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ABSTRACT The maximum entropy theory has been used in a wide variety of physical, mathematical and engineering
applications in the past few years. However, its application in numerical methods, especially in developing new shape
functions, has attracted much interest in recent years. These shape functions possess the potential for performing better
than the conventional basis functions in problems with randomly generated coarse meshes. In this paper, the maximum
entropy theory is adopted to spatially discretize the deformation variable of the governing coupled equations of porous
media. This is in line with the well-known fact that higher-order shape functions can provide more stable solutions in
porous problems. Some of the benchmark problems in deformable porous media are solved with the developed approach
and the results are compared with available references.
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1 Introduction

Studying porous materials to characterize their mechanical
behavior in different conditions is essential in many
engineering applications, including groundwater flow,
wells, oil reservoirs, biological tissues, nano-scale materi-
als, etc.
Movement of fluid in a porous medium can cause

deformation in its solid structure. While this phenomenon
may be less important in many engineering problems,
deformation of solid structures is crucially important in
certain civil engineering applications to ensure that solid
foundations remain stable, as consolidation of foundation
and settlement of structures can lead to severe damages of
buildings.
Analytical solution of the multiphase flow in porous

media may be applicable in very simple problems using
some simplified assumptions to reduce the complexity of
non-linear equations. In general, however the governing
coupled differential equations for deformable porous
systems have been solved numerically using, for instance,
the finite difference method [1–3], the finite volume
method [4–6] and discontinuous Galerkin methods [7,8],

mostly used for modelling of flow and transport of miscible
and non-miscible fluids in porous media. For coupled
deformation analysis, the finite element method [9–15],
meshless techniques [16–19] and XFEM [20–22] have
been frequently used for continuum applications, disconti-
nuities and fracture problems. Moreover, application of
multiscale homogenization modelling in porous media has
been widely increased in recent years [23–26].
In a pioneering work, Beltzer evaluated the complexity

of finite element method with the maximum entropy [27].
Sukumar applied the Shannon’s entropy [28] to obtain the
minimum–biased interpolants on polygonal domains to
construct polygonal shape functions [29] and Arroyo and
Ortiz modified the local maximum entropy basis for
numerical solution of PDEs [30]. Millán et al. used the
Galerkin method with cell-based maximum entropy basis
functions for PDEs to construct a smooth response with a
good control on unstructured meshes [31].
Ortiz et al. showed the robustness of the maximum

entropy meshless method with a tetrahedral background
mesh for integration of formulations of incompressible
problems and locking-free small strain elasticity [32,33].
Quaranta et al. used the maximum entropy basis function
to analyze nonlinear reinforced concrete shear walls [34].
Ullah et al. proposed an adaptive finite element-maximumArticle history: Received Jul. 30, 2017; Accepted Oct. 25, 2017
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entropy method, to refine the initial finite element model
with the maximum entropy approach [35]. Moreover, the
method was adopted for applied fracture problems [36–
38]. Wu et al. applied the adaptive method for material and
geometrical nonlinearities to solve the convection-diffu-
sion problem [39].
Application of the maximum entropy meshless method

in incremental small strain elastoplastic analysis of
geotechnical models was reported by Kardani et al. [40]
and Nazem et al. employed this method for consolidation
of porous media and investigated its robustness and
stability [41]. Navas et al. proposed a meshfree porous
media model based on the maximum entropy principle and
validated a set of benchmark steady seepage problems as
well as static and dynamic consolidation with the B-bar
algorithm to prevent the locking of the fluid phase [42–44].
Also, Zakrzewski et al. used this method to simulate an
undrained layer of soil with large deformations [45].
In numerical modelling of thermo-hydro-mechanical

coupled problems, which the major variables are tempera-
ture, pressure and displacement, it is generally accepted to
adopt a higher order interpolation scheme for displacement
[46]. In the conventional finite element method, this is
usually performed by higher order Lagrangian basis shape
functions, which require more nodes per element. The
maximum entropy shape functions, however, can provide
higher order continuity with the same number of nodes. In
this paper, the work of Sukumar [29] is extended to porous
media and its performance is assessed with available
reference analytical and numerical results.
After this introduction, the maximum entropy shape

function is presented in Section 2. Then, the governing
equations of porous media are described in Section 3.
Section 4 is dedicated to solution and discussion of the
benchmark problems of porous media. The concluding
remarks are presented in Section 5.

2 Maximum entropy shape functions

The concept of entropy in the information theory was
defined by Shannon [28] for measuring the uncertainty of
data or the insufficiency of knowledge. The maximum
entropy concept was then introduced by Jaynes [47] based
on the Shannon theory [28] as the least biased statistical
inference of an event occurrence. He discussed the relation
between the maximum entropy and other spectral methods
and concluded that this method could have an optimal
result where prior information was available. The concept
of maximum entropy has been applied to a wide range of
applications, from atomic and molecular problems and
nuclear physics [28] to image processing [48] and
economics [49], as a good mean for fields with insufficient
data.
Shannon proposed a robust method for making decision

and predicting occurrence of an event in the case of

uncertainty in data interpolation problems [28].

