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a b s t r a c t

Given the widespread use of FGM shell elements in numerous industrial fields and their extreme vulner-
ability to crack formation, the present work is directed towards investigating the vibrational behavior of
cracked FGM shells. A general XFEM formulation, with tested accuracy and performance, is presented due
to its intrinsic capability to handle problems with discontinuities, such as cracks. To demonstrate the per-
formance of the adopted approach, multiple examples are introduced and analyzed and the effects of var-
ious parameters such as the length and angle of the crack and different distribution patterns of material
stiffness and density across the thickness of the shell, are extensively studied. Five cracked FGM models,
including a rectangular plate, a circular plate with four radial cracks, a cylindrical shell, a conical shell and
a spherical dome are simulated by the proposed approach and the results are discussed.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Structural shell elements comprise important parts in many
engineering practices including aerospace and car industries and
many others. Composite shells, which have been widely used in
recent years, do not necessarily performwell in extreme conditions
due to a number of defects such as delamination and debonding,
especially in dynamic and cyclic loadings. To address these defi-
ciencies, functionally graded materials (FGMs) have been devel-
oped to alleviate this phenomenon by smoothly changing the
material properties across the thickness of shell.

One of the key factors that may radically influence the dynamic
behavior of structures is its vibration characteristics. For example,
lack of understanding and knowledge about the range of natural
frequencies of the structure may lead to unforeseen phenomena
such as resonance, which may risk the integrity and stability of
the structure. Moreover, existence of imperfections such as dents,
cracks and voids in shell structures are unavoidable and may sub-
stantially affect the overall vibrational response of the imperfect
shell.

Vibration analysis of plates and shells has been the focus of
researchers for many years [1–8]. Several studies have also been
performed on free vibration of intact composite and FGM plates

and shells. Loy et al. [9] addressed the problem of free vibration
of functionally graded cylindrical shells for the first time. Based
on the higher order shear deformation theory, an exact solution
was obtained for a doubly-curved laminated composite shell [10]
and the effects of various factors such as boundary conditions,
thickness and the stacking sequence of the laminates were exam-
ined. Civalek [11] presented free vibration analysis of conical com-
posite shells in accordance with the transverse shear deformation
theory. A four variable refined theory was employed by Benachour
et al. to study the free vibration of FGM plates [12]. They assessed
how the gradient index of the material and the aspect ratio of the
plate can affect the vibrational behavior of the FGM plate. A new
application of Carrera’s unified Formulation (CUF) was proposed
by Neves et al. [13] for analyzing the static and free vibration of
functionally graded plates. Using a high-order finite element
formulation, Pradyumna and Bandyopadhyay [14] analyzed the
free vibration of curved FGM panels to study the effects of rotary
inertia and transverse shear. Also, the problem of vibration
analysis of FGM circular plates were studied by a number of
authors [15–18].

The question of how the existence of a defect such as a crack
can affect the vibrational behavior of plates has drawn research
attention for quite some time [19–24]. The natural frequencies of
various cracked composite plates were obtained by employing
the so-called Generalized Differential Quadrature Finite Element
Method (GDQFEM) [25,26]. Also, the GDQFEM was successfully
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used in the vibrational analysis of FGM sandwich shells with vari-
able thicknesses [27]. A 3 D elasticity solution was presented for
vibration analysis of cracked functionally graded plates by Huang
et al. [28] to show how different parameters such as crack length
and location can alter the natural frequency of cracked FGM plates.
Recently, Joshi et al. [29] analytically investigated the effect of fiber
orientation on the vibrational behavior of orthotropic plates with
cracks parallel to the edges of the plate. However, no report is
available on vibration analysis of cracked FGM shells.

Utilizing advanced numerical methods such as the extended
finite element method (XFEM) seems logical for vibration analysis
of cracked plates and shells due to the complexities brought about
by the existence of cracks. The extended finite element method
(XFEM) designed to improve the disadvantages of crack conformity
to element edges and the refinement around the crack tips of con-
ventional FEM for crack propagation problems [30]. The method
has proved to be efficient in various discontinuity problems, as it
has been successfully adopted for solving different orthotropic sta-
tic [31–34], dynamic [35–37] and buckling problems [38,39]. Also,
XFEM was efficiently utilized to compute the stress intensity fac-
tors of cracked composite plates [40]. Recently, Ardakani et al.
[41,42] extended the method to capture the highly nonlinear stress
fields around the crack tips in shape memory alloys, and the
method was successfully utilized to address the thermomechanical
crack propagation problem in FGM media [43–45]. In addition,
there are some other techniques such as the Phantom-Node
Method, the Extended Isogeometric Analysis (XIGA), and the
Phase-Field Method, which have been successfully employed for
analysis of cracked shells [46–49].

