

where <> represents the averaging over time and rij is the distance 
between atoms i and j. 

The radial distribution function depends on the temperature and 
density of the system (Kim and Medvedev, 2006). It can be indirectly 
used to represent the phase of a system on the edge of the solid–liquid 
state. The radial distribution function for the crystalline structures at a 
temperature below the melting point is a series of Dirac-delta functions 
that represent the crystalline structure. After the melting temperature, 
this function is transformed into Gaussian functions due to thermal ir-
regularities. These delta or Gaussian functions may well represent the 
local density changes in atomic structures. 

The radial distribution function in the melting process for three 
atomic structures of silicon (Fig. 14) is plotted in Fig. 15. It is observed 
that the radial distance distribution changes from the regular to the 
irregular structure at around 2.5 and the distributions are as reported in 
(France-Lanord et al., 2014; Kugler et al., 1993). 

3.3. Mechanical properties 

After examining the micromechanical properties, now the 

Fig. 28. Displacement contour on atoms (at 6.44% strain), predicted by the proposed multiscale method.  
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mechanical properties are studied. The obtained amorphous specimen 
(configuration of Fig. 11) is loaded at a constant rate of unidirectional 
tensile stress. The final configuration is illustrated in Fig. 16. 

The stress–strain diagram of the amorphous silicon with 8000 atoms 
in the tensile test simulation (with the NVT ensemble) is shown in 
Fig. 17. The canonical ensemble with a time step of 0.5 fs is chosen to 

Fig. 29. Deformation contour in the longitudinal direction in two different macroscale meshes.  

Fig. 30. Typical irregular elements at the initial configuration with the a different number of nodes.  
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capture the brittle behavior of the sample, as used in the literature for 
glassy materials (Jia et al., 2016; Muralidharan et al., 2005; Pedone 
et al., 2006; Pedone et al., 2008). The Young’s modulus, determined by 
calculating the slope of the stress–strain diagram in the linear region, is 
obtained 108.3 GPa, which is similar to the values reported in the 
literature (Freund and Suresh, 2004; Jing and Meng, 2010; Shodja et al., 
2014; Yuan and Huang, 2012). 

3.4. Continuous deformation gradient 

After generating the amorphous irregular structure, as described in 
Section 3.1, the results of obtaining a continuous deformation gradient 
field are presented. The initial and final geometric positions of the atoms 
in the sample are presented in Figs. 18-21. 

In these Figures, subfigures depict the initial position (a), the final 
deformed configuration of MD simulation (b), and the result of atomic 
simulation in both initial and final states of meshfree technique (c), and 
a comparison of both results of atomic simulation (red atoms) and the 
proposed method (blue atoms) (d). Since, the illustrations show over-
lapped atoms due to their finite size representation, a better overview in 
terms of the relative difference of the two methods is represented in 

Fig. 22. 
The accumulative difference for n atoms of the specimen, as defined 

by equation (37), for the shear deformation simulation is about 2.5 ×

10 − 3. Fig. 23 compares the accumulative difference (37) predicted by 
different meshless techniques in a negative logarithmic scale. The 
meshless techniques include the least square method (LS), weighted 
least square techniques (WLS) with 4 and 10 terms of basis function, 
MLS with 4 and 10 terms of basis functions, and the reproducing kernel 
particle method (RKPM). 

D =
∑nt

i

⃒
⃒
⃒
⃒
(ri − ri)

ri

⃒
⃒
⃒
⃒ (37)  

4. Multiscale simulation 

In this section, the results of the multiscale simulations are pre-
sented. Fig. 24 illustrates the initial mesh corresponding to the irregular 
amorphous structure after the cooling process. It consists of 16,000 
atoms and 250 unstructured elements with eight Gauss points each. It 

Fig. 31. Stress–strain for multiscale simulations with different meshes.  

Fig. 32. Average difference in stresses for four different meshes.  

Fig. 33. Effect of sample size on the stress–strain response for the tensile test.  

Fig. 34. Effect of strain rate in the tensile test.  
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should be noted that due to the irregular destitution of atoms in the 
specimen, each element has a different number of atoms. Shape func-
tions attributed to unstructured meshes are computed by the maximum 
entropy solution, based on parameters presented in Table 1. 

The predicted stress–strain diagram is plotted in Fig. 25 for 4528 
number of steps, which compares the present multiscale results with the 
solution obtained by full MD simulation. Moreover, the multiscale 
simulation is performed without the meshless-based refinement of the 
deformation gradient, which quickly diverges and terminates in the 
initial steps, a clear indication of the necessity of the modified defor-
mation gradient for analysis of the amorphous materials. 

It should be noted that the final stage of the multiscale simulation 

associated with the strain of 0.22, can be related to the onset of failure, 
as observed in Fig. 26 for MD simulation. 

Fig. 27 shows the stress distribution on the atoms of the sample in 
different loading steps, which are expectedly uniform due to the unidi-
rectional tensile nature of the test. The corresponding displacement 
contour at the final step of 0.06 strain is plotted in Fig. 28. The simu-
lation runtime, on a 2.6 GHz-Intel Xeon E52690 consisting 56-core CPU 
is 18.3 and 3.2 min for full molecular dynamics and multiscale analyses, 
respectively. 

Moreover, the displacement contour can be illustrated on the macro 
elements, as depicted in Fig. 29 for two totally different possible meshes. 
Typically, various elements include approximately 70 atoms and consist 

Fig. 35. Creation of nanovoids as predicted by the multiscale simulation of the tensile test (3.83% strain).  

Fig. 36. Effect of solid state temperature on the rupture stress.  Fig. 37. Results of the effect of quenching speed on the stress–strain response 
of the tensile test. 
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of 5, 6, 8, 10 and 12 nodes, as depicted in Fig. 30. Both displacement 
distributions are uniform. 