Hðp1,p2,:::,pnÞ ¼ – kB
Xn
i¼1

pilogpi, (1)

where pi represents the probability of phase case i to
happen and kB is the Boltzmann constant. A higher entropy
indicates the most probable state, which is associated with
more disorder [50].
Hðp1,p2,:::,pnÞ should be a continuous monotonically

increasing function for the case of equal probabilities. This
condition can well be satisfied by the logarithmic form.
The entropy of a continuous distribution, as defined in the
information technology systems, can be written as Ref.
[28]:

H ¼ –!
þ1

–1pðxÞlogpðxÞdx: (2)

H is a good measure of uncertainty and Jaynes showed
that maximizing the defined entropy would lead to the
most unbiased state [51]. The term pðxÞ is the density
distribution function and states the probability of occur-
rence. It is noted that kB is considered unity in the
informational entropy and is the key point of difference
with the thermodynamic entropy defined in Eq. (1).
Similarly, the entropy for a discrete set of probabilities of
an event i is written in the form of Eq. (3),

H ¼ –
Xn
i¼1

pilogpi: (3)

It is clear that the summation on non-negative

probabilities is always one;
Xn
i¼1

pi ¼ 1, which represents

the concept of partition of unity. This fact can be
considered as a constraint to the maximizing problem.
Also, there may be extra information, which should be
considered in the form of following constraints in terms of
x and y for each state.

Xn
i¼1

pi ¼ 1, (4)

x ¼
Xn
i¼1

pixi, (5)

y ¼
Xn
i¼1

piyi, (6)

where x and y are the coordinates of a point inside the
element and xi and yi are the nodal coordinates. The
Lagrange multipliers method is employed to impose the
mentioned constraints. Therefore, the functional L is
defined as:
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L ¼ –
Xn
i¼1

pilogpi þ ðα – 1Þ 1 –
Xn
i¼1

pi

 !

þ β x –
Xn
i¼1

pixi

 !
þ γ y –

Xn
i¼1

piyi

 !
: (7)

Differentiating the functional L with respect to pi,
maximizes the entropy and fits the constraints. The
Lagrange multiplier α – 1 is assumed in this form to
simplify the manipulation process:

∂L
∂pi

¼ – 1 – logpi – ðα – 1Þ – βðxiÞ – γðyiÞ ¼ 0,

for i ¼ 1,2,3::: (8)

Rewriting Eq. (8) leads to:

logpi ¼ – α – βxi – γyi↕ ↓pi ¼ e – α – βxi – γyi : (9)

The calculated pi corresponds to the maximum uncer-
tainty, defined in Eq. (3), along with constraints of Eqs. (4)
to (6). The partition of unity Eq. (4) is used to obtain:

Xn
i¼1

pi ¼ e – α
Xn
i¼1

e – βxi – γyi ¼ 1↕ ↓e – α

¼ 1Xn

i¼1
e – βxi – γyi

: (10)

Substituting the last term of Eq. (10) into Eq. (9), the
weighed form of probability is obtained,

pi ¼
e – βxi – γyiXn

i¼1
e – βxi – γyi

: (11)

Here, the two remaining coefficients are calculated by
multiplying pi to eαxi and eαyi, respectively, and a
summation on the probabilities leads to:

eαxipi ¼ e – βxi – γyixi ) eα
Xn
i¼1

xipi

¼
Xn
i¼1

e – βxi – γyixi )
x¼
Xn

i¼1

xipi Xn

i¼1
e – βxi – γyixi
eα

– x ¼ 0,

(12)

eαyipi ¼ e – βxi – γyiyi ) eα
Xn
i¼1

yipi

¼
Xn
i¼1

e – βxi – γyiyi )
y¼
Xn

i¼1

yipi Xn

i¼1
e – βxi – γyiyi
eα

– y ¼ 0:

(13)

b and γ are obtained by solving the two Eqs. (12) and
(13) simultaneously. This step becomes highly complex if
more constraints are involved. The numerical method
developed by Sukumar [29] is adopted for solving these set
of equations. The calculated probabilities can be consid-
ered as finite element shape functions, because they
possess the necessary condition of partition of unity.
The exponential form of obtained shape functions leads

to higher order of continuity. The developed shape
functions NH

u (in terms of pi) also can be used for
interpolating the displacement field:

u ¼
X4
i¼1

NH
u ûi, NH

u ¼ pi: (14)

It is noted that the entropy based shape functions
become bi-linear for a rectangular finite element, whereas
they become highly non-linear in terms of exponential
functions for general distorted elements [29]. Figure 1
shows the generated shape functions on a typical distorted
element, with coordinates of (0,0), (1,0.5), (0.5,1) and
(1,1), showing a major difference in comparison with the
conventional finite element shape functions.