There are a few works that have addressed the problem of
vibration analysis of cracked FGM plates by means of XFEM and
XIGA [50–53]. Despite extensive studies on vibration analysis of
intact FGM plates and shells, no attention has been paid to the
vibrational behavior of cracked FGM shells. In this paper, for the
first time, an XFEM cracked shell formulation is adopted for vibra-
tion analysis of cracked functionally graded shells. Efficiency,
higher accuracy and more flexibility in dealing with various types
of discontinuities with general geometries are among the main
advantages of the extended finite element method compared with
other numerical methods such as classical finite element method.
The present method is shown to be reliable for various forms of
cracked FGM shells, including cylindrical, conical and spherical
shapes. Sensitivity of natural frequencies of cracked functionally
graded shells are examined for various parameters such as crack

length, crack angle and the distribution profile of the functionally
graded material across the thickness.

The rest of the paper is organized as follows: First, the eigen-
value vibration equation for cracked FGM shells is derived using
an XFEM shell discretization and presented in Section 2. Then,
the present method is employed to obtain the natural frequencies
and the associated mode shapes of five cracked FGM shell prob-
lems, while, thorough discussions on the obtained results are also
presented. Finally, the concluding remarks on the most important
obtained results are provided.

2. Formulation

In this study, a four-parameter power law distribution
ðFGMða=b=c=NÞÞ is considered for variation of material properties,
i.e. Young’s modulus ðEzÞ and mass density ðqzÞ across the thick-
ness of shell,

Ez ¼ ðEc � EmÞ 1� a
1
2
þ Z
h

� �
þ b

1
2
þ Z
h

� �c� �N

þ Em ð1Þ

qz ¼ ðqc � qmÞ 1� a
1
2
þ Z
h

� �
þ b

1
2
þ Z
h

� �c� �N

þ qm ð2Þ

where the subscripts c and m denote ceramic and metal,
respectively. h is the shell thickness, Z is perpendicular to the
mid-surface of the shell and varies form �h=2 to h=2, as shown
in Fig. 1. Also, a; b; c and N ðpower indexÞ are four variables which
define the material distribution profile across the thickness.

It should be mentioned that by considering b ¼ c ¼ 0, the con-
ventional power law distribution of material is obtained, in which
the bottom and top surfaces of the shell are respectively ceramic
and metal, and the material properties continuously change from
ceramic to metal between these two surfaces. For the proposed
four-parameter power law distribution, however, the material
properties become ceramic-enriched at the bottom, and based on
different values of a; b; c and N, the material at the top surface
can be ceramic, metal or a mixture of both. Fig. 2 better presents
totally different attainable distributions of material properties
across the thickness. During this study, the Poisson’s ratio ðmÞ is
considered to be constant across the thickness.

Geometry of the shell is discretized using degenerated 8-noded
shell elements based on the Mindlin-Reissner shell theory, which
includes shear deformation effects. This element was proved to

Fig. 1. Geometry of an 8-noded cracked FGM shell element.
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Fig. 2. Different FGM distribution profiles across the thickness of shell.
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be efficient and reliable to address the conventional fracture prob-
lem of shells and plates [38,54],
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where Ni ’s are the conventional finite element shape functions for
eight noded elements, hi is the shell thickness at node i, Vji ’s are the
components of the normal vector Vi which is perpendicular to the
shell surface at each node i and fi, which is perpendicular to the
shell mid-surface, is measured in the natural coordinate system,
as shown in Fig. 1.

Approximation of the displacement u for a cracked FGM shell
(Fig. 1) is composed of the conventional finite element approxima-
tion and the Heaviside enrichment for considering the displace-
ment discontinuity across the crack,

u ¼ uConventional FEM þ uHeaviside enrichment; u ¼ fu;v ;wgT ð4Þ
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where u; v and w are the displacement components, corre-
sponding to x; y and z directions, respectively. eixj and eiyj are unit
orthonormals vectors of the normal unit vector V at node i.
ai and bi are the rotational degrees of freedom at node i with
respect to x and y directions, respectively. Also, HiðxÞ is the Heav-
iside function which is defined as [55]

HðxÞ ¼ þ1 x above the crack
�1 x under the crack

�
ð6Þ

In Eq. (5), aik ’s are the spurious degrees of freedom which are
necessary to be considered in XFEM formulation and are added
to the main degrees of freedom,

d ¼ fu; v;w;a;bgT ð7Þ

h ¼ fax; ay; az; aa; abgT ð8Þ
and the vector of degrees of freedom is composed of d and h

D ¼ fd hgT ð9Þ

Previous studies [38,56] have shown that in eigenvalue prob-
lems such as buckling and vibration, the overall response of
plate/shell is minimally affected by the existence of the crack tip
enrichments. Hence, in the present study, the crack tip enrichment
is discarded from the displacement approximation of u .

The total potential energy ðQÞ is composed of the elastic strain
energy ðUÞ and kinetic energy ðTÞ of the system,

Y
¼ U þ T ð10Þ

Table 1
Normalized frequency parameters xðb2

=hÞ ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for a simply supported horizontally cracked isotropic rectangular plate ða=b ¼ 2 ; b=h ¼ 100 ; d=a ¼ 0:5Þ.