The stress–strain responses of these two meshes are illustrated in 
Fig. 31, which shows very similar trends. Furthermore, in order to 
examine the accuracy of the adopted sub-cells technique for the inte-
gration of the concave finite elements (Mesh 2), a fine mesh consisting of 
convex elements (Mesh 3) is analyzed. Mesh 3 matches the same ge-
ometry of sub-cell technique of Mesh 2 but with additional inside nodes 
and independent degrees of freedom. Again, a very good agreement is 
observed, illustrating the accuracy of the adopted technique for concave 
elements. 

In order to assess the discretization error of the present simulations, 
four different meshes with 250, 330, 593, and 960 elements (at the 
macro scale) are employed. Fig. 32 shows the average difference 
(defined in Eq. (38)) of the stress results in np number of data points. 
Clearly, a converged solution is demonstrated. 

Average of
difference

=
∑np

i=1

1
np

⃒
⃒
⃒
⃒
⃒

(
σcoarse

i − σfine
i
)

σfine
i

⃒
⃒
⃒
⃒
⃒
× 100 (38) 

After validating the developed procedure with the results of an all- 
atomic sample presented in the previous section, the effects of sample 
dimensions, quenching speed and loading rate on the results of the 
tensile test are investigated. 

First, the effect of sample dimensions is examined. The reference 
sample is assigned with dimensions a × a × a and the rest are scaled in 
different directions. Each number represents the scaled coefficient 
compared with the reference sample. For example, the sample a × a ×

2a defines a sample with twice the dimension of the reference sample in 
the third direction (which now consists of 500 elements). Note that all 
specimens are tested for traction along the third direction. 

The results, presented in Fig. 33, clearly show that the change in the 
size of the sample has no effect on the final rupture stress. There is a 
small decrease in the rupture strain for larger sizes, which can be due to 
the increase in the distribution of surface defects in larger specimens 
(Pedone et al., 2008; Yuan and Huang, 2012; Zhou et al., 2015). 

The strain rate is another important factor that expectedly affects the 
stress–strain response of the tensile sample. According to Fig. 34, the 
sample is tested at four different strain rates and the results of multiscale 
modeling are presented. It is observed that, at high strain rates, the 
sample breaks at higher stresses and strains, which may be due to the 
lack of sufficient time in connection of the nanovoids created during the 
deformation. The nanovoids can be typically tracked, as illustrated in 
Fig. 35. It is also noted that the two lower tensile rates show relatively 
similar behavior, indicating that the strain rate is practically ineffective 
below a certain value. 

So far, all simulations have been carried out at a constant tempera-
ture (300 K). Now, in addition to the strain rate, the effect of tempera-
ture is examined, as depicted in Fig. 36, which shows that the final 
rupture stress is affected and decreased by increasing the temperature of 
the solid state of the sample. Due to high atomic motions and vibrations 
in higher temperatures, the occurrence of initial defects in atomic bonds 
facilitates the rupture to occur faster (Chang and Fang, 2003; Vu-Bac 
et al., 2015; Zhao et al., 2015). 

Finally, the effect of quenching speed on this simulation is studied. 
As mentioned before, an amorphous sample uses a fast-cooling process 
in which the quenching rate may become important. According to 
Fig. 37, while the quenching velocity has a little effect on the rupture 
strain, it does influence the level of rupture stress. The reason can be 
attributed to the micromechanical properties of the material. The faster 
the quenching rate, the more the material retains its liquid structure and 
the more initial defects remain, which leads to lower resistance of the 
sample (Jana et al., 2019; Wang et al., 2009; Sanchez et al., 1984). 

5. Conclusions 

Multiscale analysis of disordered materials such as amorphous 
specimen is numerically addressed by the maximum entropy statistical 
method combined with a meshless-based continuous deformation 
gradient field over the discontinuous atomic model. The developed 
method is categorized as a novel concurrent multiscale method, where 
both scales are simultaneously solved by the concept of maximum en-
tropy. Exciting multiscale studies have either used regular elements with 
coarse-grained methods or have dealt with the atomic and F.E. discon-
tinuous regions. In this study, a meshless remedy for constructing a 
continuous deformation gradient is employed to overcome these diffi-
culties. The ideas of meshfree methods are used to derive an accurate 
continuous form of the deformation gradient field on a discrete atomic 
medium. Moreover, a genetic algorithm-based approach is adopted for 
the maximization of the entropy functions to overcome the sensitivity of 
the solution to the choice of initial point and number of parameters. 

A regular crystalline structure is considered for silicon, followed by 
melting and rapid quenching to obtain an irregular structure. Density 
jump, radial distribution function and other mechanical properties are 
obtained, which are in good agreement with the literature. Furthermore, 
the multiscale solutions for the displacement and stress contours are 
compared with the results obtained from the full molecular dynamic 
simulation, showing a very close agreement. 

It is observed that the sample size has practically no effect on the 
final rupture stress, However, the rupture strain slightly decreases 
because of the distribution of surface defects in larger specimens. 
Furthermore, the effect of strain rate is investigated for a range of 
practical rates and the results illustrate that due to the lack of sufficient 
time for nanovoids to connect in high strain rates, the sample breaks at 
substantially higher stresses and strains. Moreover, the effect of solid- 
state temperature on the ultimate rupture stress is investigated, where 
the higher temperature leads to less resistance of the sample. Finally, it is 
shown that the quenching velocity has a significant effect on reducing 
the rupture stress due to the micromechanical properties of the material. 

The methodology of this work has prepared the groundwork for 
further investigations on the response of other more complicated 
amorphous materials. Future investigations may lead to a better un-
derstanding of the complex behavior of amorphous molecular structures 
under thermal loadings. 
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