3 Governing equations

Linear momentum, mass conservation (continuity equa-
tion) and energy conservation (enthalpy equation) govern
the behavior of porous media. All the assumptions, the way
the equations are derived and the finite element weak forms
are well covered in many references [18,46,52,53].
Beginning with the list of governing equations for an

unsaturated multi-phases porous medium:
Linear momentum conservation:

Lu
T:�þ �b ¼ 0, (15)

Linear elastic isotropic constitutive relation:

�$ ¼ Deε, (16)

Darcy low:

vαs ¼ kkrα
�α

–rPα þ �αbð Þ, (17)

Mass conservation for phase α (no mass transfer):

D

Dt
nα�αð Þ þ nα�αrvα ¼ 0, (18)

where vector b is the body force, � is the average density of
system, �, �$ and ε are the total stress, effective stress and
strain tensors respectively, De is the elastic stiffness matrix,
vαs is the relative velocity of phase α to solid, k is the
intrinsic permeability, krα is the relative permeability of
phase α and �α is the viscosity of phase α.
The initial conditions are:
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uðt¼0Þ ¼ 0, Pwðt¼0Þ ¼ Pwð0Þ, Pgðt¼0Þ ¼ Pgð0Þ: (19)

The essential boundary conditions are:

u ¼ u on Γu, (20)

Pw ¼ Pw on ΓPw
, (21)

Pg ¼ Pg on ΓPg
, (22)

and the natural boundary conditions can be written as:

t ¼ �:nΓ t
on Γt, (23)

qw ¼ vw:nΓw
on Γqw , (24)

qg ¼ vg:nΓg
on Γqg , (25)

where u, Pw , and Pg are the predefined values of the
independent variables on the essential boundary conditions
Γu, ΓPw

, and ΓPg
, respectively. Also, t, qw, and qg are the

rate of external force and flux vectors on the natural
boundary conditions Γt, Γqw , and Γqg , respectively.
For an unsaturated porous medium, the following

discretized set of coupled simultaneous equations are
obtained [54]:

0 0 0

Cws Pww Cwg

Cgs Cgw Pgg

2
64

3
75 d

dt

u

Pw

Pg

2
64

3
75

þ
Ke –Csw –Csg

0 Hww 0

0 0 Hgg

2
64

3
75

u

Pw

Pg

2
64

3
75 ¼

Fu

Fw

Fg

2
64

3
75, (26)

where the maximum entropy shape function NH
u is used for

the displacement discretization, while the classical finite
element shape function NP is used for discretizing the
pressure and:

Ke ¼ !
Ω
ðBH

u ÞTDeðBH
u ÞdΩ, (27)

Csw ¼ !
Ω
ðBH

u ÞTαmSwNPdΩ, (28)

Csg ¼ !
Ω
ðBH

u ÞTαmSgNPdΩ, (29)

Fu ¼ !
Ω
ðNH

u ÞT�gdΩþ!
Γ
ðNH

u ÞTtdΓ, (30)

with

Hww ¼ !
Ω
BP

T kkrw
�w

BPdΩ, (31)

Cws ¼ !
Ω
NP

TαSWm
TðBu

HÞdΩ, (32)

Pww ¼ !
Ω
NP

T Swðα – nÞ
Ks

Sw þ Pc
∂Sw
∂Pc

� �
þ n

Sw
Kw

�

– n
∂Sw
∂Pc

  �NPdΩ, (33)

Cwg ¼ !
Ω
NP

T Swðα – nÞ
Ks

Sg –Pc
∂Sw
∂Pc

� �
þ n

∂Sw
∂Pc

� �
NPdΩ,

(34)

Fw ¼ !
Ω
BP

T kkrw
�w

�wgdΩ –!
Γ
NP

TqwdΓ, (35)

Fig. 1 Comparision between conventional and maximum entropy shape functions in a non-rectangular element
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and

Hgg ¼ !
Ω
BP

T kkrg
�g

BPdΩ, (36)

Cgs ¼ !
Ω
NP

TαSgm
TðBu

HÞdΩ, (37)

Cgw ¼ !
Ω
NP

T Sgðα – nÞ
Ks

Sw þ Pc
∂Sw
∂Pc

� �
þ n

∂Sw
∂Pc

� �
NPdΩ,

(38)

Pgg ¼ !
Ω
NP

T Sgðα – nÞ
Ks

Sg –Pc
∂Sw
∂Pc

� �
– n

∂Sw
∂Pc

�

þn
Sg
Kg

�NPdΩ, (39)

Fg ¼ !
Ω
BP

T kkrg
�g

�ggdΩ –!
Γ
NP

TqgdΓ, (40)

where n is the porosity of material, Sw and Sg are the water
and gas saturation, ratio α is Biot constant, m ¼ 1 1½
0 �T, Ks, Kw, and Kg are the bulk modulus of solid, water,
and gas respectively.
BH
u ¼ LuN

H
u and BP ¼ LPNP, where Lu and LP are the

differential operators:

Lu ¼

∂
∂x

0

0
∂
∂y

∂
∂y

∂
∂x

2
6666664

3
7777775
, LP ¼

∂
∂x
∂
∂y

2
664

3
775: (41)

Pc is the capillary pressure and both Pc and
∂Sw
∂Pc

are

chosen from the experimental relations [10,55].
Equation (28) can be rewritten as:

B
dX

dt
þ CX ¼ F, (42)

which is a nonlinear differential equation in time. This
time-dependent set of equations is solved in time by the
fully implicit method [46]:

B

Δt
þ C

� �
nþ1

Xnþ1 –
B

Δt

� �
nþ1

Xn ¼ Fnþ1: (43)

A Newton-Raphson scheme is adopted to solve the
nonlinear set of Eq. (43) [46].