Mode Analytical [24] Ritz method [20] Ritz method [58] XFEM [51] Present study

1 3.050 3.053 3.047 3.055 3.052
2 5.507 5.506 5.503 5.508 5.506
3 5.570 5.570 5.557 5.665 5.559
4 9.336 9.336 9.329 9.382 9.357
5 12.760 12.780 12.760 12.861 12.785

Fig. 3. Simply supported cracked FGM rectangular plate.
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where e and C are the strain and the material property tensors.
e is related to the stress tensor r by:
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Eqs. (11) and (12) can be rewritten as [51]

U ¼ 1
2

Z
v
DTBTCBDdV ð16Þ

T ¼ 1
2

Z
v
D
� T
NTqzND

�
dV ð17Þ

where N and B are the matrices which include the shape functions
and their derivatives, respectively. In the state of equilibrium, the
first variation of potential energy must be equal to zero [51],

d
Y

¼ @½U þ T�
@D

dD ¼
Z
v
BTCBdV

� �
Dþ

Z
v
qzN

TNdV
� �

D
��� �

dD ¼ 0 8D–0 ð18Þ
So,

KDþM D
��
¼ 0 ð19Þ

where K and M are the stiffness and mass matrices, respectively.
Following a standard procedure [51,57], the second derivative of

Table 2
First normalized natural frequencies xðb2

=hÞ ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for the simply supported cracked FGMða¼1=b¼0=c¼0=N¼1Þ square plate ðqm ¼ 8166 kg=m3 ; Em ¼ 201 GPa;qc ¼ 2370 kg=m3 ;

Ec ¼ 201 GPa;m ¼ 0:28Þ.

h� XFEM [51] Present study

d=a ¼ 0:4 d=a ¼ 0:6 d=a ¼ 0:8 d=a ¼ 0:4 d=a ¼ 0:6 d=a ¼ 0:8

0 3.04 2.86 2.75 3.04 2.86 2.75
10 3.04 2.85 2.73 3.04 2.85 2.73
20 3.03 2.83 2.68 3.03 2.84 2.67
30 3.03 2.81 2.62 3.03 2.81 2.62
40 3.02 2.79 2.58 3.02 2.80 2.59
45 3.02 2.79 2.57 3.02 2.80 2.56
50 3.02 2.79 2.58 3.02 2.80 2.59
60 3.03 2.81 2.62 3.03 2.81 2.62
70 3.03 2.83 2.68 3.03 2.84 2.67
80 3.04 2.85 2.73 3.04 2.85 2.73
90 3.04 2.86 2.75 3.04 2.86 2.75

Table 3
The first ten frequencies (x=2p) of the uncracked FGM circular plate for different power indices (clamped at R ¼ R2 and free at R ¼ R1).

Mode FGMða¼0=b¼�0:5=c¼2Þ FGMða¼1=b¼0=c¼0Þ

N ¼ 0:6 N ¼ 5:0 N ¼ 0:6 N ¼ 5:0

GDQ [59] Present study GDQ [59] Present study GDQ [60] Present study GDQ [60] Present study

1 69.2 69.2 66.7 66.3 67.1 66.9 69.6 69.5
2 125.9 126.1 120.8 120.7 122.1 121.7 126.5 126.0
3 125.9 126.1 120.8 120.7 122.1 121.7 126.5 126.0
4 209.9 208.9 201.6 200.5 203.7 202.9 210.9 209.3
5 209.9 208.9 201.4 200.5 203.6 202.9 210.9 209.3
6 293.4 292.6 281.4 280.4 284.6 282.8 294.5 289.9
7 312.9 312.4 300.3 298.9 303.7 303.4 314.1 312.6
8 312.9 312.4 300.3 298.9 303.7 303.4 314.1 312.6
9 352.1 348.7 337.9 335.2 341.8 339.6 353.1 351.5
10 352.1 348.7 337.9 335.2 341.8 339.6 353.1 351.5

Fig. 4. FGM circular plate with four radial cracks.
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D can be replaced by D
��
¼ �x2D, where x represents the natural

frequencies of the system. Substituting it in Eq. (19), the following
eigenvalue equation is obtained,

ðK�x2MÞD ¼ 0 ð20Þ

where, D defines the eigenvectors, i.e. vibration mode shapes, andx
represents the eigenvalues.

The discretized forms of K and M can be written as,

Krs
ij ¼

Z
v
ðBr

i ÞTC ðBs
j ÞdV ð21Þ

Mrs
ij ¼

Z
v
qzðNr

i ÞTNs
j dV ; ðr; s ¼ d;hÞ ð22Þ

where,

Table 4
First natural frequencies ðx1=2pÞ of cracked FGMða¼1=b¼0:5=c¼4=N¼2Þ circular plate for various crack lengths and angles.