4 Numerical simulations

In this section, benchmark porous media problems are
solved with the maximum entropy shape functions in order
to verify the developed algorithm and the results are
compared with the available reference results.

4.1 Saturated porous medium

4.1.1 Two-dimensional saturated foundation under a strip
loading

The first example is the consolidation of a layer of soil
under a strip loading. A semi analytical solution of this
example was derived by Brooker and Small [56,57] using
the finite difference method and the Fourier transform of
governing equations of saturated porous media.
The length of foundation is 12 m and only the half of the

problem is modeled, due to the symmetry of problem
(Fig. 2). The layer is 1 m height and 6 m length and 1000
Pa magnitude strip loading is applied to the foundation
between 0£a£1 m. This problem is now solved for two
types of boundary conditions, defined in Table 1. The
material properties are presented in Table 2.
The problem is solved for the total time ttotal = 10,000 s

and with the time step Δt = 0.1 s. The results are compared
with the analytical solution of Gibson et al. [58] and
numerical solution of Samimi and Pak [16]. Figures 3 and

Fig. 2 Meshing and natural boundary conditions
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4 present changes of surface settlement and water pressure,
respectively, along the middle height of symmetric line in
time. Clearly, they are in good agreement with the
references results, even though a randomly generated
mesh has been adopted.

4.1.2 Thermo-elastic porous medium

The second problem is about a saturated elastic porous
medium under the heat loading. In a thermo saturated
porous medium, all phases are locally in a state of

thermodynamic equilibrium [46]. With this assumption,
the general form of enthalpy equation (without considering
heat transfer) can be written as:

ð�CÞeff
∂T
∂t

þ �wCwvw þ �gCgvg
� �

:rT – leff :r2 Tð Þ ¼ 0,

(44)

with the effective heat capacity ð�CÞeff :
ð�CÞeff ¼ ð1 – nÞ�sCs þ n�wCw: (45)

Also, the effective heat conductivity is:

leff ¼ ð1 – nÞls þ nlw, (46)

where Cα is the heat capacity and lα is the heat
conductivity of phase α.
This example, previously solved by Aboustit et al. [59]

and Lewis and Schrefler [46], is comprised of an elastic
soil column under a vertical load on the top of the column.
A temperature increase of ΔT ¼ 50 K is also applied on
the surface of soil. Figure 5 shows the finite element mesh
and part of boundary conditions. Four-node elements with
the size of 25 mm�25 mm are used and each element has
four Gauss points.
The boundary conditions are defined in Table 3, and the

material properties are shown in Table 4. The time step is
set to Δt = 0.1 s and the total time is ttotal = 10,000 s.
Figures 6, 7, and 8 depict the changes of water pressure,

temperature, and vertical displacement, respectively, in
time at distances of 0.2 m, 1 m, and 3 m from the surface.
The results are in agreement with the reference results.
Figure 9 outlines the contours of variation of temperature,
which shows how the temperature changes across the
height of the specimen in time and towards a uniform
temperature.

4.2 Unsaturated porous medium

In this section, an unsaturated porous medium test, known
as the Liakopolous problem, is studied by two methods.

Table 1 Definition of boundary conditions of example 4.1.1

base position x direction y direction water pressure

rigid base top free free constant Pw= 0.0 Pa

bottom rigid rigid impermeable

left rigid free impermeable

right rigid free impermeable

smooth base top free free constant Pw= 0.0 Pa

bottom free rigid impermeable

left rigid free impermeable

right free free impermeable

Table 2 Material properties of example 4.1.1

item symbol value

porosity n 0.3

biot coefficient α 1

elastic module of solid (N/m2) E 1e4

Poissoin’s ratio � 0.0

solid density (kg/m3) �s 2700

water density (kg/m3) �w 1000

intrinsic permeability (m2) k 1e–6

dynamic viscosity of water (Pa$s) �w 1.1e–3

Fig. 3 Changes of settlement in the middle of foundation
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The test performed on Del Monte sand by Liakopoulos
[60], is recognized as a benchmark problem in

non-saturated porous media, as the sample becomes non-
saturated due to water discharge from the bottom of
sample. This experiment has been examined by several
researchers numerically [11,19,52–54,61–67]. The experi-
mental conditions can be assumed as a uniaxial sample
column with 1 m height, which is filled by sand and then
the water is poured from the top of sample, until the porous
medium becomes saturated. Then, the inflow rate of water
is ceased and the water is discharged from the bottom of
sample, changing the state of porous medium to an
unsaturated condition. The test is solved without and in the
presence of air flow in the following sections. The material
parameters are listed in Table 5.

4.2.1 A Porous medium with deactivated air flow

In this case, the independent unknowns are displacement
and water pressure and the air pressure is assumed to
remain constant at atmospheric pressure all over the
sample. Hence, the capillary pressure is Pc ¼ –Pw. In
addition, it is assumed that after the inflow of water is
ceased, the pressure at the top of sample remains constant

Fig. 4 Changes of water pressure in the middle of foundation

Fig. 5 Finite element mesh and boundary conditions of example
4.1.2

Table 3 Boundary conditions of example 4.1.2

position x direction y direction water pressure Heat condition

top free free constant Pw ¼ 0:0 Pa constant T ¼ 50 K

bottom rigid rigid impermeable impermeable

left rigid free impermeable impermeable

right rigid free impermeable impermeable

Table 4 Material properties of example 4.1.2

item symbol value

porosity n 0.3

biot coefficient α 1

elastic module of solid (N/m2) E 6e6

Poissoin’s ratio � 0.4

solid density (kg/m3) �s 2000

water density (kg/m3) �w 1000

intrinsic permeability (m2) k 4e–9

dynamic viscosity of water (Pa$s) �w 1e–3

Effective special heat capacity (kcal/m$K$s) ð�CÞeff 40

Effective thermal conductivity (kcal/m$K$s) leff 0.2

Emad NOROUZI et al. Maximum entropy based finite element analysis 7



at the atmospheric pressure. The finite element mesh of
problem is shown in Fig. 10.
The initial capillary pressure is zero at t = 0 s in every

nodes. Water pressure and displacement boundary condi-
tions are defined in Table 6.
As illustrated in Fig. 10, the problem is solved with a

Fig. 6 Water pressure changes versus time

Fig. 7 Temperature changes versus time

Fig. 8 Settlement changes versus time
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25 cm�25 cm mesh and each element has 4 Gauss points.
In order to calculate the saturation and water relative
permeability equations in every time steps and every
Gauss points, the following empirical relation is adopted
[54]:

Sw ¼ 1 – 0:10152
Pc

�wg

� �2:4279

for Sw³0:91, (47)

krw ¼ 1 – 2:207ð1 – SwÞ1:0121: (48)

The problem is solved by Δt = 20 s for the total time of
two hours and the results of water pressure, capillary
pressure, saturation and vertical displacement are pre-
sented in Figs. 11‒14, respectively. The results illustrate
variations of each variable in different times versus the
height of sample. Clearly, the results are perfectly
compatible with the reference results.

4.2.2 A porous medium with activated air flow

The problem of 4.2.1 is solved again with the assumption
of change of air pressure along the column. Therefore, the

Fig. 9 Contour of temperature in different times

Table 5 Material properties of examples 4.2.1 and 4.2.2

item symbol value

porosity n 0.2975

biot coefficient α 1

elastic module of solid (N/m2) E 1.3e6

Poissoin’s Ratio � 0.4

density of soil (kg/m3) �s 2000

density of water (kg/m3) �w 1000

density of gas (kg/m3) �g 1.22

bulk module of solid (N/m2) Ks 1e12

bulk module of water (N/m2) Kw 2e9

bulk module of gas (N/m2) Kg 0.1e6

intrinsic permeability (m2) k 4.5e–13

dynamic viscosity of water (Pa$s) �w 1e–3

dynamic viscosity of gas (Pa$s) �g 1.8e–5

Fig. 10 Finite element mesh of problem 4.2.1

Table 6 Boundary conditions of problem 4.2.1

position x direction y direction water pressure

top free free impermeable

bottom rigid rigid constant Pw= 0.0 Pa

left rigid free impermeable

right rigid free impermeable

Emad NOROUZI et al. Maximum entropy based finite element analysis 9



air pressure is assumed as an independent variable in the
finite element formulation. The air pressure at the top and
bottom of sample is assumed constant (atmospheric
pressure). Hence, the capillary pressure is equal to the

difference of air and water pressures: Pc ¼ Pair –Pw. The
material properties are defined in Table 5. Also, the
adopted finite element mesh is depicted in Fig. 15.
The capillary pressure is zero at each node due to

Fig. 11 Water pressure changes versus height at different time

Fig. 12 Capillary pressure changes versus height at different time

Fig. 13 Saturation changes versus height at different time
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imposition of initial conditions. Displacement, water
pressure and air pressure boundary conditions of problem
4.2.2 are defined in Table 7.

The elements are similar to the previous example and the
time step and total time are Δt = 0.1 s and ttotal = 7200 s,
respectively. For calculation of water pressure and relative
permeability of water, Eqs. (47) and (48) are used. For the
air relative permeability, the Brooks and Corey relation is
utilized [55]:

kr_air ¼ ð1 – seÞ2=ð1 – sð2þlÞ=l
e Þ, (49)

se ¼ ðsw – swrÞ=ð1 – swrÞ, (50)

where se, swr = 0.2 and l= 3 are the effective water
saturation, the residual water saturation and the pore size
distribution index, respectively. The results for 5, 10, 20,
30, 60, and 120 minutes are depicted in Figs. 16‒20.
Finally, the outflow rate of both methods are obtained in

time and compared with the laboratory data in Fig. 21 to
examine the best performance.