d ðmÞ h ¼ 0� h ¼ 10� h ¼ 15� h ¼ 20� h ¼ 25� h ¼ 30� h ¼ 35� h ¼ 40� h ¼ 45�

0.5 66.51 65.97 65.63 65.45 65.30 65.212 65.12 65.02 65.12
0.6 65.62 64.96 64.51 64.43 64.25 64.15 64.05 64.16 64.08
0.7 64.82 64.04 63.49 63.18 62.95 63.00 62.89 62.80 62.91
0.8 64.36 63.49 62.88 62.71 62.47 62.53 62.41 62.33 62.26
0.9 64.18 63.28 62.65 62.30 62.06 61.94 61.84 61.77 61.72
1.0 63.84 62.85 62.17 61.82 61.59 61.49 61.41 61.36 61.36
1.1 63.56 62.46 61.74 61.41 61.22 61.16 61.12 61.10 61.09
1.2 63.19 61.83 61.08 60.89 60.81 60.86 60.99 61.01 61.03
1.3 62.94 61.42 60.73 60.62 60.63 60.74 60.86 60.94 60.96
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Fig. 5. First natural frequencies of FGMða¼1=b¼1=c=NÞ circular plate with four radial cracks.
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For computing Bh
i and Nh

i , Ni terms should be replaced by
NiðHðxÞ � HðxiÞÞ in Eqs. (23) and (24).

It is inevitable to employ numerical integration for assessing
the values of Eqs. (21) and (22) properly. Based upon the fact
that the existence of crack complicates the displacement field,
the conventional Gauss quadrature integration cannot be simply
adopted to evaluate the integrals. In this study, the sub-
triangulation method is employed to integrate over the elements
which contain the crack path and 7 Gauss points per triangle are
considered [54]. For uncracked elements, a 2� 2 Gauss quadra-

Fig. 7. The first six mode shapes of a) uncracked b) cracked FGMða¼0=b¼�0:4=c¼2=N¼15Þ circular plate with d ¼ 1:2 m and h ¼ 30� .
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ture rule is adopted. Also, 8 Gauss points are considered to inte-
grate across the thickness of shell. It should be mentioned that
no blending elements are considered in the present study, as it
has a non-essential effect in eigenvalue analysis of plates and
shells [38,39].

3. Numerical simulations

In this section, the proposed XFEM formulation is verified for
vibration analysis of cracked isotropic and FGM plates with lim-
ited available reference results. Then, the method is employed
for computing the natural frequencies and mode shapes of cracked
FGM plates and shells. Four examples are presented and the
effects of crack length, crack angle and material distribution across
the thickness of shell are extensively studied. In all examples, the
following material properties are considered: Em ¼ 70 GPa,
qm ¼ 2707 Kg=m3, Ec ¼ 168 GPa and qc ¼ 5700 Kg=m3 (unless
explicitly mentioned otherwise).

3.1. Cracked isotropic and FGM rectangular plates

The problem of vibration analysis of a cracked rectangular plate
(Fig. 3) has been studied by many researchers [20,24,51,58]. Here,
the natural frequencies for two cases of isotropic and FGM simply
supported plates are obtained and compared with the available
results. A 25� 25 structured mesh is adopted for performing the
analysis.

The first five normalized natural frequencies for the cracked iso-
tropic rectangular plate are presented in Table 1. A very good
agreement is observed with available references.

Also, the first normalized natural frequencies of the cracked
FGM plate for different crack lengths and orientations are pre-
sented in Table 2. It can be seen that the frequencies decrease as
the crack length increases. Also, with increasing the crack angle,
initially the natural frequencies decrease up to h ¼ 45� and then
increase until the crack angle reaches to h ¼ 90�. Moreover, a very
good agreement is observed between the present results and those
reported by Natarajan et al. [51].

θ

d

Crack

R

t

L

Clamped

Free

Restrained at both ends

Fig. 8. Geometry of the cracked FGM cylindrical shell.

Table 5
First ten natural frequencies ðx=2pÞ of uncracked FGMða¼1=b¼0:5=c¼2=NÞ cylindrical shell for various power indices and clamped-free boundary conditions.

Mode N ¼ 0:6 N ¼ 20

GDQ [59] Analytical [61] Analytical [62] Present study GDQ [59] Analytical [61] Analytical [62] Present study

1 152.3 152.0 151.1 152.2 146.5 146.2 145.3 146.4
2 152.3 152.0 151.1 152.2 146.5 146.2 145.3 146.4
3 219.9 219.5 218.9 219.8 215.9 215.5 215.0 215.6
4 219.9 219.5 218.9 219.8 215.9 215.5 215.0 215.6
5 252.2 251.9 252.3 251.9 239.8 239.5 239.9 239.2
6 252.2 251.9 252.3 251.9 239.8 239.5 239.9 239.2
7 383.4 382.9 383.6 383.3 377.3 376.7 377.6 376.9
8 383.4 382.9 383.6 383.3 377.3 376.7 377.6 376.9
9 417.7 417.7 417.6 417.6 396.8 396.7 396.6 396.7
10 430.0 429.5 426.6 429.6 417.2 416.6 413.9 416.8

Table 6
First natural frequencies ðx1=2pÞ of cracked FGMða¼1=b¼0:5=c¼2=N¼2Þ cylinder for various crack lengths and angles.

d=R h ¼ 0� h ¼ 15� h ¼ 30� h ¼ 45� h ¼ 60� h ¼ 75� h ¼ 90�

0.5 381.79 382.53 381.69 380.78 378.80 379.42 375.53
0.8 375.76 375.22 372.86 373.01 374.72 354.37 355.26
1.0 375.78 375.24 372.86 365.03 356.91 354.06 336.68
1.2 369.87 369.35 370.25 365.03 344.34 317.42 290.08
1.5 368.58 367.96 366.93 355.28 329.97 278.17 248.57
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3.2. FGM circular plate with four radial cracks

Circular plates are frequently used as grinding disks or cutters in
industry and because such processes produce large amounts of heat,
FGM disks are potentially an appropriate option. In this section, the
first ten natural frequencies of an uncracked FGM circular plate are
determined for different power indices ðNÞ, and then the results are
compared with the available Refs. [59,60]. Then, the section is fur-
ther extended to comprehensively study the vibrational behavior
of FGM circular plates with four radial cracks (Fig. 4). Geometric
properties of the plate are: R2 ¼ 2 m ; R1 ¼ 0:5 m and t ¼ 0:1 m.
The plate is clamped and free at R ¼ R2 and R ¼ R1 boundaries,
respectively. Moreover, it is intended to investigate how different
variables such as crack length and orientation and FGM properties
ða; b; c and NÞ can affect the fundamental natural frequencies.

The first ten frequencies of the uncracked functionally graded
circular plate with two different material distributions across the
thickness of the plate are obtained and compared with the results
of Refs. [59,60] in Table 3, which shows a very close agreement.

Now, the proposed XFEM formulation is employed to study the
vibration behavior of FGM circular plate with four radial cracks.
The fundamental natural frequencies for various crack lengths

and orientations for the FGMða¼1=b¼0:5=c¼4=N¼2Þ circular plate are pro-
vided in Table 4. It is observed that the plate is affected by the vari-
ations of the crack length; its natural frequencies are reduced as
the crack length increases, though it is not a significant change.
For example, changing the length of the cracks from
d ¼ 0:5 m to d ¼ 1:3 m causes only a reduction of 6:3% in the nat-
ural frequency (related to the crack angle of h ¼ 45�). Likewise, the
vibrational behavior of the plate is not substantially affected by the
crack orientations such that a maximum reduction of 3:3% is
observed in the natural frequencies of the plate with d ¼ 1:3 m
when the angles of the cracks change from h ¼ 0� to h ¼ 45� .

The effect of FGM distribution parameters such as b; c and N on
the vibrational behavior of the plate for the case of
d ¼ 1:2 m and h ¼ 30� are shown in Figs. 5 and 6. Sensitivities of
frequencies to the parameter c and power index N are depicted
in Fig. 5. It can be seen that with increasing c, the natural frequen-
cies decrease, while with increasing the power indices ðNÞ, the fre-
quencies initially increase and then decrease.

Fig. 6 shows the vibrational response of the cracked FGM circu-
lar plate for different values of b and power indices ðNÞ for two
cases of c ¼ 2 and c ¼ 3. It is observed that the frequencies experi-
ence a steep drop and then increase as the power indices increase.

Fig. 9. First natural frequencies of cracked cylindrical shell a) FGMða=b¼0:2=c¼1=NÞ b) FGMða=b¼0:2=c¼3=NÞ .
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Fig. 10. First natural frequencies of cracked cylindrical shell a) FGMða¼1=b=c¼1=NÞ b) FGMða¼1=b=c¼2=NÞ .
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Fig. 11. Effect of L=R and d=R on the first natural frequencies of the cracked FGMða¼1=b¼0:5=c¼2=N¼3Þ cylindrical shell.
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In general and based upon the highly complex vibrational behavior
of the problem, a definite conclusion cannot be made for the gen-
eral effect of different FGM profiles across the thickness of the
plate.

Fig. 7 provides further insight into the effects of cracks on the
vibration mode shapes of the circular plate. It can be seen that
the presence of cracks makes the FGM plate to vibrate in a different
manner in comparison to the intact plate.

3.3. Cracked FGM cylindrical shell

FGM cylindrical shells are widely utilized in aerospace, marine
and other engineering fields. Prime examples include fuel nozzles
in aircrafts and formula 1 cars. In this example, vibration analysis
for a perfect FGM cylindrical shell is performed and the obtained
results are compared with available reference results. Then, the
vibrational behavior of the cracked functionally graded cylindrical

40° 40°

120°

R
R

h=2m

t

R=0.5m
t=0.1m

θ θd d

Fig. 13. Geometry of the cracked FGM conical dome and panel.