5 Conclusions

In this paper, the recently developed basis of maximum
entropy concept is used to construct the shape functions of
finite element method, to study the behavior of porous
problems. The shape functions have the capability of
solving the problem even in distorted meshes and are
capable of obtaining higher orders of continuity with the
same degrees of freedom.
Some of the major problems in saturated, thermo-

saturated and unsaturated porous media have been studied
with this method. The results are in good agreement with
available references.
The method has been used in the field of porous media

and coupled problems. Nevertheless, it is potentially
attractive in other complex problems such as disconti-
nuities and fracture. On the other hand, the complexity of
solving equations and high expenses of constructing the

Fig. 14 Vertical displacement changes versus height at different time

Fig. 15 Finite element mesh of problem 4.2.2

Table 7 Boundary conditions of problem 4.2.2

position x direction y direction water pressure air pressure

top free free impermeable constant Pair= 0.0 Pa

bottom rigid rigid constant Pw= 0.0 Pa constant Pair= 0.0 Pa

left rigid free impermeable impermeable

right rigid free impermeable impermeable

Emad NOROUZI et al. Maximum entropy based finite element analysis 11



Fig. 16 Water pressure changes versus height at different time

Fig. 17 Air pressure changes versus height at different time

Fig. 18 Capillary pressure changes versus height at different time
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Fig. 19 Saturation changes versus height at different time

Fig. 20 Vertical displacement changes versus height at different time

Fig. 21 Outflow rate of water
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shape functions, should be realistically examined for
general engineering applications.

Acknowledgements The authors gratefully acknowledge the High Perfor-
mance Computing Laboratory (HPC Lab), University of Tehran for the
technical support. The authors wish to express their thanks to Professor N.
Sukumar for his maximum entropy code. The financial support of Iran
National Science Foundation (INSF) is gratefully acknowledged.

References

1. Touma J, Vauclin M. Experimental and numerical analysis of two-

phase infiltration in a partially saturated soil. Transport in Porous

Media, 1986, 1(1): 27–55

2. Faust C R, Guswa J H, Mercer J W. Simulation of three-dimensional

flow of immiscible fluids within and below the unsaturated zone.

Water Resources Research, 1989, 25(12): 2449–2464

3. Ataie-Ashtiani B, Raeesi-Ardekani D. Comparison of numerical

formulations for two-phase flow in porous media. Geotechnical and

Geological Engineering, 2010, 28(4): 373–389

4. Durlofsky L J. A triangle based mixed finite element—finite volume

technique for modeling two phase flow through porous media.

Journal of Computational Physics, 1993, 105(2): 252–266

5. Forsyth P A, Wu Y, Pruess K. Robust numerical methods

for saturated-unsaturated flow with dry initial conditions in

heterogeneous media. Advances in Water Resources, 1995, 18(1):

25–38

6. Jenny P, Lee S H, Tchelepi H A. Adaptive multiscale finite-volume

method for multiphase flow and transport in porous media.

Multiscale Modeling & Simulation, 2005, 3(1): 50–64

7. Klieber W, Rivière B. Adaptive simulations of two-phase flow by

discontinuous Galerkin methods. Computer Methods in Applied

Mechanics and Engineering, 2006, 196(1‒3): 404–419

8. Epshteyn Y, Rivière B. Fully implicit discontinuous finite element

methods for two-phase flow. Applied Numerical Mathematics,

2007, 57(4): 383–401

9. Li X, Zienkiewicz. Multiphase flow in deforming porous media and

finite element solutions. Computers & Structures, 1992, 45(2): 211–

227

10. Rahman N A, Lewis R W. Finite element modelling of multiphase

immiscible flow in deforming porous media for subsurface systems.

Computers and Geotechnics, 1999, 24(1): 41–63

11. Laloui L, Klubertanz G, Vulliet L. Solid–liquid–air coupling in

multiphase porous media. International Journal for Numerical and

Analytical Methods in Geomechanics, 2003, 27(3): 183–206

12. Oettl G, Stark R, Hofstetter G. Numerical simulation of geotechnical

problems based on a multi-phase finite element approach.

Computers and Geotechnics, 2004, 31(8): 643–664

13. Stelzer R, Hofstetter G. Adaptive finite element analysis of multi-

phase problems in geotechnics. Computers and Geotechnics, 2005,

32(6): 458–481

14. Callari C, Abati A. Finite element methods for unsaturated porous

solids and their application to dam engineering problems.

Computers & Structures, 2009, 87(7–8): 485–501

15. Nguyen V P, Lian H, Rabczuk T, Bordas S. Modelling hydraulic

fractures in porous media using flow cohesive interface elements.

Engineering Geology, 2017, 225: 68–82

16. Samimi S, Pak A. Three-dimensional simulation of fully coupled

hydro-mechanical behavior of saturated porous media using

Element Free Galerkin (EFG) method. Computers and Geotechnics,

2012, 46: 75–83

17. Goudarzi M, Mohammadi S. Weak discontinuity in porous media:

an enriched EFG method for fully coupled layered porous media.

International Journal for Numerical and Analytical Methods in

Geomechanics, 2014, 38(17): 1792–1822

18. Goudarzi M, Mohammadi S. Analysis of cohesive cracking in

saturated porous media using an extrinsically enriched EFG method.

Computers and Geotechnics, 2015, 63: 183–198

19. Samimi S, Pak A. A three-dimensional mesh-free model for

analyzing multi-phase flow in deforming porous media. Meccanica,

2016, 51(3): 517–536

20. Mohammadnejad T, Khoei A. Hydro-mechanical modeling of

cohesive crack propagation in multiphase porous media using the

extended finite element method. International Journal for Numerical

and Analytical Methods in Geomechanics, 2013, 37(10): 1247–

1279

21. Goodarzi M, Mohammadi S, Jafari A. Numerical analysis of rock

fracturing by gas pressure using the extended finite element method.