Fig. 12. First five mode shapes of uncracked (U) cracked (C) and FGMða¼1=b¼0:5=c¼2=N¼3Þ cylindrical shells for two cases of L=R ¼ 2 and L=R ¼ 10 with d=R ¼ 1:5 and h ¼ 90� .
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shell, as depicted in Fig. 8, is extensively investigated and the
effects of different parameters such as crack length and angle,
cylinder length and FGM profile parameters ða; b; c;NÞ on the fun-
damental frequencies are examined. The following geometric
properties are considered for all the analyses:
L ¼ 2 m; R ¼ 1 m and t ¼ 0:1 m. A structured 35� 35 (in circum-
ferential and longitudinal directions) mesh is adopted (unless
mentioned otherwise).

For an uncracked FGMða¼1=b¼0:5=c¼2=NÞ cylindrical shell with
clamped boundary condition at one end and free at the other,
vibration analysis is carried out and the first ten natural frequen-
cies are determined and compared with available references in
Table 5. It is observed that the frequencies obtained in the present
study are completely consistent with those reported by other
researchers [59,61,62]. The method is clearly reliable to be
employed for vibration analysis of more complicated problems
such as cracked functionally graded cylindrical shells.

Table 6 presents the effects of crack length and angle on the nat-
ural frequencies of the cracked FGM cylindrical shell. First of all,
with increasing ratio of crack length to radius, the natural fre-
quency decreases. It is noted that this reducing trend is more tan-
gible for the cases where the crack angle is h ¼ 90�. For instance,
the frequency is reduced by 51:2% when the crack length to radius
ratio ðd=RÞ increases form 0:5 to 1:5 for the longitudinal crack ori-
entation case ðh ¼ 90�Þ. Moreover, the natural frequency undergoes
a significant drop when the crack angle increases form 0� to 90�.
Accordingly, when the crack orientation alters from the circumfer-
ential direction ðh ¼ 0�Þ to the longitudinal direction ðh ¼ 90�Þ, the
frequency of the shell attenuates by a factor of 48:3% for the
d=R ¼ 1:5 case.

For further investigation, the effects of FGM parameters
ða; b; c;NÞ on the vibrational response of circumferentially cracked

ðh ¼ 0�Þ FGM shell are demonstrated in Figs. 9 and 10. It is
observed that any combination of FGM’s distribution parameters
ða; b; c;NÞ across the thickness of the shell contributes differently
to the complex behavior of the model, making it extremely difficult
to predict the general vibrational behavior of the cylinder.

Fig. 11 is presented to show how the ratios of cylinder length to
radius ðL=RÞ can affect the fundamental frequencies of the circum-
ferentially cracked FGM cylindrical shell for various crack length
to radius ratios. It can be seen that the natural frequencies decrease
dramatically when the cylinder length to the radius ratios increase.
Accordingly, the frequency associated with L=R ¼ 1 is approxi-
mately 7 times greater than the one associated with L=R ¼ 10 for
the d=R ¼ 0:5 case. In addition, with increasing the L=R ratios, the
effect of crack length on the vibrational behavior of the shell grad-
ually fades. The reason can be attributed to the fact that for high L=R
ratios, the global vibrational mode is dominant and the existence of
a small crack cannot drastically influence such global response.

Fig. 12 presents the effects of the existence of crack as well as
the length of the shell on the vibration mode shapes for the
FGMða¼1=b¼0:5=c¼2=N¼3Þ cylindrical shell. It is observed that for the
case of L=R ¼ 2 the vibrational behavior is significantly affected
by the presence of crack and the vibration mode shapes are totally
different for intact and cracked shells. Nevertheless, the vibrational
behavior of relatively long cylinders (L=R ¼ 10) is not drastically
disturbed by the existence of crack.

3.4. Cracked FGM conical shells

Similar to FGM cylindrical shells and to a higher extent, func-
tionally graded conical shells are widely used in the aerospace
industry. Vibration analysis of cracked FGM conical panels and
domes, as shown in Fig. 13, is now considered. First, a convergence

Table 8
First natural frequencies ðx1=2pÞ of cracked FGMða¼0=b¼�0:5=c¼2=N¼5Þ conical shell and panel for various crack lengths and angles.

d h ¼ 0� h ¼ 15� h ¼ 30� h ¼ 45� h ¼ 60� h ¼ 75� h ¼ 90�

Conical dome 0.5 200.6 200.6 200.6 200.4 199.2 199.5 199.5
0.7 200.7 200.6 200.5 200.2 199.1 197.0 197.2
1.0 198.9 198.5 196.1 193.9 193.8 182.2 183.5
1.2 196.9 196.1 191.1 186.6 185.6 176.1 171.7
1.5 193.6 190.1 181.2 171.2 160.5 150.0 146.0
1.6 193.6 183.3 172.2 161.7 151.4 142.7 135.1

Conical panel 0.5 285.1 284.4 284.6 284.1 293.4 283.2 284.1
0.7 283.7 282.3 281.9 277.3 269.6 272.9 276.8
1.0 278.5 276.2 266.9 259.8 249.3 233.6 234.7
1.2 271.1 255.2 250.7 241.0 229.2 215.3 214.3
1.5 245.5 246.5 230.6 211.5 202.8 189.2 185.5
1.6 245.5 237.7 225.3 211.5 191.5 187.6 177.5

Table 7
The first five frequencies (x=2p) of the uncracked FGM conical shells for different power indices.

Mode FGMða¼1=b¼0:5=c¼2Þ FGMða¼1=b¼0=c¼0Þ

N ¼ 0:6 N ¼ 20 N ¼ 0:6 N ¼ 20

Analytical [59] Present study Analytical [59] Present study Analytical [60] Present study Analytical [60] Present study

Conical panel 1 80.1 80.0 77.8 77.5 78.2 78.2 77.8 77.6
2 110.9 109.5 106.7 106.3 109.0 108.9 106.7 106.1
3 158.6 155.0 153.9 151.7 154.9 153.6 153.8 152.9
4 195.2 194.9 190.4 188.7 189.6 188.2 190.3 189.1
5 259.1 256.4 250.8 247.1 253.4 251.3 250.7 248.9

Conical dome 1 208.9 208.9 204.9 204.8 205.9 205.8 200.8 200.7
2 208.9 208.9 204.9 204.8 205.9 205.8 200.8 200.7
3 230.1 228.5 227.3 226.1 225.5 224.7 224.3 224.0
4 230.1 228.5 227.3 226.1 225.5 224.7 224.3 224.0
5 284.7 282.1 282.7 281.5 277.9 276.5 280.1 278.3
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study is performed for the uncracked FGM conical shell and the
results are compared with the reference results [59,60]. Then,
vibrational behaviors of the cracked functionally graded conical
panels and domes are further investigated. For the conical dome
and panel, meshes with respectively 1225 and 525 shell elements
are adopted.

The first five frequencies of the FGM conical specimens are pre-
sented in Table 7. The boundary condition of the conical panel is C-
F-F-F (clamped at the bottom and free at the other edges) and the
boundary condition of the conical dome is C-F (clamped at the bot-
tom and free at the top). It is observed that the predicted natural
frequencies for all vibration modes are in very close agreement
with the reference results [59,60].

The section is now further extended to study the vibrational
behavior of cracked functionally graded conical shells.

Table 8 presents the effect of crack length and angle on the fun-
damental natural frequency of cracked FGM conical shells. The
boundary condition of the conical dome is C-F, while the boundary
condition of the conical panel is C-C-C-C (clamped at all edges). Is it
observed that the natural frequencies decrease when the crack
angle increases. For example, for the conical dome, the frequency
drops by 43.3% when the crack orientation increases from
0� to 90� for the d ¼ 1:6 m case. The minimum values of the

frequencies are associated with the vertical crack direction
(h ¼ 90�). Also, the crack length affects the fundamental frequen-
cies of both conical shells significantly. For example, the natural
frequency related to the conical panel decreases by up to 60% when
the crack length increases from d ¼ 0:5 m to d ¼ 1:6 m for the case
in which the crack angle is h ¼ 90� .

Fig. 14 compares the effects of FGM parameters a; c and N on
the natural frequencies of cracked FGM conical shells (for
d ¼ 1:5 m and h ¼ 60�). First of all, it is observed that the overall
response of both conical shells for different variations of the
parameters a; c; N is relatively similar. Nonetheless, there are dif-
ferences in the values of the associated frequencies in both cases.
Furthermore, the vibrational response of the shells for the initial
power index values is somewhat unpredictable, whereas the
responses follow a decreasing trend as the power index increases.

The first six vibration mode shapes for cracked and uncracked
functionally graded conical shells are shown in Fig. 15. It is
observed that the crack can significantly alter the vibrational
behavior of the FGM conical shells from a global response to a
more localized behavior.

To further examine the vibrational response of cracked FGM
conical shells due to the variations of FGM parameters, the fun-
damental frequencies for various values of b; c and N for the

Fig. 14. Effects of parameters a; c and N on the first natural frequencies of cracked FGM a) conical domes and b) conical panels.
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case of d ¼ 1:5 m and h ¼ 60� are examined in Fig. 16. As men-
tioned before, due to the highly complex behavior of cracked
FGM conical shells in different combinations of FGM parameters
(a; b; c and N), it is a formidable task to, in general, predict the
vibrational behavior and therefore a case by case analysis is
always required.

3.5. Cracked FGM spherical dome

As the last example, vibration analysis of the cracked FGM
spherical dome (Fig. 17) is carried out and the effects of various
parameters like crack length and angle, as well as the FGM charac-
teristic parameters (a; b; c and N), on the natural frequencies are
comprehensively examined.

First, the vibration analysis is performed for the perfect FGM
spherical dome and the effect of power index on the first ten nat-
ural frequencies is examined. Table 9 shows that the natural fre-
quencies decrease with the increase of power indices. Moreover,
the natural frequencies associated with higher modes of vibration
are significantly greater than those of lower modes of vibration. For
instance, the tenth natural frequency of the FGM dome is 1:92
times greater than the first frequency of the same dome for the
case where N ¼ 0:5 .