Petroleum Science, 2015, 12(2): 304–315

22. Mohammadnejad T, Khoei A R. An extended finite element method

for hydraulic fracture propagation in deformable porous media with

the cohesive crack model. Finite Elements in Analysis and Design,

2013, 73: 77–95

23. Zhuang X, Wang Q, Zhu H. A 3D computational homogenization

model for porous material and parameters identification. Computa-

tional Materials Science, 2015, 96: 536–548

24. Zhu H, Wang Q, Zhuang X. A nonlinear semi-concurrent multiscale

method for fractures. International Journal of Impact Engineering,

2016, 87: 65–82

25. Bayesteh H, Mohammadi S. Micro-based enriched multiscale

homogenization method for analysis of heterogeneous materials.

International Journal of Solids and Structures, 2017, 125: 22–42

26. Fatemi Dehaghani P, Hatefi Ardakani S, Bayesteh H, Mohammadi

S. 3D hierarchical multiscale analysis of heterogeneous SMA based

materials. International Journal of Solids and Structures, 2017, 118–

119: 24–40

27. Beltzer A I. Entropy characterization of finite elements. Interna-

tional Journal of Solids and Structures, 1996, 33(24): 3549–3560

28. Shannon C E. Communication theory of secrecy systems. Bell Labs

Technical Journal, 1949, 28(4): 656–715

29. Sukumar N. Construction of polygonal interpolants: a maximum

entropy approach. International Journal for Numerical Methods in

Engineering, 2004, 61(12): 2159–2181

30. Arroyo M, Ortiz M. Local maximum-entropy approximation

schemes: a seamless bridge between finite elements and meshfree

methods. International Journal for Numerical Methods in Engineer-

ing, 2006, 65(13): 2167–2202

31. Millán D, Sukumar N, Arroyo M. Cell-based maximum-entropy

approximants. Computer Methods in Applied Mechanics and

14 Front. Struct. Civ. Eng.



Engineering, 2015, 284: 712–731

32. Ortiz A, Puso M, Sukumar N. Maximum-entropy meshfree method

for compressible and near-incompressible elasticity. Computer

Methods in Applied Mechanics and Engineering, 2010, 199(25):

1859–1871

33. Ortiz A, Puso M, Sukumar N. Maximum-entropy meshfree method

for incompressible media problems. Finite Elements in Analysis and

Design, 2011, 47(6): 572–585

34. Quaranta G, Kunnath S K, Sukumar N. Maximum-entropy meshfree

method for nonlinear static analysis of planar reinforced concrete

structures. Engineering Structures, 2012, 42: 179–189

35. Ullah Z, Coombs W, Augarde C. An adaptive finite element/

meshless coupled method based on local maximum entropy shape

functions for linear and nonlinear problems. Computer Methods in

Applied Mechanics and Engineering, 2013, 267: 111–132

36. Amiri F, Anitescu C, Arroyo M, Bordas S P A, Rabczuk T. XLME

interpolants, a seamless bridge between XFEM and enriched

meshless methods. Computational Mechanics, 2014, 53(1): 45–57

37. Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field

modeling of fracture in linear thin shells. Theoretical and Applied

Fracture Mechanics, 2014, 69: 102–109

38. Amiri F, Millán D, Arroyo M, Silani M, Rabczuk T. Fourth order

phase-field model for local max-ent approximants applied to crack

propagation. Computer Methods in Applied Mechanics and

Engineering, 2016, 312: 254–275

39. Wu C, Young D, Hong H. Adaptive meshless local maximum-

entropy finite element method for convection-diffusion problems.

Computational Mechanics, 2014, 53(1): 189–200

40. Kardani O, NazemM, Kardani M, Sloan S. On the application of the

maximum entropy meshfree method for elastoplastic geotechnical

analysis. Computers and Geotechnics, 2017, 84: 68–77

41. Nazem M, Kardani M, Bienen B, Cassidy M. A stable maximum-

entropy meshless method for analysis of porous media. Computers

and Geotechnics, 2016, 80: 248–260

42. Navas P, López-Querol S, Yu R C, Li B. Meshfree Methods Applied

to Consolidation Problems in Saturated Soils. In: Weinberg K,

Pandolfi A, eds. Innovative Numerical Approaches for Multi-Field

and Multi-Scale Problems. Springer, 2016, 241–264

43. Navas P, López-Querol S, Yu R C, Li B. B-bar based algorithm

applied to meshfree numerical schemes to solve unconfined seepage

problems through porous media. International Journal for Numerical

and Analytical Methods in Geomechanics, 2016, 40(6): 962–984

44. Navas P, Yu R C, López-Querol S, Li B. Dynamic consolidation

problems in saturated soils solved through u–w formulation in a

LME meshfree framework. Computers and Geotechnics, 2016, 79:

55–72

45. Zakrzewski N, Nazem M, Sloan S W, Cassidy M. On application of

the maximum entropy meshless method for large deformation

analysis of geotechnical problems. In: Gu Y, Guan H, Sauret E, Saha

S, Zhan H, Persky R, eds. Applied Mechanics and Materials. Trans

Tech Publ, 2016, 331–335

46. Lewis R W, Schrefler B A. The finite Element Method in the Static

and Dynamic Deformation and Consolidation of Porous Media.