The first eight vibration mode shapes of intact and cracked FGM
spherical shells are depicted in Fig. 18. It is observed that the exis-
tence of crack completely alters the vibrational mode shapes of the
sphere.

Fig. 19 illustrates the effects of crack length and orientation on
the fundamental natural frequencies of cracked FGM spherical
dome. It can be perceived that for small crack length to radius
ratios, the effect of the crack angle is negligible, whereas for larger
crack length to radius ratios, the natural frequencies are highly

affected by variations of the crack angle. Accordingly, the fre-
quency corresponding to h ¼ 90� is 1:23 times smaller than the
one corresponding to h ¼ 0� for the d=R ¼ 1:0 case. In addition,
the crack length to radius ratio has a considerable influence on
the frequency of the sphere, such that a reduction of 50% is
observed when the crack length to radius ratio grows from
0:5 to 1:5 for the h ¼ 90� case.

Now, the effects of FGM parameters (a; b; c and N) on the vibra-
tional behavior of cracked spherical domes are investigated. Fig. 20
shows that based on different combinations of FGM parameters,
the problem takes on different behaviors. For example, for the case
of FGMða¼1=b=c¼1=NÞ, the natural frequency associated with b ¼ 0
undergoes a decline then increases as the gradient index increases
to N ¼ 5. It decreases again and continues this trend, whereas for
the case associated with b ¼ 0:95, the frequency decreases contin-
uously as the power index (N) increases.

4. Conclusion

A reliable and efficient shell formulation within the framework
of the extended finite element method (XFEM) has been intro-
duced and effectively utilized to analyze the vibrational behavior
of cracked FGM shells. Through simulation of different problems,
it has been proved that the proposed method can reliably address
the problem of vibration analysis in FGM plate and shell structures.
Then, the method has been employed to carry out the vibration
analysis of five different cracked FGM problems including two
plates and three shells. Throughout the study, comprehensive
results concerning the vibrational behavior of different shell struc-
tures have been attained, which can be safely used in designing
real world structures. In addition, some specific conclusions can
be made:

Fig. 15. The first six vibration mode shapes of uncracked (U) and cracked (C) FGMða¼0=b¼�0:5=c¼2=N¼5Þ conical domes and panels with d ¼ 1:5m and h ¼ 0� .
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� Generally, the existence of cracks in the investigated examples
can have a vital impact on the vibrational behavior of FGM
shells. Nevertheless, there are also some types of structures that
are minimally affected by the existence of cracks (FGM circular
plates).

� The fundamental natural frequency can be altered and affected
by the angle of a crack in a dramatic fashion. As an example, the
first natural frequency of the FGM conical dome plummets by
almost 45% when the orientation of the crack rotates from
0� to 90� .

� The vibrational mode shapes highly depend to the presence of
the crack in the shell. Nonetheless, this dependency is more sev-
ere in some types of FGM shells than the others. For example,
the mode shapes of cracked FGM spherical shells are thoroughly
different from the intact ones.

Fig. 16. Effects of parameters b; c and N on the first natural frequencies of cracked FGM a) conical domes and b) conical panels.
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Fig. 17. Geometry of the cracked FGM spherical dome.

Table 9
The first ten natural frequencies (x=2p) of the uncracked FGMða¼1=b¼0:5=c¼2=NÞ spherical
dome.

Mode N ¼ 0:0 N ¼ 0:5 N ¼ 1:0 N ¼ 2:0 N ¼ 3:0 N ¼ 4:0 N ¼ 5:0 N ¼ 6:0

1 529.4 527.0 524.7 520.4 516.9 514.1 511.9 510.3
2 529.4 527.0 524.7 520.4 516.9 514.1 511.9 510.3
3 762.4 760.2 757.7 752.9 748.6 745.1 742.2 739.8
4 872.0 869.4 866.5 860.8 855.8 851.8 848.6 846.0
5 872.0 869.4 866.5 860.8 855.8 851.8 848.6 846.0
6 949.9 947.4 944.5 938.6 933.8 930.1 927.2 925.0
7 949.9 947.4 944.5 938.6 933.8 930.1 927.2 925.0
8 1015.4 1008.7 1002.0 991.4 983.0 976.8 972.2 968.9
9 1016.9 1014.3 1011.2 1004.9 999.8 996.0 993.2 990.9
10 1016.9 1014.3 1011.2 1004.9 999.8 996.0 993.2 990.9
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The FGM distribution parameters (a; b; c and N) are in the
direct correlation with the fundamental natural frequencies of
different shell structures such that even a small change in each

of these parameters can yield in a fundamentally complex vibra-
tional behavior, which generally makes the behavior of structure
extremely difficult to foresee.

Fig. 18. The first eight vibration mode shapes of uncracked (U) and cracked (C) FGMða¼1=b¼0:5=c¼2=N¼3Þ spherical domes with d ¼ 1:2m and h ¼ 85� .
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Fig. 19. Effects of crack length to radius ratio and crack angle on the first natural frequency of cracked FGMða¼1=b¼0:5=c¼2=N¼3Þ spherical dome.
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