John Wiley& Sons, 1998

47. Jaynes E T. On the rationale of maximum-entropy methods.

Proceedings of the IEEE, 1982, 70(9): 939–952

48. Gull S F, Skilling J. Maximum entropy method in image processing.

In: IEE Proceedings F- Communications, Radar and Signal

Processing. IET, 1984

49. Golan A, Judge G G, Miller D. Maximum Entropy Econometrics.

John Wiley & Sons, 1996

50. Karmeshu J. Entropy Measures, Maximum Entropy Principle and

Emerging Applications. Springer Science & Business Media, 2003

51. Jaynes E T. Information theory and statistical mechanics. Physical

Review, 1957, 106(4): 620–630

52. Gawin D, Baggio P, Schrefler B A. Coupled heat, water and gas

flow in deformable porous media. International Journal for

Numerical Methods in Fluids, 1995, 20(8–9): 969–987

53. Khoei A, Mohammadnejad T. Numerical modeling of multiphase

fluid flow in deforming porous media: a comparison between two-

and three-phase models for seismic analysis of earth and rockfill

dams. Computers and Geotechnics, 2011, 38(2): 142–166

54. Schrefler B A, Scotta R. A fully coupled dynamic model for two-

phase fluid flow in deformable porous media. Computer Methods in

Applied Mechanics and Engineering, 2001, 190(24–25): 3223–

3246

55. Brooks R H, Corey A T. Hydraulic properties of porous media and

their relation to drainage design. Transactions of the ASAE.

American Society of Agricultural Engineers, 1964, 7(1): 26–28

56. Booker J R, Small J. Finite layer analysis of consolidation. I.

International Journal for Numerical and Analytical Methods in

Geomechanics, 1982, 6(2): 151–171

57. Booker J, Small J. A method of computing the consolidation

behaviour of layered soils using direct numerical inversion of

Laplace transforms. International Journal for Numerical and

Analytical Methods in Geomechanics, 1987, 11(4): 363–380

58. Gibson R, Schiffman R, Pu S. Plane strain and axially symmetric

consolidation of a clay layer on a smooth impervious base. Quarterly

Journal of Mechanics and Applied Mathematics, 1970, 23(4): 505–

520

59. Aboustit B, Advani S, Lee J. Variational principles and finite

element simulations for thermo-elastic consolidation. International

Journal for Numerical and Analytical Methods in Geomechanics,

1985, 9(1): 49–69

60. Liakopoulos A C. Transient Flow Through Unsaturated Porous

Media. Dissertation for PhD degree. University of California,

Berkeley. 1964

61. Narasimhan T N, Witherspoon P. Numerical model for saturated-

unsaturated flow in deformable porous media: 3. Applications.

Water Resources Research, 1978, 14(6): 1017–1034

62. Schrefler B, Simoni L. A unified approach to the analysis of

saturated-unsaturated elastoplastic porous media. Numerical Meth-

ods in Geomechanics, 1988, 1: 205–212

63. Zienkiewicz O, Xie Y M, Schrefler B A, Ledesma A, BicanicN.

Static and dynamic behaviour of soils: a rational approach to

quantitative solutions. II. Semi-saturated problems. In: Proceedings

of the Royal Society of London. Series A: Mathematical, Physical

and Engineering Sciences. The Royal Society, 1990

64. Schrefler B, Zhan X. A fully coupled model for water flow and

airflow in deformable porous media. Water Resources Research,

Emad NOROUZI et al. Maximum entropy based finite element analysis 15



1993, 29(1): 155–167

65. Gawin D, Schrefler B A, Galindo M. Thermo-hydro-mechanical

analysis of partially saturated porous materials. Engineering

Computations, 1996, 13(7): 113–143

66. Wang X W, Schrefler B. Fully coupled thermo-hydro-mechanical

analysis by an algebraic multigrid method. Engineering Computa-

tions, 2003, 20(2): 211–229

67. Ehlers W, Graf T, Ammann M. Deformation and localization

analysis of partially saturated soil. Computer Methods in Applied

Mechanics and Engineering, 2004, 193(27): 2885–2910

16 Front. Struct. Civ. Eng.


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24
	bmkcit25
	bmkcit26
	bmkcit27
	bmkcit28
	bmkcit29
	bmkcit30
	bmkcit31
	bmkcit32
	bmkcit33
	bmkcit34
	bmkcit35
	bmkcit36
	bmkcit37
	bmkcit38
	bmkcit39
	bmkcit40
	bmkcit41
	bmkcit42
	bmkcit43
	bmkcit44
	bmkcit45
	bmkcit46
	bmkcit47
	bmkcit48
	bmkcit49
	bmkcit50
	bmkcit51
	bmkcit52
	bmkcit53
	bmkcit54
	bmkcit55
	bmkcit56
	bmkcit57
	bmkcit58
	bmkcit59
	bmkcit60
	bmkcit61
	bmkcit62
	bmkcit63
	bmkcit64
	bmkcit65
	bmkcit66
	bmkcit67


